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Introduction to hyperspectral remote sensing

OVERVIEW OF HYPERSPECTRAL REMOTE SENSING

Hyperspectral sensors

record the reflectance in many narrow contiguous bands
various parts of the electromagnetic spectrum (visible - near infrared -
short wave infrared)
at each part of the electromagnetic spectrum results in an image

Introduction to Hyperspectral Image Analysis

Peg Shippert, Ph.D.
 Earth Science Applications Specialist

Research Systems, Inc.

Background

The most significant recent breakthrough in remote sensing has been the development of
hyperspectral sensors and software to analyze the resulting image data.  Fifteen years ago
only spectral remote sensing experts had access to hyperspectral images or software tools
to take advantage of such images.  Over the past decade hyperspectral image analysis has
matured into one of the most powerful and fastest growing technologies in the field of
remote sensing.

The “hyper” in hyperspectral means “over” as in “too many” and refers to the large
number of measured wavelength bands.  Hyperspectral images are spectrally
overdetermined, which means that they provide ample spectral information to identify
and distinguish spectrally unique materials.  Hyperspectral imagery provides the potential
for more accurate and detailed information extraction than possible with any other type of
remotely sensed data.

This paper will review some relevant spectral concepts, discuss the definition of
hyperspectral versus multispectral, review some recent applications of hyperspectral
image analysis, and summarize image-processing techniques commonly applied to
hyperspectral imagery.

Spectral Image Basics

To understand the advantages of hyperspectral imagery, it may help to first review some
basic spectral remote sensing concepts.  You may recall that each photon of light has a
wavelength determined by its energy level.  Light and other forms of electromagnetic
radiation are commonly described in terms of their wavelengths.  For example, visible
light has wavelengths between 0.4 and 0.7 microns, while radio waves have wavelengths
greater than about 30 cm (Fig. 1).

Figure 1.  The electromagnetic spectrum
Figure: Spectral Range
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Introduction to hyperspectral remote sensing

OVERVIEW OF HYPERSPECTRAL REMOTE SENSING
(cont. . . )

ITC Journal 1998-1

Imaging spectrometry for monitoring tree damage caused
by volcanic activity in the Long Valley caldera, California

Steven M de Jong1

1

ABSTRACT

Developments in detector technology have triggered a new remote sens-
ing technology: imaging spectrometry.  Imaging spectrometers measure
reflected solar radiance on a pixel-by-pixel basis in many narrow spectral
bands, allowing the identification of materials or their properties by diag-
nostic absorption features.  To date, only airborne imaging spectrometers
are available, but several imaging spectrometers are planned for the next
generation of space platforms.  The abundance of information available
in the continuous spectral coverage makes it possible to address ques-
tions in numerous environmental disciplines.  This paper describes a
study in the Sierra Nevada, using multitemporal images acquired by the
Airborne Visible/InfraRed Imaging Spectrometer (AVIRIS) for monitor-
ing tree damage by volcanic activity.  Diffuse volcanic gas emanations
deprive the roots of oxygen, resulting in trees that are under stress and
ultimately die.  Imaging spectrometry yields important information on
tree conditions and on the presence of dead vegetative material.  The
spatial and temporal extent of the dead and stressed tree areas were
mapped using AVIRIS data.  The use of imaging spectrometry to map
the diffuse volcanic gas emissions was less successful.  Although the
images yield noisy spatial patterns of carbon dioxide, it is difficult to
separate atmospheric gases from the diffuse soil emanations.

In the last decennia, a new remote sensing technique was
developed through significant advances in detector tech-
nology: imaging spectrometry.  An imaging spectrometer
collects narrow spectral bands on a pixel-by-pixel basis,
aiming to identify surface materials by using diagnostic
absorption features [12, 23, 37].  Figure 1 shows the
concept of imaging spectrometry.  Conventional broad-
band sensors such as Spot-XS, Landsat MSS and
Landsat TM are not very suitable for mapping minerals
or soil properties because their bandwidth of 70 to 240
nm cannot resolve diagnostic spectral features of terres-
trial materials.  Often, absorption features of interest
have bandwidths of only 20 nm or less.  Since the con-
struction of the first spectrometer, the technique and the
sensors have been further developed and refined, and
software especially designed to analyze the large data
volumes generated by imaging spectrometers have
become available [31, 39].  These developments have
led to the successful applications of imaging spectrome-
try in several environmental disciplines, such as atmos-
pheric science [6], ecology [36, 38, 44, 46, 47], geology
[29, 30, 31,37, 45], soil science [11, 15, 16], hydrology
and oceanography [5, 25, 35].  The importance of these
types of instrument may be indicated by the fact that
several proposals for launching spaceborne spectrome-
ters in the near future have been approved.  This paper
presents a practical application of imaging spectrometry
for vegetation survey in the Long Valley caldera in the
Sierra Nevada, California.  This area suffers from vol-

canic activity, which causes significant damage to the
pine and fir species.  Multitemporal images acquired by
AVIRIS were used to survey damage to pine and fir
trees, and to map the spatial extent of diffuse volcanic
gas emissions.  AVIRIS acquires images at an altitude of
20 km in the spectral range of 400 to 2500 nm, with a
pixel size of 20 x 20 m.  It has 224 spectral bands with
a nominal bandwidth of 10 nm (Figure 1).

STUDY AREA

The research area is situated around Mammoth
Mountain.  Mammoth Mountain is a volcanic cone rising
up to 3300 m; it forms the western rim of the Long
Valley caldera in the Sierra Nevada, California (Figure
2).  The Long Valley caldera measures approximately 17
x 32 km, and was formed by a large eruption about
760,000 years ago [34].  After a period of rest (the last
signs of activity from Mammoth Mountain occurred
roughly 500 years ago), the area has since 1980 been
suffering from frequent earthquakes, hydrothermal activ-
ity and gas emissions [22, 26, 32].  Furthermore, the
resurgent dome in the center of the Long Valley caldera
is inflating; the U.S. Geological Survey has measured an
uplift of approximately 60 cm since 1980.

In 1990, areas of dying forests were found on the
flanks of Mammoth Mountain [22].  At first, the cause
of tree die-off was sought in the persisting drought of
the preceding years.  However, trees died regardless of
age or species, as shown in Figure 3.  Research [22]
revealed that high concentrations of carbon dioxide (30

1 Department of Physical Geography, Utrecht University, PO Box 80
115, 3508 TC Utrecht, The Netherlands
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FIGURE 1 The concept of imaging spectrometry

Figure: Hyperspectral cube
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Introduction to hyperspectral remote sensing

OVERVIEW OF HYPERSPECTRAL REMOTE SENSING
(cont. . . )

Figure 3.  The concept of hyperspectral imagery.  Image measurements are made at
many narrow contiguous wavelength bands, resulting in a complete spectrum for each
pixel.

Hyperspectral Data

Most multispectral imagers (e.g., Landsat, SPOT, AVHRR) measure radiation reflected
from a surface at a few wide, separated wavelength bands (Fig. 4).  Most hyperspectral
imagers (Table 1), on the other hand, measure reflected radiation at a series of narrow
and contiguous wavelength bands.  When we look at a spectrum for one pixel in a
hyperspectral image, it looks very much like a spectrum that would be measured in a
spectroscopy laboratory (Fig. 5).  This type of detailed pixel spectrum can provide much
more information about the surface than a multispectral pixel spectrum.

Figure: Pixels in hyperspectral image
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Introduction to hyperspectral remote sensing

OVERVIEW OF HYPERSPECTRAL REMOTE SENSING
(cont. . . )
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Figure: Example of 3 different spectral signatures
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Objective of Study 1

OBJECTIVE OF STUDY 1

Using a hyperspectral image, to guide field sampling collection to those
pixels with the highest likelihood for occurrence of a particular mineral, for
example alunite, while representing the overall distribution of alunite.

Usefulness: To create a mineral alteration map
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Study Area

STUDY SITE

Figure: A generalized geological map of the Rodalquilar study area showing the
flight line and the hyperspectral data
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Data used

DATA USED

HyMap: 126 bands – 0.4–2.5µm

Geology: 30 bands – 1.95–2.48µm

Distinctive absorption features at wavelengths near 2.2µm

We collected field spectra during the over-flight using the Analytical
Spectral Device (ASD) fieldspec-pro spectrometer – 0.35–2.50µm
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Data used

ENDMEMBER SPECTRA

Figure: Plot of 7 endmembers from USGS spectral library for the 30 selected
bands, enhanced by continuum removal.
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Data used

CONTINUUM REMOVAL

Spectra are normalized to a common reference using a continuum formed
by defining high points of the spectrum (local maxima) and fitting straight
line segments between these points. The continuum is removed by dividing
it into the original spectrum.

for vegetation [13, 27, 46].  The
convex hull transform is a method
of normalizing spectra [16, 41].
The convex hull technique is anal-
ogous to fitting a rubber band over
a spectrum to form a continuum.
Figure 5 shows the concept of the
convex hull transform.  The differ-
ence between the hull and the orig-
inal spectrum is subtracted from a
constant to obtain a hull difference.
Such a normalization of the spectra
allows the application of quantita-
tive absorption feature characteri-
zation in terms of feature depth,
surface area and asymmetry.

Figure 6 shows some examples
of the collected field spectra for
dead, stressed and healthy lodge-
pole pines.  Figure 7 shows the
first derivative of the spectra in
Figure 6.  The derivative computa-
tion tends to enhance not only the
absorption features but also the
noise [16].  Both figures clearly
show the presence/absence of
chlorophyll absorption near 680
nm in the healthy and dead lodge-
pole pine spectra, respectively.
Although the red edge [13, 16], the
steep spectral transition zone
between chlorophyll absorption at
680 nm and the high near-infrared
reflectance at 720 nm, is not very
pronounced, it is visible in the orig-
inal and derivative spectra.  Figure
6 also illustrates the effect of
increasing brightness between 1400 and 1700 nm with
respect to the reduced water content of healthy pines as
compared with dead pines.  Within the same spectral
range (about 1720 nm), absorption features associated
with lignin and cellulose can be seen for the dead pines
and litter spectra [36, 44, 48].  These features are not
visible in the case of the healthy spectrum because the

green canopy obscures the presence of woody material.
Furthermore, a convex hull transform was computed
from the field spectra and the feature-finding algorithm
[16, 24] was applied.  The results are presented in Table
1; water is the most dominant absorption feature (1900
and 1400 nm) identified by the algorithm.  Compared
with the healthy lodgepole pine, the stressed tree shows

ITC Journal 1998-1Imaging spectrometry for monitoring tree damage
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FIGURE 4 AVIRIS image cube of Mammoth Mountain (acquired on 23 August 1994
and covering an area of approximately 12 x 12 km).  X and Y axes show the geo-
graphic position in the scene; the Z axis shows the spectral bands (224).  Snow-
covered Mammoth Mountain is visible in the center of the image; Horseshoe Lake
and the largest dying tree areas are just south of Mammoth Mountain

FIGURE 5 Concept of the convex hull transform; (A) a hull fitted over the original spectrum; (B) the transformed spectrum. The
example shows a laboratory spectrum of a weathered limestone rock with absorption features for iron near 900 nm, for water
near 1400 and 1900 nm, for clay minerals near 2200 nm and for calcite near 2350 nm [16]

BA

Figure: Concept of the convex hull transform; (A) a hull fitted over the original
spectrum; (B) the transformed spectrum.
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Methodology

METHODS: Spectral Angle Mapper (SAM) Classifier

SAM – pixel based supervised classification technique

Measures the similarity of an image pixel reflectance spectrum to a
reference spectrum

Spectral angle (in radians) between the two spectra

θ(−→x ) = cos−1

(
f (λ) · e(λ)

||f (λ)|| · ||e(λ)||

)
, (1)

f (λ) – image reflectance spectrum and e(λ) – reference spectrum.

Results in a gray-scale rule image – values are the angles
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Methodology

METHODS (cont. . . ): Spectral Angle Mapper (SAM)
Classifier

Whole Pixel Methods

Whole pixel analysis methods attempt to determine whether one or more target materials
are abundant within each pixel in a multispectral or hyperspectral image on the basis of
the spectral similarity between the pixel and target spectra.  Whole-pixel scale tools
include standard supervised classifiers such as Minimum Distance or Maximum
Likelihood (Richards and Jia, 1999), as well as tools developed specifically for
hyperspectral imagery such as Spectral Angle Mapper and Spectral Feature Fitting.

Spectral Angle Mapper (SAM)

Consider a scatter plot of pixel values from two bands of a spectral image.  In such a plot,
pixel spectra and target spectra will plot as points (Fig. 6).  If a vector is drawn from the
origin through each point, the angle between any two vectors constitutes the spectral
angle between those two points.  The Spectral Angle Mapper (Yuhas et al., 1992)
computes a spectral angle between each pixel spectrum and each target spectrum.  The
smaller the spectral angle, the more similar the pixel and target spectra.  This spectral
angle will be relatively insensitive to changes in pixel illumination because increasing or
decreasing illumination doesn’t change the direction of the vector, only its magnitude
(i.e., a darker pixel will plot along the same vector, but closer to the origin).  Note that
although this discussion describes the calculated spectral angle using a two-dimensional
scatter plot, the actual spectral angle calculation is based on all of the bands in the image.
In the case of a hyperspectral image, a spectral “hyper-angle” is calculated between each
pixel and each target.

Figure 6.  The Spectral Angle Mapper concept.

Spectral Feature Fitting

Another approach to matching target and pixel spectra is by examining specific
absorption features in the spectra (Clark et al., 1991).  An advanced example of this
method, called Tetracorder, has been developed by the U.S. Geological Survey (Clark et

Figure: Spectral angle.
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Methodology

METHODS (cont. . . ): SAM Rule Image for Alunite

Figure: SAM classification rule image for alunite. Dark areas indicate smaller
angles, hence, greater similarity to alunite.
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Methodology

METHODS (cont. . . ): Spectral Feature Fitting (SFF)

SFF – pixel based classification technique.

Remove the continuum from both the reference and unknown spectra.

SFF produces a scale image for each endmember selected for analysis
by first subtracting the continuum-removed spectra from one
(inverting it), and making the continuum zero.

SFF determines a single multiplicative scaling factor that makes the
reference spectrum match the unknown spectrum.
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Methodology

METHODS (cont. . . ): Spectral Feature Fitting (SFF)

SFF then calculates a least-squares-fit, band-by-band, between each
reference endmember and the unknown spectrum.

The total root-mean-square (RMS) error is used to form an RMS
error image for each endmember.

Scale/RMS provides a fit image that is a measure of how well the
unknown spectrum matches the reference spectrum on a
pixel-by-pixel basis.
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Methodology

METHODS (cont. . . ): SFF Rule Image for Alunite

Figure: SFF fit image for alunite. Lighter areas indicate better fit values between
pixel reflectance spectra and the alunite reference spectrum.
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Methodology

METHODS (cont. . . ): Fitness Function

SAM values scaled to [0, 1]

w1(θ(−→x )) =

{
0 , if θ(−→x ) > θt

θt−θ(−→x )
θt−θmin

, if θ(−→x ) ≤ θt (2)

SFF values scaled to [0, 1]

w2(τF (−→x )) =

{
0 , if τF (−→x ) < τ t

F
τF (−→x )−τ t

F
τF ,max−τ t

F
, if τF (−→x ) ≥ τ t

F

(3)
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Methodology

METHODS (cont. . . ): Fitness Function

Combination of SAM and SFF scaled to [0, 1] is defined as

w(θ(−→x ), τF (−→x )) =


κ1w1(θ(−→x )) + κ2w2(τF (−→x )) ,

if θ(−→x ) ≤ θt and τF (−→x ) ≥ τ t
F

0 , if otherwise
(4)

φWMSD(Sn) =
1

N

∑
−→x ∈I

w(−→x )
∣∣∣∣−→x −WSn(−→x )

∣∣∣∣ , (5)
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Methodology

METHODS (cont. . . ): Fitness Function

Figure: Fitness function with different weights for N = 15.

Debba (CSIR) Optimal Sampling Schemes applied in Geology UP 2010 20 / 47



Results

RESULTS OF THE OPTIMIZED SAMPLING SCHEME

Figure: Optimized sampling scheme.
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Results

RESULTS (cont. . . ): Distribution of 40 optimized
sampling scheme
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Figure: Distribution of 40 optimized sampling scheme
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Results

RESULTS (cont. . . ): Distribution of 40 highest values
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Figure: Sampling scheme: 40 highest values
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Results

RESULTS (cont. . . ): SUMMARY COMPARISON

(a) SAM Classification (b) 40 Optimized points
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Figure: Summary comparison of the optimized sampling scheme.
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Background and Research Question for Study 2

STUDY 2

Mine wastes contains high concentrations of metals.

Metals — leached from mine wastes — then released to and
contaminating nearby ecosystems.

Geochemical characterization of mine waste impoundments –
important for rehabilitation; remediation; protect the surrounding
environment and ecosystems.

Effective geochemical characterization – entails surface (to
subsurface) sampling – labor or cost intensive.

Metals in mine waste impoundments – hosted by acid-generating
sulphide-rich minerals (pyrite, pyrrhotite), or adsorbed onto surfaces
of weathering products of such sulphide-rich minerals.

Such minerals are difficult to detect or identify by using current
remote sensing techniques including multispectral or even
hyperspectral data.
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Background and Research Question for Study 2

Certain sulphide-rich minerals, particularly pyrite, weathers to a series
of iron-bearing sulfates, hydroxides and oxides (shown by Swayze et
al., 2000).

Such secondary iron-bearing sulfates/hydroxides/oxides have
diagnostic spectral features – enables their detection or identification
with analytical techniques using hyperspectral data (Crowley et al.,
2003).

Debba et al. (2005) showed the potential of using hyperspectral data
to estimate abundances of spectrally similar iron-bearing
sulfates/hydroxides/oxides.

Kemper & Sommer (2002) showed that heavy metal contamination in
soils can be quantified using reflectance spectroscopy.
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Background and Research Question for Study 2

Remote sensing provides an indirect tool for surface characterization
of mine waste impoundments with oxidizing sulphide-rich materials;
namely, for mapping spatial distributions of secondary iron-bearing
sulfates/hydroxides/oxides and heavy metals.

Hence, given a model of spatial distribution of secondary iron-bearing
oxides/hydroxides, the problem is how to design a sampling scheme
that would adequately capture the spatial distribution of certain
groups of metals.

A prospective sampling scheme is derived for nearby unsampled areas
based on the variogram model of the adjacent sampled area.
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Study Area and Data

STUDY AREA

The present case study area is in the Recsk-Lahóca copper mining
area in Hungary. The Recsk-Lahóca mining area is situated in the
Mátra Mountains, about 110 km northeast of Budapest, Hungary.

The Lahóca hill was mined for copper between 1852 and 1979.

Mining of ore deposits in the Recsk-Lahóca area resulted in the
exposure of sulphide bearing-rocks to surface water and atmospheric
oxygen, which accelerate oxidation, leaching and release of metals and
acidity.

This study pertains to the tailings dumps northwest of Lahóca mine,
which consist actually of two dumps referred to as “East Tails” and
“West Tails”.
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Study Area and Data

Figure: Study area: Recsk: Hungary.
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Study Area and Data

THE DATA – HYPERSPECTRAL

A subset of the Digital Airborne Imaging Spectrometer (DAIS-7915)
is used.

The resulting data is a 79 channel hyperspectral image, acquired over
the Recsk. DAIS-7915 is a whisk broom sensor, covering a spectral
range from visible (0.4 µm) to thermal infrared (12.3 µm) at variable
spatial resolution from 3–20 m depending on the carrier aircraft
altitude.

Not all 79 channels were useful as many channels were too noisy and
could not be corrected efficiently. Fortunately, the first 32 channels,
spectral range 406-1035 nm, where iron-bearing
oxides/hydroxides/sulphates have diagnostic features were found
useful for this study.

Samples from the tailings – collected shortly after collection of the
DAIS hyperspectral data.
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Study Area and Data

THE DATA – FIELD

53 samples were collected in the East Tails and 44 in the West tails –
10m×10m grid points.

Concentrations of As, Cd, Cu, Fe, Mn, Ni, Pb, Sb and Zn in the
decomposed samples were determined using the ICP-AES analyzer.
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Study Area and Data

Figure: The Recsk-Lahóca area shown in pseudo-natural color composite image
using DAIS data (red = ch10, green = ch5, blue = ch1) fused with a digital
elevation model. Map coordinates are in meters (UTM projection, zone 34N).
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Study Area and Data

Figure: The “East Tails” and the “West Tails” shown in a color composite image
of the DAIS data. Ratios of ch17 to ch28 (representing ferrihydrite reflectance
and absorption peaks) was used as red band, ch13 to ch25 (representing jarosite
reflectance and absorption peaks) was used as green band and ch32 to ch1
(representing non-iron-bearing minerals) was used as blue band. Red dots are
locations of mine tailings samples. Short dashed lines indicates drainage lines of
either active or non-active streams.
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Methodology

SPLITTING THE DATA

The East and West Tails have different geochemical characteristics —
split the data into two sets.

Data from either sub-area are used to model a relationship between
heavy metal associations and relative abundances of secondary
iron-bearing minerals.

The latter data are derived from spectral unmixing of hyperspectral
data. See: Debba et. al. (2006). Abundance estimation of spectrally
similar materials by using derivatives in simulated annealing, IEEE
Geoscience and Remote Sensing, vol. 44, no. 12, 3649–3658.

A model relationship between heavy metal associations and mineral
abundances in one sub-area is then used as basis for optimal sampling
design in the other sub-area.

Division of the area and the data thus provides calibration analysis
and prediction/validation analysis for optimal sampling design.
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Methodology

MODELING OF HEAVY METAL ASSOCIATIONS

A factor component analysis with varimax rotation was performed on
the logarithmic-transformed heavy metal concentrations to obtain the
heavy metal association of interest.

The scores of FA2E and FA2W — linearly transformed to [0, 1] (for
numerical compatibility with the mineral abundance estimates) —
FA2ET and FA2WT.
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Methodology

Figure: Reflectances of minerals which are common in contaminated areas.
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Methodology

KRIGING WITH EXTERNAL DRIFT

Kriging with external drift is applicable to estimate primary variables
of interest, which are practically measurable at only few sample sites,
based on linearly related ancillary variables, which are measurable at
much higher sampling density than the primary variables.

Kriging with external drift is ideal if a primary variable could be
measured more precisely and practically at a few locations (factor
scores of heavy metal associations), whereas possibly less accurate
measurements of linearly related ancillary variables are available
everywhere in the spatial domain (relative abundances of
metal-scavenging iron-bearing minerals – hyperspectral image).
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Methodology

KRIGING WITH EXTERNAL DRIFT

The experimental semi-variogram γ?(h), where h is a fixed lag vector
in both distance and direction, may be obtained from
κ = 1, 2, . . . ,P(h) pairs of observations {z(xκ), z(xκ + h)} at
locations {xκ, xκ + h}, as:

γ?(h) =
1

2 · P(h)

P(h)∑
κ=1

[z(xκ)− z(xκ + h)]2 . (6)
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Methodology

KRIGING WITH EXTERNAL DRIFT

The k ancillary variables represented as regionalized variables
yi (x), i = 1, . . . , k with nA observations, are less accurate
measurements covering the whole domain A at small scale and are
considered as deterministic. The values {yi (x)} needs to be known at
all locations xα of the samples as well as at the nodes of the
estimation grid.

Since Z (x) and the set of {yi (x)} are two ways of expressing the
same phenomenon, assume that Z (x) is an average equal to a linear
function of the set of {yi (x)} up to a constant b0 and coefficients
bi , i = 1, . . . , k,

E [Z (x)] = b0 +
k∑

i=1

bi · yi (x) =
k∑

i=0

bi · yi (x) , (7)

where y0(x) = 1.

Debba (CSIR) Optimal Sampling Schemes applied in Geology UP 2010 39 / 47



Methodology

KRIGING WITH EXTERNAL DRIFT

Assuming Z (x) is a second order stationary random function, then

Z ∗(x0) =

nA∑
α=1

λαZ (xα) (8)

where λα denotes the weight of the αth observation and is constraint
to unit sum.

The kriging variance can then be written as

σ2
KED(x0) = Var[Z (x0)− Z ∗(x0)] . (9)
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Methodology

KRIGING WITH EXTERNAL DRIFT

The only factor influencing the kriging variance are the variogram
γ(h), the number of observations nA, the sampling locations xα and
the location x0. This means that the kriging variance does not
depend on the observations themselves, but rather only on their
relative spacing. The advantage is that in can be used to optimize
sampling schemes in advance of data collection.
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Methodology

PROSPECTIVE SAMPLING: SIMULATED ANNEALING

The optimization procedure by simulated annealing is then performed
by application of a criterion called the Mean Kriging Variance with
External Drift (MKVED), the fitness function of which is defined as

φMKVED(S) =
1

nA

nA∑
j=1

σ2
KED(xA,j |S) , (10)

where nA is the number of raster nodes for which data for each of the
covariates are available.

The MKVED-criterion is proposed to derive the optimal prospective
sampling scheme in an unvisited area based on a relevant model from
a previously sampled area.
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Results

A PROSPECTIVE SAMPLING SCHEME

A prospective sampling scheme for the West Tails is derived based on
a model for the East Tails.

As an illustration, it was decided to derive a prospective sampling
scheme having 30 samples in the West Tails using the 53 samples
from the East Tails.

The exponential variogram was estimated with the data from the East
Tails.

To verify that this variogram is also appropriate for the West Tails,
the East and West Tails data were combined.

The similarity of the two variograms indicate that the variogram for
the East Tails could be appropriate for modeling the West Tails.
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Results

(a) East Tails (b) East and West Tails combined

Figure: The exponential variogram for the East Tails, combined East & West
Tails.
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Results

Figure: Prospective optimal sampling scheme in the West Tails using East Tails
samples.
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Results

A PROSPECTIVE SAMPLING SCHEME

The optimal sampling scheme constructed using the kriging external
drift variance approach are spread over the West Tails region while
retaining some close pairs of samples.
These close pair samples are to improve the estimation of the
variogram model.
The mean kriging with external drift variance for the West Tails,
using the combined East and West Tails sampling data, is 6.8× 10−4

for the West Tails.
This mean kriging variance was approximately the same when either
of the two variograms was used.
The optimal sampling scheme resulted in a mean kriging with external
drift variance for the West Tails of 3.3× 10−4 using the variogram
derived from the East Tails data.
This indicates that the optimal sampling scheme contains samples
that reduces the mean kriging with external drift variance for the
previously designed grid sampling scheme in the West Tails.
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Conclusions

WHAT HAVE WE LEARNT?

The spatial relationships between heavy metals and metal-scavenging
minerals can be modeled adequately by kriging with external drift.

The use of secondary information in designing optimal sampling
schemes was also illustrated. Often these secondary information can
be achieved at a relatively low cost and available over a greater
region. These are the primary reasons for incorporating this
information into the sampling design.

Optimized sampling schemes using the mean kriging with external
drift variance will result in sampling schemes that explicitly take into
account the nature of spatial dependency of the data and together
with hyperspectral data can be used to design sampling schemes in
nearby unexplored areas.
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