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ABSTRACT

Aptamers, simply described as chemical antibodies, are
synthetic oligonucleotide ligands or peptides that can be
isolated in vitro against diverse targets including toxins,
bacterial and viral proteins, virus-infected cells, cancer
cells and whole pathogenic microorganisms. Aptamers
assume a defined three-dimensional structure and
generally bind functional sites on their respective targets.
They possess the molecular recognition properties of
monoclonal antibodies in terms of their high affinity and
specificity. The applications of aptamers range from
diagnostics and biosensing, target validation, targeted
drug delivery, therapeutics, templates for rational drug
design to biochemical screening of small molecule leads
compounds. This review describes recent progress made
in the application of biomedically relevant aptamers and
relates them to their future clinical prospects.

INTRODUCTION

Aptamers are nucleic acid ligands or peptides that
can be isolated against a variety of targets (table 1)
from massively complex combinatorial libraries
by an iterative in vitro process called systematic
evolution of ligands by exponential enrichment
(SELEX). The SELEX process and its subsequent
modifications have been extensively described in
several primary research articles' ? 22 374 and
reviews,* *¥79* hence I will not dwell on describing
SELEX in this review. Since the seminal SELEX
experiments, which were reported in 1990,%9%°
a large number of technical developments have
been made that automated® * and subsequently
reduced SELEX to a single-step selection process
called MonoLex.*® The SELEX process and its
subsequent technical innovations, which also
include capillary electrophoresis®® and micro-
fluidic** *° SELEX, have increased the power and
utility of the aptamer technology.”

Aptamers offer advantages over antibodies and
other conventional molecules as they can be en-
tirely produced in a test tube using enzymes, or can
be readily produced by chemical synthesis within
days rather than by tedious biological expression
used to make antibodies. The in vitro process or
chemical synthesis used to make aptamers repre-
sents a rapid, low cost and less batch-to-batch
variation process than the in vivo process used for
production of antibodies. Furthermore, toxins and
molecules that do not elicit a good immune re-
sponse and are not suitable targets for immuno-
therapy can be used as targets for the generation of
high-affinity aptamers.

Another advantage of aptamers is that they elicit
no immunogenicity,”® are not toxic in therapeutic
applications,”®*® and can be modified to increase

their stability™ ® in biological environments. For

medicine

instance, the stability in serum of the 2'-amino-
modified anti-basic fibroblast growth factor
aptamers was increased at least 1000-fold relative
to unsubstituted RNAS' while modified anti-
vascular endothelial growth factor (anti-VEGEF)
aptamer could survive for up to 17h in urine.%
Solid-phase synthesis of a specific aptamer also
allows post-SELEX modification such as addition of
2'-oxymethyl groups that are not compatible with
in vitro transcription. The resulting aptamers are
typically stable in human plasma for 15—24h at
37°C.%% Conjugation of aptamers to either lipids or
polymers such as polyethylene glycol improves
their stability and distribution kinetics sufficient to
produce therapeutic effects.®*~56

The molecular recognition properties of aptamers
are very similar to antibodies, which recognise a
target with high affinity and specificity and in
many cases effectively inhibit its function. Some of
the best aptamers form complexes that have disso-
ciation constants in the picomolar rangeS' 2 ¢
while many have dissociation constants that are
similar to the antigen-binding fragment of anti-
bodies.® In terms of selectivity, aptamers can
discriminate between very subtle structural differ-
ences, such as the presence or absence of a hydroxyl
group or structural enantiomers (mirror images that
have an identical chemical composition) of the
target. Due to their relatively small size compared
with antibodies, aptamers can fit into clefts where
bulky molecules such as antibodies would otherwise
be excluded. Their flexibility allows them to fold and
assume the shape of relatively small binding pockets,
thereby maximising surface contact with the target
protein. These desirable properties of aptamers,
combining the optimal characteristics of small
molecules and antibodies, show great promise and
have opened avenues for the development of ther-
apeutic, antiviral, diagnostic and targeted drug
delivery tools (table 1) in areas that have been
hitherto refractory to other approaches.

THERAPEUTIC POTENTIAL OF APTAMERS

Aptamers achieved a major milestone in clinical
therapy, on the 20 December 2004, when pegap-
tanib sodium—an anti-VEGF 165 (VEGFes5)
aptamer developed by Pfizer and Eyetech™ °” and
marketed as Macugen—was approved by the US
Food and Drug Administration for the treatment of
age-related macular degeneration.”” Other research
groups are developing aptamers as therapeutics in a
variety of indications: the treatment of cancer,®” 7
inhibiting proteins involved in Alzheimer disease,”
against aberrantly folded pathological isoforms of
prion proteins’®> 7? that cause Creutzfeldt—Jakob
disease, against Mycobacterium tuberculosis,'t and
against hepatitis C virus (HCV)? *° 7 7 and several
other viruses (reviewed by Gopinath®) including
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Table 1

Recent examples and potential applications of aptamers isolated against various biomedically relevant targets

Target class

Target name*

Assayed activity of aptamers

Potential applications

Viral

Bacterial

Protozoan parasite

Human cytokines, chemokines,
hormones and growth factors

HIV-1 gp120

HIV-1 RT

HCV
M tuberculosis

Staphylococcus
Botulinum neurotoxin

Trypanosoma
VEGF

PDGF

EGF

Insulin
Osteopontin

(a) Neutralises HIV-1 infectivity’
(b) Targeted delivery and dual inhibition of HIV-123
(c) High affinity to gp120*

(a) Inhibits drug-resistant RT>~7

(b) Used to discover a small molecule that inhibits
multidrug-resistant RT®

(a) Inhibits replication of HCV® '°

(a) Improves the survival of mice challenged with
M tuberculosis'

(b) High sensitivity and specificity to MPT64
protein of M tuberculosis'?

(a) High specificity and affinity to S aureus'®

(a) Detects botulinum neurotoxin rapidly and with
high sensitivity'*

(a) Inhibits cell invasion'®

(a) High affinity to VEGF'®

(b) Inhibits angiogenesis'’

Reduces retinal detachment in mice'®

Inhibits tyrosine phosphorylation'®

Detects and measures insulin activity in solution?®

Decreased progression and metastases of breast

(a) HIV entry inhibitor drugs’

(b) Targeted delivery of siRNA into HIV-infected
cells? 3

(c) Microarray-based HIV-1 diagnostic*

(a) HTS and identification of small molecule
inhibitors of RT®

(b) Second-generation RT inhibitor drugsS’
(a) HCV therapeutics

(a) Antimycobacterial agent'’
(b) M tuberculosis diagnostic12

7

(a) S aureus diagnostic'
(a) Botulinum neurotoxin diagnostic'

(a) Prophylaxis for Chagas disease'®

(a) Cancer diagnostic16
(b) Angiogenesis treatment'’
Treatment of ischaemic retinopathies'®

Lead compound for treatment of carcinomas'®
Type 1 diabetes diagnostics
Anticancer drug21

cance.?!

Human cells, adhesion molecules, Leukaemia cells

receptors and other cell surface specimens?? 2

(a) High specificity to leukaemia cells in clinical

(a) Leukaemia diagnostic?? 2

(b) Targeted drug delivery to leukaemia®*

proteins (b) Targeted delivery of anticancer drug to
leukaemia cells®*
PSMA (a) Targets delivery of anticancer drug inside (a) Targeted drug delivery to prostate cancer
nanoparticles to prostate cancer cells?® (b) Prostate cancer diagnostic26
(b) High sensitivity and specificity to PSMAZ®
Nucleolin Destabilises breast cancer cells?’ Anticancer drug?’
0-glycan-peptide Selectively kills epithelial cancer cells?® Epithelial cancer drug?
EGFRVIII Induces apoptosis of glioblastoma cells?® Targeted therapy for brain tumours?®
Human coagulation components APC Selectively binds to APC with high affinity® Potential therapeutic agent>
VWF Inhibits platelet aggregation®' 2 Antithrombosis drug®' 32
Haem Inhibits growth of malaria parasite® Antimalaria drug®

*A comprehensive online database cataloguing a range of targets used to isolate aptamers is available (The Ellington Lab Aptamer Database: http://aptamer.icmb.utexas.edu/). In addition,
reviews by Yan et al,** Cerchia et al,*® Gopinath et a/*® and Held et a/*’ contain comprehensive lists of aptamers isolated against various biomedically relevant targets published in the 1990s,
various cancer targets identified in 1990—2002, and various viral and HIV-1 targets identified before 2007, respectively.

APC, activated protein C; EGF, epidermal growth factor; EGFR, epidermal growth factor receptor; HCV, hepatitis C virus; M tuberculosis, Mycobacterium tuberculosis; PDGF, platelet-derived
growth factor; PSMA, prostate-specific membrane antigen; RT, reverse transcriptase; S aureus; Staphylococcus aureus; VEGF, vascular endothelial growth factor; VWF, von Willebrand factor.

vari%gs stages in the HIV-1 replication cycle (reviewed by Held
et al”’).

Within the HIV-1 life cycle, there are several key targets that
are suitable for the generation of therapeutic aptamers.
Aptamers that bind a variety of intracellular HIV-1 proteins,
such as reverse transcriptase (RT),°7 7 Rev,”” 7® Tat’”” and
integrase,®® have been generated. Unlike antibodies, aptamers
can fold properly and retain activity in the intracellular envi-
ronment. However, the majority of aptamers with potential
therapeutic utility selected to date target extracellular pro-
teins.'? 21 %6 57 62 81789 Eytracellular therapeutic targets such as
HIV-1 gp120 have the advantage of ready access to aptamer
intervention without the need for enabling access to cells. The
aptamers against HIV-1 gpl120 bind the protein with high
affinity and high specificity, and neutralise a broad range of RS
HIV-1 clinical isolates.” In a recent review, these RNA aptamers
were reported to have the most potent in vitro antiviral efficacy
of all HIV-1 entry inhibitors described to date,”” including
antibodies. These aptamers prevented entry and suppressed viral
replication in cultured human peripheral blood mononuclear
cells by up to 10 000-fold." While the emergence of HIV-1 escape
mutants and drug-resistance variants appears to be inevitable,
one extensively studied aptamer called B40 has recently been
shown to penetrate the highly variable exterior surfaces of gp120
and bind the conserved core at the heart of the CCR5-binding

J Clin Pathol 2010;63:480—487. doi:10.1136/jcp.2008.062786

site,”® ?! which the virus may be unable to mutate without

compromising its fitness. While these aptamers have promising
therapeutic potential, they remain to be evaluated in preclinical
and clinical studies.

Some of the best examples of therapeutic aptamers that have
progressed through preclinical to clinical development include
antithrombin aptamer (ARC183),2 %3 anti-platelet-derived
growth factor (PDGEF) aptamer (ARC127)'® ** and an anti-von
Willebrand factor aptamer (ARC1779)." # All these aptamers
have been developed by Archemix (Cambridge, Massachusetts,
USA) for use as an anticoagulant during coronary artery bypass
graft surgery (ARC183), treatment of proliferative diseases such
as intimal hyperplasia (ARC127), and thrombotic thrombocy-
topenic purpura and other thrombotic microangiopathies
(ARC1779). These aptamers showed no acute toxicities, no
evidence of genotoxicity, and no adverse effects in preclinical and
clinical evaluations. Phase 1 clinical trials showed that admin-
istration of ARC183 resulted in a rapid onset of anticoagulation,
demonstrated stable dose-related anticoagulation activity, and
that the effects of the drug were rapidly reversed after admin-
istration of the drug infusion ceased.”® The limitation with the
therapeutic use of ARC183 is that the amount of drug needed to
achieve the desired anticoagulation for use in coronary artery
bypass graft surgery resulted in a suboptimal dosing.”® However,
ARC1779 was recently shown to be effective in treating an
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otherwise refractory case of idiopathic thrombotic thrombocy-
topenic purpura in a 39-year-old patient.’? These clinical and
pharmacological data provide a rational basis for further trials
with ARC1779 and related aptamers.

The most advanced aptamer in the potential treatment of
cancer is AS1411,”” which has been developed by Antisoma
(London, UK). AS1411 aptamer binds nucleolin on the surface of
cancer cells and induces apoptosis.”® In a dose escalation (1 mg/
kg/day to 10 mg/kg/day) clinical study, AS1411, then called
AGRO001, showed positive responses in patients with advanced
solid tumours (including three renal and two pancreas cancer
cases) without any adverse effects.”” Recently, in a randomised
phase II clinical trials, a 10 mg/kg/day or 40 mg/kg/day dose of
AS1411 combined with high-dose cytarabine was well tolerated
and showed promising signs of activity in patients with primary
refractory or relapsed acute myeloid leukaemia.'”® AS1411 has
also been shown to destabilise bcl-2 mRNA in vitro and is
currently being evaluated for treatment of breast cancer?” An
RNA aptamer, OPN-R3, isolated against osteopontin has been
shown, in an in vivo xenograft model of breast cancer, to sig-
nificantly decrease local progression and distant metastases.”!
Another aptamer, called SM20, isolated against plasminogen
activator inhibitor-1, has demonstrated in vitro therapeutic
potential as an antimetastatic agent and could possibly be used
as an adjuvant to traditional chemotherapy for breast cancer.'%!
There are several aptamers that have been recently isolated for
potential treatment of other cancers such as glioblastoma,® T
cell leukaemia,®® ** %2 and epithelial cancer cells in the breast,
colon, lung, ovaries and pancreas.?® Clearly, as aptamer research
burgeons and more enter clinical trials, aptamers are likely to
make a direct and significant contribution in the treatment of
infectious and acute diseases, and chronic diseases such as cancer.

APTAMERS AS TEMPLATES FOR RATIONAL DRUG DESIGN
AND SMALL MOLECULE LEAD CONMPOUNDS
Other than using aptamers directly as therapeutics, they can
also be used indirectly as templates for structure-based rational
drug design and for biochemical screening of small molecule lead
compounds. Generally, aptamers have a predilection of binding
functional sites on target proteins in a manner similar to small
molecule drugs. This property allows structural elucidation of
the aptamer—protein complex to provide insights on the iden-
tity of the active site that could then be used for rational drug
design. Co-crystal structures of aptamer—thrombin,'®® %%
aptamer—bacteriophage MS2 coat protein,'® 1% aptamer—NFkB
(nuclear factor k-light-chain-enhancer of activated B cells), '’
aptamer—PreQ0 metabolite'®® and aptamer—HIV TAR'”” have
provided valuable insights into the molecular recognition
mechanisms adopted by aptamers to their respective targets.
Typically, the intermolecular forces between aptamer and
protein involve ionic interactions, hydrogen bonds and base
stacking.!%4 106 107 199 However, other architectural features,
such as phosphate backbone flexibility and shape, complemen-
tarily contribute to aptamer affinity.'"* The structure—function
relationship of gp120 binding and HIV-1 neutralising aptamer
has shown that the aptamer sterically blocks the active site of
the protein, and also interferes with protein activity by allosteric
or non-competitive inhibition (Marisa Joubert, personal com-
munication 2009). Taken together, these biophysical properties
of aptamers make them desirable tools for structure-based
rational drug design and for biochemical screening.

Aptamers can also be used in high-throughput screening of
libraries of small molecules, where the displacement of target-
bound aptamer by a small molecule in competition binding
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could be an effective method to identify hits (figure 1). This
approach allows for small molecules acting at the same site as
the parent aptamer to be screened directly. The seminal paper
that described aptamer-based high-throughput screening of
small molecule lead compounds used high-affinity aptamers that
bind PDGF and wheat germ agglutinin.''” In both cases, binding
affinities of competing small molecules and aptamers were
strongly correlated with their inhibitory potencies in cell-based
functional assays. Labelled PDGEF-binding aptamer was displaced
by a small molecule antitumour agent called suramin from the
PDGE-binding site."'* In another study, an RNA aptamer that
inhibits HIV-1 RT with high specificity''! was used to bio-
chemically screen and identify a small molecule competitive
inhibitor of RT called SY-3E4.° SY-3E4 inhibits the replication of
the HIV-1 NL4-3 wild-type strain and a multidrug-resistant
mutant TN6-P5-5 in cell-based functional assays.® In addition to
inhibiting a multidrug-resistant strain of HIV-1, SY-3E4 has been
shown to bind at a different site from that of currently available
anti-HIV-1 RT inhibitors.?

These data point to the value and prospect of aptamers in
biochemical screening and identification of novel small molecule
inhibitors with new mechanisms of action for validated targets
and protein targets that have no known binding partners, such as
orphan receptors. In recent studies, peptide aptamers have also
been used for high-confidence validation of therapeutic targets
and for guiding the discovery of small molecule drugs."*? *

DIAGNOSTIC AND BIOSENSING POTENTIAL OF APTAMERS
Another burgeoning area of aptamer research is their applications
in diagnostics and biosensing. The high affinity and hence high
sensitivity, high specificity, robustness and ease of modification,
such as the attachment of fluorescence labels and differential dyes
or colorimetric reporter molecules, are some of the defining
properties that make aptamers desirable diagnostic or biosensing
tools. For aptamer-based diagnostics or biosensors, binding of an
aptamer to its target molecule must be reported by attaching
a signal transduction mechanism to the aptamer sequence.
Allosteric aptamer-based florescence resonance energy transfer
(FRET) for detection of molecular targets offers excellent choice
because of the convenience of detection, sensitivity and avail-
ability of numerous flurophores and quenchers of nucleic acids.
In the aptamer-based FRET, the aptamer acts as an affinity probe
that specifically seeks a target analyte from a complex biological
sample for binding, while the intermolecular and intramolecular
FRET between the donor and acceptor through specific binding
of fluorophore-labelled aptamer of the target molecule results in
increased sensitivity. The limitations of using aptamer-based

Figure 1
and HIV-1-neutralising aptamer. A gp120-binding aptamer (black) is
displaced from the protein active site (grey) by a small molecule hit
(white), which mimics and competes with the aptamer for binding. The
aptamer displacement assay is used for high-throughput screening and
discovery of small molecule leads with the same functional properties as
the aptamer it displaces on the target.

A hypothetical aptamer displacement assay for gp120-binding
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FRET include the use of expensive fluorophores and the tedious
process for labelling the aptamer. Another challenge of using
FRET signalling is that it is difficult to apply directly in detecting
analytes in their native environment or in complex biological
fluids because of the interference of intense background signal,
which can compromise assay sensitivity. Notwithstanding,
there have been efforts to circumvent this problem such as the
use of a light-switching excimer aptamer probe for rapid protein
monitoring in biological fluids using steady-state and time-
resolved fluorescence measurements.'"”

Important considerations in developing and evaluating any
ideal diagnostic test are its sensitivity, specificity, rapidness,
robustness, reliability, ease of performance and affordability by
those at risk of infection. Because of their desirable properties,
aptamers can be exploited and modified to fulfil the above
criteria for developing ideal diagnostics. In proof-of-concept
experiments, a protocol for aptamer-based colorimetric detection
of a broad range of analytes has been developed.'’ In one
experiment, DNA aptamers were attached to nanoparticles and
used to construct a lateral flow colorimetric sensor with in-
stantaneous colour response upon binding cocaine in undiluted
human blood serum.'’® The beauty of this aptamer-based
colorimetric sensor lies in its simplicity and user-friendliness
because detection results can be observed with the naked eye
without the need for sophisticated instruments or trained
laboratory personnel.

Another simple proof-of-principle experiment used a sand-
wich assay based on single aptamer sequences for the direct
detection of small molecule targets in blood serum and other
complex matrices.!’” To demonstrate the utility and elegance of
this approach, a single anticocaine aptamer and anti-ATP
aptamers were used to fabricate electrochemical sensors directed
against cocaine and ATP, respectively.''” Both targets were de-
tected at low micromolar concentrations, in seconds, and in a
convenient, general, readily reusable, electrochemical format.'’”
Both proof-of-principle diagnostics are selective enough to be
adapted for various analytes of biomedical interest and can be
deployed directly in blood, crude cellular lysates and other
complex sample matrices. For example, a DNA aptamer isolated
against surface proteins of Campylobacter jejuni, a bacterium that
causes food poisoning in humans, has been used to develop a red
quantum dot-based sandwich assay that rapidly (within
15—20 min) and specifically detects as little as 10—250 colony
forming units of Campylobacter jejuni bacteria in various food
matrices.''® In another study, an aptamer-based electrochemical
sensor has been developed to detect botulinum neurotoxin
within 24 h and, with a high signal-to-noise ratio, allows a limit
of detection of 40 pg/ml by two standard deviation cut-offs
above the noise levels."® While this aptamer-based electro-
chemical detection of botulinum toxin compares favourably
with monoclonal-antibody-based immunoassays in terms of
sensitivity and specificity, it is superior in terms of rapidity and
user-friendliness. To further demonstrate the simplicity and
utility of aptamer-based diagnostics, the single-stranded DNA
aptamer isolated against MPT64 protein from M tuberculosis has
been used to construct a sandwich assay for diagnosis of 4]
tuberculosis.'? The sandwich assay scheme based on aptamer—
protein complex has a high sensitivity (negative ratio, 24/27,
88.9%) and specificity (positive ratio, 46/52, 88.5%) in detecting
MPT64 protein in the culture filtrates,'* suggesting that this
simple aptamer-based assay has potential for rapid and reliable
diagnosis of M tuberculosis.

Aptamers may also be useful in detecting cells that express
a particular protein, such as a tumour marker, on their surfaces.

J Clin Pathol 2010;63:480—487. doi:10.1136/jcp.2008.062786

Using whole cell-SELEX, Sefah and colleagues®® have isolated
DNA aptamers that bind live acute myeloid leukaemia (AML)
cells with high affinity and specificity. One aptamer, called
KH1C12, shows selectivity to the target AML (HL60) cell line
and recognises the target cells within a complex mixture of
normal bone marrow aspirates, while two other aptamers, called
KK1B10 and KK1D04, recognise targets with monocytic differ-
entiation.”? That study showed that the selected aptamers can
be used as molecular probes for effective diagnosis and subca-
tegorisation of AML. Aptamer-based cell-surface proximity
ligation assay (PLA) has also been used to successfully detect and
differentiate between cells that differentially express the pros-
tate-specific membrane antigen (PSMA).?® In PLA, two probes
that bind adjacent to one another on a target analyte are ligated,
yielding a unique amplicon that can be sensitively detected by
real-time PCR.?® This aptamer-based cell-surface PLA assay,
which is specific for PSMA, has a great potential in the early
diagnosis and typing of prostate cancer. Aptamers that recognise
cell-surface biomarkers on cancer cells have also been used in
a more novel assay configuration. For instance, a novel in situ
tissue slide-based SELEX strategy targeting neoplastic tissues
from breast cancer patients has recently been reported.’? In situ
tissue slide-based SELEX is a variation of the SELEX protocol,
and it screens serial pathological tissue sections embedded on
slides as targets for relevant aptamers, and evolves aptamers to
all fractions of tissue in their natural positions."'” Using in situ
tissue slide-based SELEX, the Shao group identified a single-
stranded DNA aptamer called BC15, which binds hnRNP
Al—highly expressed in breast cancer tissues—and showed that
it specifically recognises breast cancer cells within tissue sections
or from culture medium.""” The BC15 aptamer has also been
used to probe tissues from several other pathological types of
breast cancers, including lobular carcinoma, ductal carcinoma
complicated with lobular carcinoma, comedo carcinoma, and
lymph node metastasis of breast ductal carcinoma origin or
breast lobular carcinoma origin.'’? These reports suggest that
tissue slide-based SELEX has potential in the pathological diag-
nosis of cancer. An alternative novel assay configuration used an
aptamer-modified microfluidic device to capture and enrich rare
cancer cells from background healthy cells.’?® To accomplish
this, sgc8 aptamer, which was isolated by cell-SELEX and
specifically binds T cell acute lymphocytic leukaemia with
K4=0.8 nM,?® was first immobilised on the surface of a poly
(dimethylsiloxane) microchannel, followed by pumping
a mixture of cells through the device.'?® This process allowed
the use of optical microscopy to measure the cell-surface density
from which the percentage of cells captured as a function of cell
and aptamer concentration, flow velocity and incubation time
were calculated. This aptamer-based microfluidic device cap-
tured rare cancer target cells, with >97% purity and >80% effi-
ciency, within minutes."?® This assay promises to play a key role
in the early detection and diagnosis of cancer where rare diseased
cells can first be enriched and then captured for detection.

Another approach to simplify the detection of analytes in
aptamer-based diagnostics includes linking the aptamer to an
enzyme that has activity that can be readily assayed. To illus-
trate the point, a biotin-labelled DNA aptamer was selected
against insulin and used to construct an aptameric enzyme
subunit, which allows detection and measurement of insulin
activity in solution.?® Detection and measurement of insulin
activity is useful for the diagnosis of type 1 diabetes.

Another study has described linking an RNA aptamer isolated
against C reactive protein, which is a biomarker for inflamma-
tion, sepsis and tissue necrosis, to a secondary antibody labelled
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with a dye or enzyme that is easily measured in an immuno-
assay.'?! This aptamer-based sandwich immunoassay provides
the unique potential of detecting C reactive protein in serum
samples of low-risk patients (1—3 mg/l) as well as high-risk
patients (>500 mg/1)."?! Through innovation and with the de-
velopment of automated high-throughput isolation of aptamers,
the aptamer-based sandwich immunoassays have evolved to
high-throughput microarray-based diagnostics.'?!~'2*

Conjugation of aptamers to nanoparticles is another innova-
tion that has opened further opportunities in the development
of new generation rapid and reliable diagnostics.'®” In addition
to the example described above for colorimetric detection of
cocaine using aptamer—nanoparticle lateral flow technology,
another study has reported highly sensitive and specific detec-
tion of PDGF via a ‘sandwich’ structure of two aptamer-binding
sites and gold-nanoparticle-mediated amplification technique.'*®
This aptamer—nanoparticle detection approach exhibits good
stability and detects picomolar concentrations of PDGF in
contaminated samples or undiluted human blood serum.'?% In
nano-aptamer based diagnostics, aptamers have also been used
to develop silicon-nanowire field effect transistor (SINW-FET)
biosensors for real-time detection of analytes.'® 27 In one study,
anti-VEGF aptamer-modified SINW-FET was used for real time,
label-free and electrical detection of VEGF at concentrations as
low as 104 pM.'S VEGF drives angiogenesis in various tumours
and hence its detection using the anti-VEGF aptamer-modified
SINW-FET can be used as a surrogate marker for cancer diag-
nosis. In another study, the antithrombin aptamer immobilised
on SINW-FET biosensor was applied for real-time detection of
picomolar amounts of thrombin in blood samples.'®” A solid-
state electrochemiluminescence (ECL) biosensing switch system
based on special ferrocene-labelled molecular beacon aptamer
(Fc-MBA) has also been developed successfully for sensitive and
specific detection of thrombin.'?® The switch system includes an
ECL intensity switch and an ECL substrate, which was made by
special modification of gold nanoparticles.'?®

POTENTIAL OF APTAMERS IN TARGETED DELIVERY OF DRUGS
Nanoparticle-aptamer technology is dynamic and its application
extends beyond diagnostics to targeted delivery of drugs. One of
the common uses of nanoparticle—aptamer bioconjugates is for
targeted delivery of drugs to cancer cells (figure 2). Using pros-
tate cancer as a model, Farokhzad et al®® * encapsulated doce-
taxel (Dtxl) into nanoparticles formulated with biocompatible
and biodegradable copolymer, and functionalised their surfaces
with the RNA aptamers that recognise the extracellular domain
of PSMA. These Dtxl-encapsulated nanoparticle—aptamer
bioconjugates (DtxI-NP-Apt) bound to PSMA expressed on the
surface of LNCaP prostate epithelial cells and were taken up by
these cells, resulting in significantly enhanced in vitro cellular
toxicity as compared with non-targeted nanoparticles that lack
the PSMA aptamer (Dxtl-NP).% The DtxI-NP-Apt bioconjugates
also exhibited remarkable in vivo efficacy and reduced toxicity as
measured by complete tumour reduction, nearly 60% less mean
body weight loss and 100% survival compared with 57%
survival for Dxtl-NP and 14% for Dxtl alone in the 109-day
study in LNCaP xenograft nude mice.?’ In other aptamer-based
targeted drug delivery systems, the anticancer drug doxorubicin
was covalently linked to the DNA aptamer sgc8c to specifically
target T cell acute lymphoblastic leukaemia cells.** Another
study showed that DNA aptamers selected against unique short
O-glycan-peptide signatures on the surface of breast, colon, lung,
ovarian and pancreatic cancer cells can be used for targeted
delivery of phototoxic cancer therapy agent.”® When modified at
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Figure 2 Targeted delivery of the anticancer drug docetaxel (Dxtl)
encapsulated by the nanoparticle functionalised with an anti-prostate-
specific membrane antigen (anti-PSMA) aptamer. The nanoparticle—
aptamer bioconjugate selectively delivers the drug to prostate cancer
cells expressing the PSMA on their surface and not to normal cells,
which do not have the PSMA.

their 5" end with the photodynamic therapy agent chlorine(6)
and delivered to epithelial cancer cells, these phototoxic aptamers
exhibited a remarkable enhancement (>500-fold increase) in
toxicity upon light activation compared with the drug alone,
and they were not cytotoxic towards normal cell types, which
lack O-glycan-peptide markers.?® Taken together, these results
show that aptamer-based targeted delivery of anticancer agents
is an intelligent, powerful and promising drug delivery tech-
nology that can increase the efficacy of chemotherapy yet at the
same time mitigate the overall side-effect toxicity.

This aptamer-based targeted delivery of drugs can be adapted
to selectively inactivate bacterial and viral pathogens in infected
cells. Indeed, Tang and colleagues have developed DNA aptamers
for selective targeting of vaccinia-virus-infected cells using cell-
SELEX.*” These aptamers bind selectively to vaccinia-virus-
infected cells with apparent equilibrium dissociation constants
in the nanomolar range. In another innovative study, Zhou and
colleagues used anti-gp120 RNA aptamers to deliver Dicer
substrate small interfering (si)RNA into HIV-1 infected cells.?
The Dicer-substrate siRNA delivered by the aptamers is func-
tionally processed by Dicer and has dual inhibitory function. It
specifically inhibits HIV-1 replication and infectivity in cultured
CEM T-cells and primary blood mononuclear cells.? In another
recent study, the Giangrande group demonstrated the dynamic
utility of the aptamer—siRNA duo by successfully delivering
anti-PSMA aptamer targeted siRNA in prostate cancer animal
models.'?” The optimised aptamer—siRNA chimera resulted in
significant regression of PSMA-expressing tumours in athymic
mice after systemic administration.'®” Taken together, these
studies bode well for the future advancement of aptamer-based
targeted drug delivery.

CONCLUDING REMARKS: CHALLENGES AND FUTURE
PROSPECTS OF APTAMERS

While early stages in any technology have caveats and sceptics,
and are hardly heralded, aptamer technology has made significant
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Take-home messages

» Aptamers are synthetic oligonucleotide ligands or peptides
that can be isolated in vitro against diverse biological targets.

> Aptamers assume defined three-dimensional structures and
generally bind functional sites on their respective targets.

» Aptamers possess the molecular recognition properties of
monoclonal antibodies in terms of their high affinity and
specificity.

» Aptamers have a wide range of applications from diagnostics,
targeted drug delivery and therapeutics.

strides since it was first described just 20 years ago. The chal-
lenges and limitations of aptamers hinge on issues of thera-
peutics formulations, administration route, bioavailability and
costs of synthesis. Notwithstanding, the advantages and future
prospects of aptamers outweigh their limitations. With re-
markable target specificity and sensitivity, versatile biophysical
and pharmacokinetic properties, opportunities for alternative
formulations and schedule of administration, improvements in
process chemistry and manufacturing economics, including
economies of scale, aptamers have found themselves a substan-
tial niche and are becoming established as a promising new class
of medicines. Proof-of-concepts experiments illustrating that
aptamers can specifically bind and regulate the function of
various biomedically relevant proteins augurs well for future
aptamer-based drugs and diagnostics development. My prescient
prediction is that within the next 20 years aptamers are bound
to revolutionise the drug discovery and targeted delivery process
as well as the way we diagnose, treat and prevent diseases.
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