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Abstract—The reliable detection and tracking of general ob-
jects is required by many field robotics applications, where
autonomous agents need to navigate between and interact
with dynamic targets in unstructured environments. This paper
presents an approach to the detection and tracking of both
moving and stationary objects in a forward-facing laser scan.
Traditional approaches use geometric primitives to detect and
model specific targets. A more general target descriptor taking
object location and size into account is presented here, using
principal component analysis to extract these features. Kalman
filtering using a white noise acceleration model is implemented
to track objects, with extensions to the target motion model
provided in order to account for laser scanner motion. Results
presented show that the proposed system tracks targets effectively
over a wide range of challenging situations.

I. BACKGROUND AND INTRODUCTION

Field robotics applications frequently require that objects
surrounding a robotic platform be tracked and detected. In
environments where manoeuvring objects are likely to be
present, knowledge of these objects’ trajectories can be used
to improve navigation and collision avoidance systems. The
detection of objects is also required prior to any meaningful
interaction with them.

Specific objects can be recognised relatively easily using
vision-based techniques, but these techniques experience dif-
ficulties in extracting accurate target position measurements.
A better measure of a target’s position is obtained through
LIDAR (Light Detection and Ranging). LIDAR units are
capable of determining distances to objects at long range,
with high accuracy. LIDAR units are also able to operate in
conditions under which vision systems traditionally fail, such
as under extreme lighting.

The laser-based target tracking problem has received much
attention in robotics literature, with numerous approaches
proposed. Early approaches to laser-based target tracking only
considered moving targets, which were detected through scan
matching [1]. Scan matching is a relatively simple approach
by which consecutive scans are aligned and compared, with
differences assumed to be caused by a moving object.

Unfortunately, it is noted in [2] that scan matching suffers
from numerous problems. Scans can not be compared directly,
as the perceived shapes of moving objects change over scans.
This occurs as new points become visible and previously
visible returns are occluded. Instead, a fixed reference point

on objects is required if target motion is to be detected.
As a result, most laser-based object detection algorithms
involve a pre-processing stage, in which scans are grouped
into segments, each containing potential objects of interest.
Information relevant to the detected objects of interest is then
extracted so that the motion of the objects can be determined.

Geometric primitives are used in [3] to describe the proper-
ties of object segments. Initially, object segments are obtained
by jump-distance classification, a process where a scan is
separated into segments based on the distance between scan
points. Thereafter, circles, arcs and linear regions are detected
in each scan segment and used to determine likely segment
matches in subsequent scans.

The geometric primitives of [3] are also applied to the
problem of leg detection, for human target following, with
a segment classified as legs if two arcs or circles are located
close to one another. Human tracking is of particular interest
in field robotics applications, as knowledge of the locations
of humans is extremely important for the purposes of safety.
Unfortunately, target detection in this manner is not robust, as
one of the legs is often occluded, and the size of detected
segments varies, depending on the distance to the target.
Attempts to improve upon approaches such as this have been
made in [4]. This approach attempted to bootstrap a laser
detection system with visual information, obtained through
facial detection. The technique marked uncertain detections,
such as cases where only a single, leg-like object was detected,
for visual clarification, and relied on visual tracking to detect
false detections.

A far more robust method of classifying object segments
in laser scans was proposed in [5]. Here, supervised learning
was applied to the problem of building a classifier for the
detection of people. Their approach used AdaBoost to create
a strong classifier by combining a set of weak classifiers. Their
classifier consisted of 14 measurements or features extracted
from object segments. These incorporated both geometric and
statistical properties.

[5] trained the classifier on labelled data in three different
environments and found that the strongest features operating
in all the environments were the radius and jump distances.
This effectively means that the classifier was making decisions
based predominantly on the size of targets and the distance to
other segments. Similar results were obtained in [6], which



compared a variety of classifiers based on the 14 features of
[5] in the context of pedestrian detection. A better classifier,
which uses AdaBoost to train a classifier using a probabilistic
part-based model of geometric laser primitives in conjunction
with omnidirectional images, was proposed in [7].

Although the design of target specific classifiers can poten-
tially produce a high detection rate, it does so at the expense
of generality and may not be the best approach when targets
are not clearly defined. In these scenarios, a better approach
would be to attempt to detect and track objects of interest,
rather than classifying them.

A generalised approach to tracking movable objects, which
uses point matching to locate observations in a map of existing
objects, was proposed in [8]. Unfortunately, this approach
requires that a map of the environment be maintained, and
that scans are closely matched, prior to object labelling.

Tracking of moving objects is of great desire in the context
of simultaneous localisation and mapping (SLAM), where
these targets can interfere with map building and should
be removed before mapping takes place. This problem is
termed SLAM with Detection and Tracking of Moving Objects
(SLAM + DATMO). [9] propose a solution to this problem,
where moving objects are detected in a scan, associated with
those previously detected by comparing geometric primitives,
and tracked over time. An interacting multiple model estimator
(IMM) is used to find motion models for the objects and
combined with multiple hypothesis tracking to predict the
motion of these objects.

One of the most common techniques of object tracking
makes use of Kalman filtering. [10], [11] and [12] all use a set
of independent Kalman filter variants to track the position of
moving targets. The work of [12] modelled the moving objects
with constant linear acceleration and constant rotational veloc-
ity, while that of [10] used white noise acceleration velocity
models.

This paper presents an approach to laser-based target de-
tection and tracking. A generalised tracking system is used,
with the goal of tracking all potential objects visible in a
scan, and not just a specific target. Since this work aims to
detect and track any object visible in the laser scan, no target
specific geometries or motion models are assumed. If required,
a secondary sensor more suited to discriminating between
targets can be used in conjunction with the laser tracking to
select and track a target of interest.

The paper is structured as follows. Section II describes the
proposed approach to laser-based detection and tracking, with
details of descriptor extraction and the Kalman filter tracking.
This is followed by experimental results and conclusions in
section III.

II. METHODOLOGY

A. System Overview

An overview of the entire target tracking process is pre-
sented here, to better describe its operation. Each iteration of
the system commences with the arrival of a new scan. The new
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Fig. 1: A sample laser scan with detected ellipse overlay. The
laser scanner returns are marked as black points. Note that
the principal component ellipse requires at least 2 points to be
calculated, so segments of less than two points are discarded.

scan is then segmented and a descriptor extracted for each scan
segment.

The location of previously detected segments are predicted
in the current scan’s coordinate frame and matching segments
located. The states of matched segments are updated, based
on the current measurement. If a segment is not matched, it
is labelled and enrolled as a new target.

A search through existing targets is conducted to find and
combine any segments that share the same label. This assists in
handling situations where objects coalesce. During this search,
targets that have not been detected for a period of time greater
than some threshold T are removed from the list of tracked
targets.

B. Extraction of Segment Descriptors

Input scans are pre-filtered using a median filter, in order
to remove salt and pepper noise. Thereafter, scans are divided
into segments through jump-distance classification. This in-
volves a simple pass over the laser data, separating segments
if the distance between adjacent scan points is greater than
some threshold.

Four properties or features of each segment are then con-
catenated into a four tuple segment descriptor. The work of
[5], which involved training a classifier to recognise human
targets using numerous extracted features, showed that the
strongest features (features on which classification decisions
were primarily based) were radius and jump distances. In-
tuitively, this means that classifier decisions should be based
primarily on the location and size of point clusters, rather than
on any particular geometric primitives.

These findings inspired the features used in the segment
descriptor. The first two features of a segment are the positions
of the segment’s centroid, measured in 2D space, relative
to the forward facing laser scanner. The choice of centroid
coordinates as features ensures that segment location plays
a role in segment matching. The last two features in the



descriptor are the magnitudes of the principal components of
the points in a segment and aim to capture information relating
to segment size.

Principal component analysis (PCA) is a dimensionality
reduction technique that transforms data into a coordinate
system in which the largest variances in the data lie on
coordinate axes termed principal components. Mathematically,
the principal components of a set of observations are related
to the eigenvalues and eigenvectors of its covariance matrix.

In the case of two-dimensional laser point data, the principal
axes correspond to the major and minor axes of an ellipse
encircling the points and so represent a good measure of
the size of a segment. Figure 1 shows how ellipses obtained
through principal component analysis neatly encompass scan
segments. The ellipse is a good model of object size as it can
be shown to cover almost all of an object’s points, when the
principal components are suitably scaled.

It should be noted that the ellipse does not model the shape
of objects, but rather the size. As a result, the information
obtained for non-linear point distributions, where the principal
component ellipse does not always follow the contours of an
object, is still relevant and can be used for matching.

Only the magnitude of the principal components is of
interest, since ignoring direction allows for a certain amount
of rotational invariance in the matching process.

C. Kalman Filter Tracking
Once the descriptors of segments in a scan have been

extracted, they need to be associated with matching segments
in preceding scans. This requires an update of the position
features in the descriptors of previously detected segments,
to account for potential motion of the segments. This is
accomplished by means of Kalman filter tracking.

The Kalman filter is briefly explained here, in the context
of laser-based target tracking. The Kalman filter consists of
two stages, prediction and update. A prediction of a previous
segment’s position is made, based on a motion model, and then
updated, based on the extracted descriptor of an associated
segment. The predicted state x̂k|k−1 and predicted covariance
Pk|k−1 is given by

x̂k|k−1 = Fkx̂k−1|k−1 + Bkuk (1)

Pk|k−1 = FkPk−1|k−1F
T
k + Qk, (2)

with Fk the linear system update and Qk the process noise
covariance matrix. Bk takes the influence of any controls, uk,
into account. Given a measurement zk, the measurement and
covariance residuals are

ỹk = zk −Hkx̂k|k−1 (3)

Sk = HkPk|k−1H
T
k + Rk, (4)

with Hk the linear measurement model and Rk the measure-
ment noise covariance matrix. Then, the updated state and
covariance estimate are given by

x̂k|k = x̂k|k−1 + Kkỹk (5)
Pk|k = (I−KkHk)Pk|k−1. (6)

Here, Kk = Pk|k−1H
T
k S
−1
k is the optimal Kalman gain for a

linear system.
Using these equations, the operation of the Kalman filter

is easily understood. First, a prediction of the system state
is made, assuming zero-mean noise is present. An estimate
of the uncertainty in this prediction is made by combining
previous uncertainty, propagated through the model, with that
introduced through control action and that of the model itself.
A measurement is made and the uncertainty in prediction
combined with the uncertainty in measurement. Finally, a
revised state estimate is obtained by an uncertainty weighted
combination of prediction and measurement.

D. Prediction Models

As general targets are tracked in this work, no explicit
motion models can be defined ahead of time. For this reason,
a constant velocity, white noise acceleration motion model is
used to account for the motion of segments. Four states are
of interest in this model, the 2D position and velocities of an
object, measured relative to a forward facing laser scanner.
The state vector will be denoted by x = [x, y, ẋ, ẏ]

T. Using
this model, the system update equations are given by:

Fk =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 , (7)

with ∆t the sampling time. The white noise acceleration
model assumes that object velocities are subject to Gaussianly
distributed noise with zero-mean and variance σ2

a. This means
that the process noise covariance, Q1 is written as

Q1 =

[
0 0
0 1

]
⊗
[
σ2
a 0

0 σ2
a

]
. (8)

The symbol ⊗ represents the Kronecker product, which is used
for compact notation throughout this paper, in the interests of
brevity. Note that Q1 is not time varying, so has no subscript
k.

If the laser scanner is stationary, the prediction model of
(7) and (8) is sufficient to compensate for most target motions
and the association of segments for the update stage of the
Kalman filter can proceed. In the case of a moving laser
scanner, however, additions to the white noise acceleration
motion model are required.

E. Extension to Moving Platforms

Assuming that the laser scanner is mounted on a moving
platform and that the translational and rotational velocity of
the laser scanner is known, the white noise motion model can
be extended in the following manner. Recall that the goal is
to predict the position of a segment in a current scan in order
to assist in the segment matching process. Assuming that the
velocities of the laser scanner remain constant between scans, a
previous scan can be brought into the current scan’s coordinate
frame by means of a translation and rotation.



Initially, previously detected objects are translated by an
approximation of the motion of the laser scanner,[

tx
ty

]
=

[ vk
ωk

sin θk
vk
ωk

(1 − cos θk)

]
. (9)

Here, θk = ωk∆t is the angular rotation of the laser scanner,
resulting from its rotational velocity, ωk. vk represents the
translational velocity of the laser scanner between scans, with
∆t the time between scans.

Unfortunately, the velocities of (9) are never known per-
fectly, so uncertainty is present in this translation. This uncer-
tainty in translation can be incorporated into the process noise
covariance matrix as follows. It is assumed that the transla-
tional and rotational platform velocities are subject to zero-
mean Gaussian noise with variances σ2

v and σ2
ω respectively.

This is denoted by writing vk = vak + εv and ωk = ωak +
εω . Here, subscript a represents the actual variable while ε
denotes the zero-mean Gaussian noise. Substituting in (9), and
linearising through Taylor expansion provides[

tx
ty

]
≈

[
vak

ωak
sin θak + εv

∂tx
∂εv

+ εω
∂tx
∂εω

vak

ωak
(1 − cos θak) + εv

∂ty
∂εv

+ εω
∂ty
∂εω

]
. (10)

(10) has the desirable property of separate system and
noise terms. Hence, setting the random noise variables to zero
provides the translation equations. This property also allows
the system covariance update to be calculated as the sum of
the system covariance and the noise covariance passed through
the system model.

Given a linear system Y = TX, the transform of the
mean and covariance of Gaussian random variables passed
through the system is given by E [Y] = TE [X] and
Cov [Y] = TCov [X]TT respectively. Therefore, the system
covariance update equation is C = TuCuT

T
u + TxCxT

T
x.

Here, subscript x represents system contributions and subscript
u, noise contributions.

It can now be easily shown that

Tu =

[
∂tx
∂εv

∂tx
∂εω

∂ty
∂εv

∂ty
∂εω

]
, Cu =

[
σ2
v 0

0 σ2
ω

]
(11)

where,

∂tx
∂εv

=
1

ωk
(sin θk) (12)

∂tx
∂εω

=
vk
ωk

(
−∂tx
∂εv

+ ∆t cos θk

)
(13)

∂ty
∂εv

=
1

ωk
(1 − cos θk) (14)

∂ty
∂εω

=
vk
ωk

(
−∂ty
∂εv

+ ∆t sin θk

)
(15)

Unfortunately, this system is not valid for ωk = 0. In this case
the translation equations become[

tx
ty

]
=

[
vk∆t

0

]
(16)

and
Tu =

[
∆t 0
0 0

]
. (17)

The knowledge of uncertainty in the translation of objects
is incorporated into the object state update equations, by
summing the uncertainty due to translation with the process
noise Q1 to give

Qk =

([
1 0
0 0

]
⊗ TuCuT

T
u

)
+ Q1. (18)

The translation itself is included in the target state update
equations by simply shifting the positional estimates in the
white noise acceleration model by the estimated translation,

x̂k|k−1 = F1x̂k−1|k−1 +
[
tx ty 0 0

]T
, (19)

while the predicted covariance remains that of (2).
The incorporation of translation into the Kalman filter

framework does not correct any error in laser scanner rotation.
The rotation of the laser scanner still needs to be corrected for
by rotating the estimates of target object velocity and position
into the current laser scan’s coordinate frame. This requires
another iteration of the prediction phase of the Kalman filter,
but this time using a model of rotation.

Using direction cosine matrices, the rotation of the predicted
state x̂k|k−1 is obtained by multiplying it by

Fk =

[
1 0
0 1

]
⊗
[
cos θk − sin θk
sin θk cos θk

]
. (20)

As before, the rotation can not be known perfectly since the
rotational velocity ωk is subject to noise. This is modelled by
the inclusion of a zero-mean Gaussian noise variable εω with
variance σ2

ω . An estimate of the uncertainty introduced due to
this noise is obtained as discussed earlier, by linearising the
rotation through Taylor series expansion to provide

Tu =


−x sin θk − y cos θk
x cos θk − y sin θk
−ẋ sin θk − ẏ cos θk
ẋ cos θk − ẏ sin θk

 , Cu = σ2
ω. (21)

Here, (x, y) and (ẋ, ẏ) represent the position and velocities of
the translated segment.

Of course, the uncertainty introduced through rotation can
not be directly summed with the uncertainty in estimates after
translation, since the rotation is a non-linear operation that af-
fects the existing uncertainty in states. Thus, the uncertainty is
included by repeating the prediction phase of the Kalman filter,
updating the state and propagating the uncertainty through the
rotation Fk, and introducing the new uncertainty as process
noise Qk = TuCuT

T
u.

F. Update Models

Once a prediction of a target’s position is made, first by
predicting its own motion and then incorporating the effects
of laser scanner motion, the objects in scans should be aligned,
allowing for data association and the update stage of the
Kalman filter tracker to proceed.
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(a) Target 10 is tracked while undergoing a sharp set of turns.
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(b) Target 3 is tracked at a speed of over 6 m/s.
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(c) Stationary objects are tracked while the scanner moves. Target 246
is moving with zero velocity relative to the scanner.
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(d) Target 10 is tracked through an occlusion.
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(e) An object is merged with target 4 as they coalesce.
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(f) A target is lost in an occlusion and assigned the incorrect label when
emerging.

Fig. 2: Experimental results showing the success and failure modes of the laser tracking. Objects are marked on the raw laser
data, with ellipses showing the most recent target detections. Tracked objects are labelled with a unique number and marked
as randomly coloured circles to aid discrimination. A grey object represents a target that has not been detected in the current
scan, but is yet to be removed from the list of tracked targets. Target trajectories are marked by dotted blue trails and all
measurements are in the coordinate frame of the current scan.



Data association takes place through the use of a nearest
neighbour search, operating on the 4 tuple descriptor intro-
duced in Section II-B. A match is only accepted if the differ-
ence in the Euclidean distance between the first two nearest
neighbours is greater than some threshold. Once segments are
matched, the update stage of the Kalman filter takes place.
As only the position of each target is measured, and not the
velocity, the measurement model is

H =

[
1 0 0 0
0 1 0 0

]
. (22)

The potential error in measurement is obtained from laser
scanner specifications, but requires the inclusion of an addi-
tional quantity that accounts for potential error due to a moving
target centroid. This is likely to occur as points in a segment
move in and out of view. Denoting the standard deviation of
these errors as σm, the measurement noise is

R =

[
σ2
m 0
0 σ2

m

]
. (23)

III. RESULTS AND CONCLUSIONS

The results of experiments on two sets of data are discussed
here. The first, obtained under laboratory conditions, involves
scans of rapidly manoeuvring targets captured from a station-
ary laser scanner. The use of a stationary scanner allows for
modes of interest to be tested directly. The second set of data
was obtained in a conference venue with uncontrolled targets,
using a wheeled platform that navigates autonomously and
randomly, pausing for approaching targets.

Unfortunately, it is difficult to quantify the performance of a
laser-based tracking system designed to operate in unstructured
environments. Tracking performance is typically dependent on
the end application, and ground truth data is not readily avail-
able for comparison. Due to this difficulty, the experimental
work presented here only aims to identify and explain any
system failure modes.

Three primary scenarios are of interest when tracking
moving targets in laser scans, detecting high speed manoeu-
vring targets, handling coalescing objects and tracking objects
through occlusions. Figure 2 shows the tracker performance
in these situations.

The system proved extremely robust to rapidly moving,
manoeuvring targets, and was able to follow a human running
at over 6 m/s (Figure 2b) with a stationary scanner. While
this is extremely fast, it does constrain the allowable platform
motion, if objects are to be tracked using a moving scanner.
Nevertheless good results are still obtained with a moving
scanner. Figure 2c illustrates this using a scan captured in
the conference setting, an extremely challenging data set
containing numerous targets.

The tracking system is able to cope with temporary occlu-
sions, as indicated by Figure 2d, provided the trajectory of the
target does not change significantly when occluded.

Figure 2e shows how the tracking system is able to merge
objects that are close together. In this case, a person picked
up and moved another object in the scan, before separating.

Unfortunately, the ability to coalesce objects decreases the
system’s ability to discriminate between closely positioned
objects.

This is indicated by Figure 2f, which shows a failure in the
tracking system. In this situation, a target object entered an
occluded region, but changed trajectory in this region causing
it to be lost. The lost target then emerged from the occluded
region close to a stationary target of similar size and was
incorrectly merged with this target. This behaviour is difficult
to counter, and a secondary sensor is required for better target
discrimination.

Despite this failure mode, the tracking system performs well
and is able to overcome a wide variety of scenarios. The use
of principal components in the extracted descriptor allows for
closely located objects of differing sizes to be discriminated
between, while the Kalman filter allows both platform and
object motion to be accounted for.
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