Low-cost transparent solar cells: Potential of TiO₂ nanotubes in the improvement of these next generation solar cells

Franscious Cummings

Energy and Processes

Materials Science and Manufacturing

31 August 2010

Outline of Presentation

- Background to Photovoltaics
- Dye-sensitised Solar Cell R&D at CSIR
- TiO₂ Nanotube Synthesis
- Manufacturing of Dye-sensitised Solar Cells with TiO₂
 Nanotubes
- Device Performance
- Future Work/The Way Forward

- Photovoltaics (PV) Direct conversion of sunlight into electrical energy through a solar cell
- Conversion results from the physical photo (or photovoltaic) effect, originally discovered by French physicist Edmund Becquerel in 1839
- Bequerel's findings first utilised in 1954 - first solar cell was developed from crystalline silicon in the USA
- Initially used only for satellite application as a clean source of energy
- First oil crisis in 1973: Realisation that earths' fossil resources are finite and cause for concern
- Increased research into PV techonologies

Satellite with PV power supply

Source: ESA

Car park installation (Courtesy: SEI, Italy)

Two Major Types of Solar Cells

Solid State Solar Cells

Dye-sensitised Solar Cells

www.csir.co.za

© CSIR 2010 Slide 4

our future through science

Basic Operation of a Traditional Solar Cell

Step 1: Photons (packets of sunlight) hit cell → are absorbed by semiconducting materials, e.g. silicon

Step 2: Electrons (negatively charged) knocked loose from their atoms → allowing them to flow through the material to produce electricity

Step 3: Complementary positive charges created (called "holes") flow in the direction opposite of the electrons

NB: Array (panel) of solar cells converts solar energy into a usable amount of direct current (DC) electricity

Basic Operation of a Dyesensitised Solar Cell

Dye-sensitised Solar Cells

Relatively inexpensive

- Made in non-vacuum setting
- Simple manufacturing process with inexpensive materials

Short return on investment

- Takes approx 3 months to produce energy savings equivalent to cost of production
- Lightweight, semi-transparent and robust

Performance less affected by environmental conditions, e.g. light intensity

 Been shown that DSCs outperform traditional Si solar cells by 20% over 6 month period

Traditional Solar Cells

Expensive

 High vacuum and heat systems required to manufacture device quality materials

Long return on investment

- Takes approx 4 years to produce energy savings equivalent to cost of production
- Heavy, big and rigid

Performs poor in low sunlight

 Known that solid state cells perform poor in days of low sunlight, through the night

Dye-sensitised Solar Cell R&D at CSIR

Major Research Focus Areas

Studies on the improvement in cell efficiency – synthesis and application of TiO₂ NTs, novel dyes, core-shell materials

Studies on the effects of reverse bias potentials on the performance of DSCs

Outdoor testing of DSC cells vs. a-Si and c-Si cells

TiO₂ Nanotube Synthesis

Why TiO₂ Nanotubes?

Provides a one-dimensional transport route for electrons in the cell

Reduces electron-hole recombination

Synthesis of films of TiO₂ nanotubes

Simple anodisation technique

Parameters investigated – voltage, electrolyte composition, time

Manufacturing of Dye-sensitised Solar Cells with TiO₂ Nanotubes

Device Performance

www.csir.co.za © CSIR 2010 Slide 11

Device Performance

www.csir.co.za

© CSIR 2010 Slide 12

Future Work/Way Forward

Further synthesis and improvement in TiO₂ morphology

Further device characterisation

Thank You

our future through science