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Abstract—Recent research show that utilization of knowledge
of the environment can allow a radar system to adapt its
processing to improve its performance. Furthermore, a radar
system that utilize both a-priori and measured knowledge in an
adaptive close loop manner could seem to be cognitive of its
environment, able to adapt to changes to optimize performance.
Reinforced learning could play a vital role as part of such a
closed-loop cognitive radar system. The Q-Learning algorithm
is hypothesized to be useful for this cognitive radar domain.
This paper investigates the problem of adaptively choosing the
radar transmit frequency through application of Q-Learning
on measured radar data. A comparison is made against other
frequency selection algorithms and its shown that Q-Learning
manages to learn a good strategy to adaptively select radar
transmit frequency, mostly outperforming the other methods
tested in the scenario investigated here.

I. INTRODUCTION

This paper concerns itself with the application of radar to
perform persistent, ubiquitous surveillance of a littoral region
from a land based radar, with particular focus on the use of
cognitive processing principles to make decisions about the
radar waveform.

In missions like anti-abalone poaching or sea rescue the
targets of interest can be very small e.g. a single person
drifting in the water. This requires very high radar sensitivity
and can be exasperated by missions coinciding with bad
weather conditions, making environmental clutter an even
bigger problem.

Recently the term Cognitive radar has been introduced [1]
to describe the concept that the radar needs to learn from all
information it receives from the environment and adjust both
its processing and waveforms based on this knowledge. In
the context of a persistent ubiquitous surveillance system, the
persistent nature of the system allows it to experience a large
variety of environmental conditions to gain “experience”. A
cognitive system that harness and learns from the “experience”
has the potential to improve its performance over time as
measured against a particular objective. The ubiquitous nature
of the system can also benefit small target detection and
tracking. One such benefit could be easier track maintenance
through areas of high clutter once detected.

II. TRADITIONAL RADAR ADAPTATION

Certain a priori knowledge about the environment and
mission of the radar is used at design time to define the
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hardware, algorithms and performance specifications needed
by the system.

Other forms of information can also be useful to the radar
system. In particular the use of geographical information
systems (GIS) has been shown to be of value in a number
of the radar receiver processing steps: for example in terms
of determining expected clutter statistics [2] [3] and in terms
of adjusting tracking association rules [4]. Radar systems
employing such techniques are often termed knowledge-aided
radar.

Beyond this a priori knowledge Constant False Alarm Rate
(CFAR) detectors [5] have been used to adapt to the average
noise/interference level. But in many radar systems very little
further direct adaptation to the environment is performed.

Adaption to the environment can either be done by changing
the way the radar processes received signals termed, reactive
in the context of this paper, or can also change the radar
transmission to influence the sensing process, termed active.

Traditional techniques were only concerned with the detec-
tion and tracking of targets in Gaussian noise, including the
pulse compressor with matched filter [6] or mis-match filtering
[7], many variants of CFAR detectors [5] and Kalman filters
[8]. To deal with the practical case of non-Gaussian noise, pre-
whitening is proposed [9], to flatten the interference spectrum.
Alternatively for interference from specific clutter scatterers,
an iterative adaptive matched filtering process can be used to
adapt to the reflected signal and the clutter from the nearby
range cells [10]. These algorithms adapt how the received
signal is interpreted, but does nothing to control the radar
waveform, making them reactive.

Active adaptation techniques have also been proposed. In
[11] matching of the transmitted waveform to target categories
to maximise the probability of classification is proposed.
Matched illumination techniques to maximise target detectabil-
ity has also been proposed [12].

In radar target classification both the transmit waveform and
receive processing are typically heavily dependent on the exact
target type. Various techniques exist, each optimized to deal
with a specific class of target. Such techniques include High
Range Resolution (HRR) [13], Inverse Synthetic Aperture
Radar (ISAR), micro-Doppler [14] [15] and many others. Even
though these techniques have been shown to be successful for
their particular target class, there remains a requirement for
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an adaptive decision process to choose the correct technique
based on the target under consideration.

As the radar learns about its environment, it can also attempt
to utilize that knowledge for resource scheduling. Recent
research in this area has focused on beam-steering in phased-
array radar [16] necessitated by the flexibility and maneuver-
ability that such an antenna provides. Resource scheduling for
mechanically steered systems hasn’t received a lot of attention,
although some work has been done for multi-function search
and tracking radars on constant angular speed positioners [17].

III. COGNITIVE RADAR ADAPTATION

Inspired by the complex behavior observed in bat echo-
location, the idea of Cognitive radar has been introduced [1]
with the aim of designing adaptive radar systems that learn
from all information it receives from the environment (both
targets of interest and background effects to be suppressed)
and then adjusting its transmission waveforms based on this
knowledge to optimize its mission performance. This concept
is further expanded in [18] where it is proposed to use a
Bayesian filter implemented as a Cubature Kalman filter to
estimate information from the channel and Q-Learning to
select the transmitted waveforms from a library of available
waveforms.

Q-Learning is a computationally efficient form of a re-
inforced learning algorithm for dynamic programming in a
Markovian environment [19]. Dynamic programming is a
much older approach to determining optimal decision making
policies for sequential optimization, which has helped form
the foundation of such algorithms like the Viterbi decoder [8].

Thus the approach of using a Cubature Kalman filter in
combination with a Q-Learning algorithm to form a closed-
loop cognitive learning system seems promising. Since the
application of Q-Learning in radar is relatively new, there
are questions that still need to be addressed regarding the
performance, stability, optimal state-mapping and the extent
of waveform libraries required to ensure sufficient freedom
for the system to learn and adapt to its environment.

The use of Q-Learning in a radar tracking problem is con-
sidered in [20] [21]. The state space representation proposed is
the target location(s) in the range-Doppler map. An example is
shown in [20] for a 4 state simulation. In operational systems,
the radar range-Doppler or range-bearing map is frequently
over 100000 elements. The authors couldn’t locate any reports
in the literature of how the state space have been/ would be
scaled to practical sizes in an operational radar. In [21] this
scaling problem is bypassed by using a modified Q-Learning
algorithm.

This paper considers the practical application of Q-Learning
on measured radar data with an alternate approach to the state-
space definition.

A. Q-Learning in more detail

As mentioned Q-Learning is a reinforced learning algorithm
to learn the optimal strategy in a Markovian environment.

The Markov process consists of a set of states at each time
instant with a set of actions available from each state. For the
process to be considered Markovian, the transition to the next
state may only depend on the current state and current action
and potentially a memory-less random variable. Associated
with each state-transition pair is a reward distribution. This
reward need not be fixed, but can depend on a particular
probability distribution. In dynamic programming in general
there can potentially be a unique reward associated with
the state at the final time instant, but the type of processes
considered to be Markovian are stationary, of infinite duration,
with no special end-time. Each time instant is similar to the
next, in that the states, actions and transition and reward
probabilities do not change.

In such an environment, it is useful to be able to have a
policy with which to choose the action in each state in such
a way as to optimize the sum of the likely reward over time.
In an infinite duration environment, the sum of the rewards
will generally be infinite, thus to make this optimization
meaningful an average reward rate normalized per time instant
is typically used. An alternative way to achieve a bounded
reward function that is used in the Q-Learning environment,
is to discount future rewards, i.e. the further into the future a
reward will occur, the less its current value is. Thus

Ct(Rt+m n) = ’YnRt+n (D

where C; is the current discounted value at instant ¢ of the
future (expected) reward R;,, earned at instant ¢ + n and -y
is the discount factor, with 0 <~ < 1.

The sum of the expected discounted future rewards at time
instant ¢ and using action A, at time instant ¢ and a specific
policy thereafter is thus

Z Ct(Rt+n7 n)

n=0

o0
= R+~ Z Ci(Rtsn,n)

n=1

= Ri+ 'yQt+1,St+1,At+1 (2)

Qt’st VA

where Sy is the expected next state by following the policy
and Q¢11,9,,,,4,., is the expected reward obtainable from that
future state. But since the system is stationary, Q; = Q¢+, and
the subscript ¢ for Q can be dropped, resulting in the simpler
notation

QSt,At = Rt + ’YQS1,+1,A1,+1 (3)

Low values of v would correspond to a short term planning
policy, where short-term rewards are valued more than longer
term future rewards. In the extreme v = 0, would be a
myopic/greedy policy that only looks at the immediate reward,
without considering future resulting states. Values of  close
to 1, would result in decision strategies that correspond to a
long term planning horizon.

The optimal policy at a state S; would correspond to
choosing the action corresponding to the maximum () value
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in a particular state, thus
Vs = max Qs,,A, 4

where Vg is the expected discounted future reward for choos-
ing the optimum action A in state S and following the
optimum policy thereafter.

The form of Q-Learning utilized in this paper, is based on
a direct implementation of 3 and 4. A matrix () is maintained,
consisting of an approximation of the Qg 4 values. This form
has been shown to converge to the real ()g 4 values under
specific conditions [19]. At each time instant the action is
chosen based on this ) matrix as if it was an accurate ap-
proximation. After the reward for that specific state-transition
has been received, the element of Q corresponding to this
transition is updated as follows:

Qsa=1—-)Qsa+a(R+Vs,) 6))

where Q7 4 is the new approximation of the element corre-
sponding to the state S (old state) and the action A that was
used,

Although it is not explicitly required in the convergence
proof of [19], other descriptions of implementations of Q-
Learning in the literature for example [22], use an exploration
factor. This defines a probability with which a random action is
chosen instead of the optimal action based on the policy. This
helps prevent early convergence to a local maximum, since too
early convergence will prevent other state-action transitions
from being explored.

The convergence proof [19] also doesn’t put requirements
on the initial value of Q. It is just assumed that an initial
set of values is given. In practice, underestimating the values
of Q leads to local maximums, since as soon as a state-
action transition is explored, it becomes a better path, with
higher rewards and no further state-action pairs are explored.
Using initial values of Q that overestimate the expected
rewards, seem to work better: As soon as a state-action is
evaluated, the resulting reward seems “disappointing” and next
time a different state-action pair is rather explored, until all
expectations become more realistic. This forces exploration of
all state-action pairs initially during this orientation phase.

But this exploration comes at a price: the orientation phase,
to try all the combinations of state-action pairs, will mostly
result in bad choices. The real learning will be delayed by
this time. This highlights the curse of dimensionality: A large
number of states and/or actions will result in an even bigger
set of combinations, taking a long time to learn.

In cases where there are correlations between neighboring
states and/or actions, variations of Q-Learning could be used
to leverage this correlation and simultaneously update multiple
of the elements of the Q matrix based on this correlation,
cutting down dimensionality. The highly ambiguous nature
of the phase of clutter returns mostly decorrelates adjacent
frequencies [23], thus such techniques have not been utilized
in the experiment considered in this paper.

Angle bins
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Fig. 1. Randomly chosen example of a single frequency clutter map showing
cells above the threshold

Angle bins
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Fig. 2.
cell

Clutter map showing lowest clutter value versus frequency in each

IV. EXPERIMENTS

In order to explore Q-Learning in a radar context, the search
mode of a surveillance radar is considered. The challenge
presented to the Q-Learning system was to learn about the
frequency response of the clutter interference and to control
the radar’s transmit frequency in order to provide good target
detection performance.

A. The dataset

Recorded data from an X-band pencil beam tracking radar
was used for this simulation. The radar was deployed on the
coast near Simon’s Town, overlooking the False Bay area. The
presence of a mountain behind the radar gave it an effective
180° area that could be observed. A scan was done over this
sector at a 0° elavation angle. A 10 kHz PRF was utilized,
giving an unambiguous range of 15 km. This unambiguous
range meant that some of the mountains across the bay was
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in the second and third ambiguity and folded back to produce
land clutter spots within the ocean area. During this scan the
radar interleaved transmit waveforms covering a part of the
X-band frequency band. The dataset used, consisted of 49
different frequencies in this band.

The radar’s range resolution is 15m. Due to transmitter
guard times and processing setup delays, 900 range samples
where obtained for each pulse. The data was binned into 0.5°
azimuth bins, thus giving 360 azimuth bins over the sector.

A constant STC level was used when the dataset was
recorded, thus the data exhibits a drop off in amplitude as
range increases. A 44 sample non-linear frequency modulated
pulse was used and matched filtering (pulse compression) was
applied. The data was not explicitly calibrated over frequency,
except for the inherent radar design which aims for constant
transmit power versus frequency.

Thus the complete data can be represented as a 3 dimen-
sional matrix of 49 frequencies by 360 angular bins by 900
range bins.

For the purposes of the experiment, the clutter energy was
scaled by a R*-law to represent equivalent clutter RCS. An
arbitrary threshold of RCS level was chosen such that about
half of the samples are below this threshold. A target would
be assumed to be detectable if the clutter level in its range-
azimuth cell was below the threshold RCS, whereas it would
assume to stay undetected if the clutter level is above this
RCS threshold. A typical CFAR will look at the statistics
of surrounding cells to estimate the threshold, but in order
not to get bogged down in CFAR technique optimization, this
simplified approach was adopted for the simulation.

Given this threshold 57.78%, of the range-azimuth cells
were below the threshold. For each frequency individually,
this varied between 54% and 63%. An example of a clutter
map for a randomly chosen frequency is shown in Figure 1.

Taking the lowest clutter level across all 49 frequencies
in each cell gives 92.38% of the cells that are below the
threshold. Thus in 7.62% of the range-azimuth cells a target of
the particular RCS level would stay masked by clutter energy
across all the frequencies available to the radar system. This
is also the upper bound for the simulation’s performance,
assuming that the simulated target positions are uniformly
distributed across the range-azimuth map. The resulting clutter
map is shown in Figure 2.

These figures show how frequency diversity can help sup-
press most of the close-in wave structure of the sea clutter
and in particular the second and third time around land clutter
regions.

B. The experimental setup

For this experiment the radar had to employ a strategy
to choose its transmit frequency for each scan. At each
scan 10 targets’ locations where randomly chosen within the
radar return. For these locations, the returned clutter energy
was compared against the detection threshold that had been
chosen to decide which of these targets would have been
detectable against the competing clutter. Those locations where

a detection would have been possible, because the clutter
return was below the threshold, were removed from the next
scan. If a target hadn’t been detected for a certain amount of
scans, it was assumed to be undetectable and removed from
the list of targets. The radar’s reward was calculated based on
the amount of new detected targets each scan. This process
was repeated for 100000 scans, giving 1 million targets in
total that could be detected.

The total score of the system was calculated as the direct
sum of the rewards (no discounting) (or the total number of
targets detected over the entire period).

Four different algorithms were compared to choose the
transmit frequency:

o Randomly choosing a frequency

« Sequentially sweeping over all the frequencies

o Sequentially jumping to every 21th frequency starting
from a random frequency index, resulting in a 7 frequency
sequence

e Q-Learning was used to learn a strategy to select the
frequency

For the Q-Learning algorithm, the state space was chosen to
be the current transmission frequency. The actions were then
the next frequency to transmit (and thus also the next state).
In this state-space definition there is no uncertainty about the
current state or what the next state would be after an action
has been chosen. This state space doesn’t allow the radar to
explicitly adapt itself to the targets in its environment (tracking
mode), but does allow sufficient flexibility for a search mode.
Using such a deterministic state-space would after conver-
gence result in a strategy that corresponds to a sequence of
frequencies being used, i.e. from f4, the action is to use fg,
resulting in state fp as the next state, from which f¢ is chosen,
etc. until from some state the optimum action is to switch to
fa, at which point the sequence repeats.
The choice of discount factor that is used, has a direct
impact on the number of frequencies being utilized by the
trained Q-Learning system: Low discount factors (myopic)
approaches tended to converge to a single frequency strategy,
i.e. always switch to the “cleanest” frequency. Higher discount
factors resulted in longer sequences of frequencies being
utilized. A discount factor of 0.5 was chosen, since it seemed
to typically result in a sequence of between 3 and 8 frequencies
being used, which gave good detection performance results.
A constant exploration factor of 0.01 was used. The learning
rate was 0.9995Y, where N is the scan number.
The Q-matrix was initialized with an overestimate of the
Q-values, forcing exploration to all state-transitions initially.
This over-estimate was calculated as
Qinit = @ +e€ (6)

L=~
where E(R) is the expected reward per turn for a “perfect”
strategy that never missed a target detection and e is a small
random value which ensured that the initial transitions for each
simulation is randomized. With 10 targets being generated per
turn, the best optimistic reward would be 10 and therefor the
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Fig. 3. Results for simulation with targets at locations with lifetimes of 2
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Fig. 4. Results for simulation with targets at locations with lifetimes of 5
scans.
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Fig. 5. Results for simulation with targets at locations with lifetimes of 10
scans.

Q-values was initialized with random number between 20 and
21.

C. Experiment with random target locations

An experiment was performed where the 10 targets per scan,
was placed at random locations on the range-azimuth map.
They stayed in that position for a number of turns. For different
trials this duration was change between 2, 5, 10 and 50 turns.

Longer target lifetimes allow more frequency diversity to
be utilized. Some of the results are shown in Figures 3 - 6.

These results can be summarized as: The random strategy
is a benchmark against which the other strategies can be

[
B

—— Q-Learning

o

# targets detected

~— Freq Sweep
—— Freq Jumps
- Random

o
b

o
iv

1 2 3 4 5 6 7 8 9 10
Run number

Fig. 6. Results for simulation with targets at locations with lifetimes of 50
scans.
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Results for simulation with incoming targets with lifetimes of 10

compared. The sequential frequency approach, scores poorly
for short lifetimes, but achieves optimum performance at max-
imum lifetimes, since it then used all available frequencies.
The frequency jump approach, quickly leverages diversity, but
for long lifetimes, it falls behind, since it is limited to 7
frequencies and for the shortest lifetimes, it is also not ideal,
since it doesn’t always use the best single frequencies. The
Q-Learning algorithm does seem to consistently outperform
the other algorithms, except for the longest lifetimes, where it
suffers from trying to use only a subset of the frequencies.

D. Experiment with incoming targets

In a long term surveillance scenario, very few targets are
likely to just appear randomly at any location in the radar
coverage area. Most targets will be detected shortly after
they enter the coverage area, either from maximum range or
from behind a shadow region (e.g. mountain). Thus manually
designing an algorithm to optimize clutter across the whole
coverage area, might actually not give optimal performance
in a surveillance role, if the radar can specifically adjust its
tracking mechanisms based on the target’s now known (esti-
mated) location. Thus a subsequent experiment was performed,
where the target behavior was adjusted: The targets where now
assumed to spawn at the maximum range cell (still at a random
bearing) and then move a range cell closer each scan. In this
case, the reward was only achieved if they could be detected
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within 10 scans (i.e. before they left the last 10 range bins).
The detection criteria were kept the same, although for this
scenario the radar detector would probably leverage Doppler
information to further separate the target from clutter. This
effect wasn’t included in the simulation.

Results for this scenario are shown in Figure 7, where it
can be seen how well the Q-Learning strategy outperforms
the other strategies.

Thus without any direct changes to the radar frequency
selection algorithm (Q-Learning is still used unchanged), the
radar now better adapts to its environment than any of the
compared algorithms.

V. CONCLUSION

Published results seem to support the idea that a cognitive
radar can learn from its environment and modify its transmitted
waveforms and processing to adapt to the environment. The
cognitive control and performance increase such an approach
can obtain still needs to be clarified through future research.

As an initial attempt to answer some of these questions, the
use of a Q-Learning algorithm was explored here in the search
mode of a surveillance radar. This is done using prerecorded
clutter data. The radar is allowed to adjusts its transmit
frequency in an attempt to minimize the clutter interference
and thus maximize the target detection probability.

Q-Learning with a state space of only the current transmit
frequency seems sufficient for the radar to learn to use
sequences of frequencies that complement each other for the
purposes of improving detection.

The algorithm was compared against other manually tech-
niques. Utilizing Q-Learning to decide upon a policy for
frequency sequences consistently outperform the manually
chosen methods, except in the extreme case where utilizing
most or all of the frequencies together give a better result.

With targets more “realistically” entering the surveillance
scene the Q-Learning algorithm seems to learn to better
exploit this slightly reduced problem space and outperforms
the manual techniques by a significant margin. These results
are encouraging and illustrate the potential power of utilizing
reinforced learning algorithms to build cognitive radars.

Future work could look at more complex state spaces,
in particular allowing the system to adapt its waveform for
different angular sectors separately. However initial investiga-
tions shown that state space growth will hamper the practical
application of Q-Learning alone. It is believed a fuzzy state
assignment will be needed. Lessons from other application do-
mains will be considered, before deciding on a good approach
for the radar domain.
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