Optimal Sampling Schemes applied in Geology

Pravesh Debba

CSIR, South Africa

UP 2010 Presentation

Debba (CSIR) (Optimal Sampling Schemes applied in Geolog

UP 2010

1/ 47



N —
Outline

@ Introduction to hyperspectral remote sensing

Debba (CSIR) Optimal Sampling Schemes applied in Geolog UP 2010 2 /47



N —
Outline

@ Introduction to hyperspectral remote sensing

© Objective of Study 1

Debba (CSIR) Optimal Sampling Schemes applied in Geolog UP 2010 2 /47



Outline

@ Introduction to hyperspectral remote sensing
© Objective of Study 1
© Study Area

CSiR

UP 2010 2 /47

Debba (CSIR) (Optimal Sampling Schemes applied in Geolog



Outline

@ Introduction to hyperspectral remote sensing
© Objective of Study 1

© Study Area

@ Data used

CSiR

UP 2010 2 /47

Debba (CSIR) (Optimal Sampling Schemes applied in Geolog



N —
Outline

@ Introduction to hyperspectral remote sensing
© Objective of Study 1

© Study Area

@ Data used

© Methodology

CSiR

2/ 47

Debba (CSIR) (Optimal Sampling Schemes applied in Geolog UP 2010



Outline

@ Introduction to hyperspectral remote sensing
© Objective of Study 1

© Study Area

@ Data used

© Methodology

O Results

CSiR

2/ 47

Debba (CSIR) (Optimal Sampling Schemes applied in Geolog UP 2010



N —
Outline

@ Introduction to hyperspectral remote sensing
© Objective of Study 1

© Study Area

@ Data used

© Methodology

O Results

@ Background and Research Question for Study 2

Debba (CSIR) Optimal Sampling Schemes applied in Geolog UP 2010 2 /47



N —
Outline

@ Introduction to hyperspectral remote sensing
© Objective of Study 1

© Study Area

@ Data used

© Methodology

O Results

@ Background and Research Question for Study 2
© Study Area and Data

Debba (CSIR) Optimal Sampling Schemes applied in Geolog UP 2010 2 /47



N —
Outline

@ Introduction to hyperspectral remote sensing
© Objective of Study 1

© Study Area

@ Data used

© Methodology

O Results

@ Background and Research Question for Study 2
© Study Area and Data

© Methodology

Debba (CSIR) Optimal Sampling Schemes applied in Geolog UP 2010 2 /47



N —
Outline

@ Introduction to hyperspectral remote sensing

© Objective of Study 1

© Study Area

@ Data used

© Methodology

O Results

@ Background and Research Question for Study 2

© Study Area and Data

© Methodology

@ Results

SR

B G RO vtimal Sampling Schemes applied in Geolog UP 2010 2 /47



N —
Outline

@ Introduction to hyperspectral remote sensing
© Objective of Study 1

© Study Area

@ Data used

© Methodology

O Results

@ Background and Research Question for Study 2
© Study Area and Data

© Methodology

@ Results

@ Conclusions GSIR
Debba (CSIR) Optimal Sampling Schemes applied in Geolog UP 2010 2 /47



Introduction to hyperspectral remote sensing

OVERVIEW OF HYPERSPECTRAL REMOTE SENSING

Hyperspectral sensors

@ record the reflectance in many narrow contiguous bands

@ various parts of the electromagnetic spectrum (visible - near infrared -
short wave infrared)

@ at each part of the electromagnetic spectrum results in an image
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Figure: Spectral Range CSIR
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Introduction to hyperspectral remote sensing

OVERVIEW OF HYPERSPECTRAL REMOTE SENSING

(cont...)
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Figure: Hyperspectral cube

Debba (CSIR) (Optimal Sampling Schemes applied in Geolog

UP 2010

4/ 47



Introduction to hyperspectral remote sensing

OVERVIEW OF HYPERSPECTRAL REMOTE SENSING

(cont...)

Veg
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Figure: Pixels in hyperspectral image
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Introduction to hyperspectral remote sensing

OVERVIEW OF HYPERSPECTRAL REMOTE SENSING
(cont...)
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Figure: Example of 3 different spectral signatures CSIR
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OBJECTIVE OF STUDY 1

Using a hyperspectral image, to guide field sampling collection to those
pixels with the highest likelihood for occurrence of a particular mineral, for
example alunite, while representing the overall distribution of alunite.

Usefulness: To create a mineral alteration map

GIR
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STUDY SITE

Lomilla
S Calder:
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o
Figure: A generalized geological map of the Rodalquilar study area showing the
flight line and the hyperspectral data
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DATA USED

e HyMap: 126 bands — 0.4-2.5 um
o Geology: 30 bands — 1.95-2.48 um
@ Distinctive absorption features at wavelengths near 2.2 yum

@ We collected field spectra during the over-flight using the Analytical
Spectral Device (ASD) fieldspec-pro spectrometer — 0.35-2.50 um
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ENDMEMBER SPECTRA

Value (Offset for clarity)

2.0 2.1 2.2 7.3 2.4
Wavelength

«—— Quartz: quartz2.spc
«—— Pyrophyllite: pyrophl.spc

+—— Montmorillonite: montmor2.spc
«— Kaolinite: kaoliniG.spc

—— Jarosite: jarositel.spc

— Ilite: illited.spc

«—— Alunite: alunite6.spe

Figure: Plot of 7 endmembers from USGS spectral library for the 30 selected
bands, enhanced by continuum removal.
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CONTINUUM REMOVAL

Spectra are normalized to a common reference using a continuum formed
by defining high points of the spectrum (local maxima) and fitting straight
line segments between these points. The continuum is removed by dividing
it into the original spectrum.

Reflectance (%)

Normalized Refiectance (%)

0s0 080 100 120 140 160 180 200 220 240 250

os0 080 100 120 140 160 180 200 220 240 250 Wavelength (um)

Wavelength (um) Hull Transformed Spectrum

Figure: Concept of the convex hull transform; (A) a hull fitted over the originaf GjR
spectrum; (B) the transformed spectrum.
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METHODS: Spectral Angle Mapper (SAM) Classifier

@ SAM - pixel based supervised classification technique

@ Measures the similarity of an image pixel reflectance spectrum to a
reference spectrum

@ Spectral angle (in radians) between the two spectra

i F)e()
o(x)= (Hf(A)H Te(x )||> ’ @)

f(X\) — image reflectance spectrum and e(\) — reference spectrum.

@ Results in a gray-scale rule image — values are the angles
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Methodology

METHODS (cont...): Spectral Angle Mapper (SAM)
Classifier

pixel

target

Band X

spectral
angle

Band X
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METHODS (cont...): SAM Rule Image for Alunite

Figure: SAM classification rule image for alunite. Dark areas indicate smaller .
angles, hence, greater similarity to alunite. al
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METHODS (cont...): Spectral Feature Fitting (SFF)

@ SFF — pixel based classification technique.
@ Remove the continuum from both the reference and unknown spectra.

@ SFF produces a scale image for each endmember selected for analysis
by first subtracting the continuum-removed spectra from one
(inverting it), and making the continuum zero.

@ SFF determines a single multiplicative scaling factor that makes the
reference spectrum match the unknown spectrum.

CSiR
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METHODS (cont...): Spectral Feature Fitting (SFF)

@ SFF then calculates a least-squares-fit, band-by-band, between each
reference endmember and the unknown spectrum.

@ The total root-mean-square (RMS) error is used to form an RMS
error image for each endmember.

@ Scale/RMS provides a fit image that is a measure of how well the
unknown spectrum matches the reference spectrum on a
pixel-by-pixel basis.
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Methodology

METHODS (cont...): SFF Rule Image for Alunite

X abundant alunite

A minor alunite

® 1o alunite
Value

Figure: SFF fit image for alunite. Lighter areas indicate better fit values betweggiR
pixel reflectance spectra and the alunite reference spectrum.
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Methodology

METHODS (cont...): Fitness Function

SAM values scaled to [0, 1]

0, if (%) > 6t
(X)) =13 o ox
Wl( (X )) { Get_Oe(an) 7 if 0(?) < ot
SFF values scaled to [0, 1]
wa(re (2)) 0 - if 7r(X) <7t
T = T —7t .
2(TF 7”:—'(:373_7—5 , if 7r(X) >k
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METHODS (cont...): Fitness Function

Combination of SAM and SFF scaled to [0, 1] is defined as

e (0(X)) + rawa(7e( X)) ,
w(0(X), (X)) = if (X)) < 6! and 7e(X) > 7£
0, if otherwise

Swsn(87) = 1 30 w(F)[[ X — We()) |

xel
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METHODS (cont...): Fitness Function

wx)=1 w(x)=2

Figure: Fitness function with different weights for N = 15.
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RESULTS OF THE OPTIMIZED SAMPLING SCHEME
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Figure: Optimized sampling scheme.
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RESULTS (cont...): Distribution of 40 optimized
sampling scheme

Figure: Distribution of 40 optimized sampling scheme CSIR
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RESULTS (cont...): Distribution of 40 highest values

Figure: Sampling scheme: 40 highest values CSIR
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Results

RESULTS (cont...): SUMMARY COMPARISON
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(c) Distribution sampling pts (d) Distribution_highest points
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STUDY 2

@ Mine wastes contains high concentrations of metals.

@ Metals — leached from mine wastes — then released to and
contaminating nearby ecosystems.

@ Geochemical characterization of mine waste impoundments —
important for rehabilitation; remediation; protect the surrounding
environment and ecosystems.

o Effective geochemical characterization — entails surface (to
subsurface) sampling — labor or cost intensive.

@ Metals in mine waste impoundments — hosted by acid-generating
sulphide-rich minerals (pyrite, pyrrhotite), or adsorbed onto surfaces
of weathering products of such sulphide-rich minerals.

@ Such minerals are difficult to detect or identify by using current
remote sensing techniques including multispectral or even )
hyperspectral data. GIR
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Background and Research Question for Study 2

@ Certain sulphide-rich minerals, particularly pyrite, weathers to a series
of iron-bearing sulfates, hydroxides and oxides (shown by Swayze et
al., 2000).

@ Such secondary iron-bearing sulfates/hydroxides/oxides have
diagnostic spectral features — enables their detection or identification
with analytical techniques using hyperspectral data (Crowley et al.,
2003).

@ Debba et al. (2005) showed the potential of using hyperspectral data
to estimate abundances of spectrally similar iron-bearing
sulfates/hydroxides/oxides.

e Kemper & Sommer (2002) showed that heavy metal contamination in
soils can be quantified using reflectance spectroscopy.
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Background and Research Question for Study 2

@ Remote sensing provides an indirect tool for surface characterization
of mine waste impoundments with oxidizing sulphide-rich materials;
namely, for mapping spatial distributions of secondary iron-bearing
sulfates/hydroxides/oxides and heavy metals.

Hence, given a model of spatial distribution of secondary iron-bearing
oxides/hydroxides, the problem is how to design a sampling scheme
that would adequately capture the spatial distribution of certain
groups of metals.

@ A prospective sampling scheme is derived for nearby unsampled areas
based on the variogram model of the adjacent sampled area.
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STUDY AREA

@ The present case study area is in the Recsk-Lahéca copper mining
area in Hungary. The Recsk-Lahdca mining area is situated in the
Matra Mountains, about 110 km northeast of Budapest, Hungary.

@ The Lahdca hill was mined for copper between 1852 and 1979.

@ Mining of ore deposits in the Recsk-Lahdca area resulted in the
exposure of sulphide bearing-rocks to surface water and atmospheric
oxygen, which accelerate oxidation, leaching and release of metals and
acidity.

@ This study pertains to the tailings dumps northwest of Lahdca mine,
which consist actually of two dumps referred to as “East Tails” and
“West Tails".

Debba (CSIR) Optimal Sampling Schemes applied in Geolog UP 2010 28 / 47



Study Area and Data

Miskolc
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area (Fig. 2)
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Figure: Study area: Recsk: Hungary.
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THE DATA — HYPERSPECTRAL

@ A subset of the Digital Airborne Imaging Spectrometer (DAIS-7915)
is used.

@ The resulting data is a 79 channel hyperspectral image, acquired over
the Recsk. DAIS-7915 is a whisk broom sensor, covering a spectral
range from visible (0.4 um) to thermal infrared (12.3 pm) at variable
spatial resolution from 3-20 m depending on the carrier aircraft
altitude.

@ Not all 79 channels were useful as many channels were too noisy and
could not be corrected efficiently. Fortunately, the first 32 channels,
spectral range 406-1035 nm, where iron-bearing
oxides/hydroxides/sulphates have diagnostic features were found
useful for this study.

@ Samples from the tailings — collected shortly after collection of the
DAIS hyperspectral data. CSIR
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THE DATA - FIELD

@ 53 samples were collected in the East Tails and 44 in the West tails —
10mx10m grid points.

@ Concentrations of As, Cd, Cu, Fe, Mn, Ni, Pb, Sb and Zn in the
decomposed samples were determined using the ICP-AES analyzer.

Debba (CSIR) Optimal Sampling Schemes applied in Geolog UP 2010 31/ 47



Study Area and Data

STUDY AREA =
West Tails,

East{Tails

Lahoca Mine

Recsk Mine

Figure: The Recsk-Lahéca area shown in pseudo-natural color composite image
using DAIS data (red = ch10, green = ch5, blue = chl) fused with a digital
elevation model. Map coordinates are in meters (UTM projection, zone 34N). (SiR
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Study Area and Data
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Figure: The “East Tails" and the “West Tails” shown in a color composite image
of the DAIS data. Ratios of chl7 to ch28 (representing ferrihydrite reflectance
and absorption peaks) was used as red band, ch13 to ch25 (representing jarosite
reflectance and absorption peaks) was used as green band and ch32 to chl
(representing non-iron-bearing minerals) was used as blue band. Red dots are
locations of mine tailings samples. Short dashed lines indicates drainage lines of

either active or non-active streams. CSIR
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SPLITTING THE DATA

@ The East and West Tails have different geochemical characteristics —
split the data into two sets.

@ Data from either sub-area are used to model a relationship between
heavy metal associations and relative abundances of secondary
iron-bearing minerals.

@ The latter data are derived from spectral unmixing of hyperspectral
data. See: Debba et. al. (2006). Abundance estimation of spectrally
similar materials by using derivatives in simulated annealing, IEEE
Geoscience and Remote Sensing, vol. 44, no. 12, 3649-3658.

@ A model relationship between heavy metal associations and mineral
abundances in one sub-area is then used as basis for optimal sampling
design in the other sub-area.

@ Division of the area and the data thus provides calibration analysis
and prediction/validation analysis for optimal sampling design. GIR
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MODELING OF HEAVY METAL ASSOCIATIONS

@ A factor component analysis with varimax rotation was performed on
the logarithmic-transformed heavy metal concentrations to obtain the
heavy metal association of interest.

@ The scores of FA2E and FA2W — linearly transformed to [0, 1] (for

numerical compatibility with the mineral abundance estimates) —
FA2ET and FA2WT.
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Methodology
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Figure: Reflectances of minerals which are common in contaminated areas.
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KRIGING WITH EXTERNAL DRIFT

o Kriging with external drift is applicable to estimate primary variables
of interest, which are practically measurable at only few sample sites,
based on linearly related ancillary variables, which are measurable at
much higher sampling density than the primary variables.

o Kriging with external drift is ideal if a primary variable could be
measured more precisely and practically at a few locations (factor
scores of heavy metal associations), whereas possibly less accurate
measurements of linearly related ancillary variables are available
everywhere in the spatial domain (relative abundances of
metal-scavenging iron-bearing minerals — hyperspectral image).

GIR
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KRIGING WITH EXTERNAL DRIFT

@ The experimental semi-variogram ~*(h), where h is a fixed lag vector
in both distance and direction, may be obtained from
k =1,2,..., P(h) pairs of observations {z(x,), z(x, + h)} at
locations {x, X, + h}, as:

/—\

*(h

z(xs + h)? . (6)
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KRIGING WITH EXTERNAL DRIFT

@ The k ancillary variables represented as regionalized variables
yi(x), i =1,..., k with na observations, are less accurate
measurements covering the whole domain A at small scale and are
considered as deterministic. The values {y;(x)} needs to be known at
all locations x,, of the samples as well as at the nodes of the
estimation grid.

@ Since Z(x) and the set of {y;(x)} are two ways of expressing the
same phenomenon, assume that Z(x) is an average equal to a linear
function of the set of {y;(x)} up to a constant by and coefficients

bi, i=1,...,k,
k
E[Z(x )]—bo—i—Zb yi(x Zb yi(x), (7)
i=1
where yp(x) = 1. CSiR
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KRIGING WITH EXTERNAL DRIFT

@ Assuming Z(x) is a second order stationary random function, then

Z*(x0) = ) AaZ(xa) (8)
a=1

where A, denotes the weight of the ath observation and is constraint
to unit sum.

@ The kriging variance can then be written as
2
okep(Xo) = Var[Z(xo) — Z*(xo)] - (9)
GIR
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KRIGING WITH EXTERNAL DRIFT

@ The only factor influencing the kriging variance are the variogram
~(h), the number of observations na, the sampling locations x,, and
the location xg. This means that the kriging variance does not
depend on the observations themselves, but rather only on their
relative spacing. The advantage is that in can be used to optimize
sampling schemes in advance of data collection.
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PROSPECTIVE SAMPLING: SIMULATED ANNEALING

@ The optimization procedure by simulated annealing is then performed
by application of a criterion called the Mean Kriging Variance with
External Drift (MKVED), the fitness function of which is defined as

1 &
PMKVED(S) = o ZIUIZ{ED(XA,J'|S) : (10)
iz

where np is the number of raster nodes for which data for each of the
covariates are available.

@ The MKVED-criterion is proposed to derive the optimal prospective
sampling scheme in an unvisited area based on a relevant model from
a previously sampled area.
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A PROSPECTIVE SAMPLING SCHEME

@ A prospective sampling scheme for the West Tails is derived based on
a model for the East Tails.

@ As an illustration, it was decided to derive a prospective sampling
scheme having 30 samples in the West Tails using the 53 samples
from the East Tails.

@ The exponential variogram was estimated with the data from the East
Tails.

@ To verify that this variogram is also appropriate for the West Tails,
the East and West Tails data were combined.

@ The similarity of the two variograms indicate that the variogram for
the East Tails could be appropriate for modeling the West Tails.
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Figure: The exponential variogram for the East Tails, combined East & West

Tails.

Debba (CSIR) (Optimal Sampling Schemes applied in Geolog

semivariance

002 003
I

001

000

20

(a) East Tails

T
40

T
60
distance

80

100

semivariance

0010 0020 0.030

0.000

T
40

distance

T
60

100

(b) East and West Tails combined

UP 2010

GIR

a4 | a7



5310050

5310000

(=]
[r]
(=23
(=23
(=1
o
['e]

5309900

431000 431050 431100 431150 43i200 431250

Figure: Prospective optimal sampling scheme in the West Tails using East Tails
samples.
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A PROSPECTIVE SAMPLING SCHEME

@ The optimal sampling scheme constructed using the kriging external
drift variance approach are spread over the West Tails region while
retaining some close pairs of samples.

@ These close pair samples are to improve the estimation of the
variogram model.

@ The mean kriging with external drift variance for the West Tails,
using the combined East and West Tails sampling data, is 6.8 x 10~*
for the West Tails.

@ This mean kriging variance was approximately the same when either
of the two variograms was used.

@ The optimal sampling scheme resulted in a mean kriging with external
drift variance for the West Tails of 3.3 x 10~ using the variogram
derived from the East Tails data.

@ This indicates that the optimal sampling scheme contains samples
that reduces the mean kriging with external drift variance for the (giR
previously designed grid sampling scheme in the West Tails.
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WHAT HAVE WE LEARNT?

@ The spatial relationships between heavy metals and metal-scavenging
minerals can be modeled adequately by kriging with external drift.

@ The use of secondary information in designing optimal sampling
schemes was also illustrated. Often these secondary information can
be achieved at a relatively low cost and available over a greater
region. These are the primary reasons for incorporating this
information into the sampling design.

@ Optimized sampling schemes using the mean kriging with external
drift variance will result in sampling schemes that explicitly take into
account the nature of spatial dependency of the data and together
with hyperspectral data can be used to design sampling schemes in
nearby unexplored areas.
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