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ABSTRACT
This paper uses the dynamic factor model framework, which accommodates a 
large cross-section of macroeconomic time series, for forecasting regional 
house price infl ation. In this study, we forecast house price infl ation for fi ve 
metropolitan areas of South Africa using principal components obtained from 
282 quarterly macroeconomic time series in the period 1980:1 to 2006:4. The 
results, based on the root mean square errors of one to four quarters ahead 
out-of-sample forecasts over the period 2001:1 to 2006:4 indicate that, in the 
majority of the cases, the Dynamic Factor Model statistically outperforms the 
vector autoregressive models, using both the classical and the Bayesian treat-
ments. We also consider spatial and non-spatial specifi cations. Our results 
indicate that macroeconomic fundamentals in forecasting house price infl ation 
are important. Copyright © 2010 John Wiley & Sons, Ltd.

key words  Bayesian models; forecast accuracy; spatial and non-spatial 
models

INTRODUCTION

This paper investigates whether the wealth of information contained in the dynamic factor model 
(DFM) framework, developed by Forni et al. (2005), can be useful in forecasting regional house 
price infl ation. To illustrate, we use the DFM to predict house price infl ation, defi ned as the percent-
age change in house prices, in fi ve metropolitan areas of South Africa, namely Cape Town, Durban, 
Johannesburg, Port Elizabeth and Pretoria, using quarterly data over the period 1980:1 to 2006:4. 
The panel data comprise 282 quarterly series for the South African economy, a set of global variables 
such as commodity industrial inputs price index and crude oil prices, and time series of major trading 
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partners, namely Germany, the UK, and the USA. The forecast performance of the DFM is evaluated 
in terms of the root mean square error (RMSE), by comparing its performance with spatial Bayesian 
vector autoregressive (SBVAR) models that weighs in the infl uence of neighbors on the determina-
tion of house price infl ation of a particular region, and also to the non-spatial unrestricted classical 
vector autoregressive (VAR) model and Bayesian vector autoregressive (BVAR) models using the 
Minnesota prior. All the alternative models are estimated based on only the house price infl ation 
series.

The importance of predicting house price infl ation is highlighted by recent studies in which it is 
concluded that asset prices help to forecast both infl ation and output (Forni et al., 2003; Stock and 
Watson, 2003). Since a large amount of individual wealth is embedded in houses, house prices are 
important in signaling infl ation. Gupta and Das (2008) point out that, in South Africa, housing infl a-
tion and consumer price index (CPI) infl ation tend to move together. As such, models that forecast 
house price infl ation can give policy makers an idea about the direction of CPI infl ation in the future, 
and hence can provide a better control for designing appropriate policies. The reason for using 
regional data is to account for possible heterogeneity and segmentation that might exist in the housing 
market. Herein also comes the justifi cation of modeling house prices separately based on the size of 
the house.

The rationale behind using a data-rich DFM to forecast house price infl ation emanates from the 
fact that a large number of economic variables help in predicting housing price growth (Cho, 1996; 
Abraham and Hendershott, 1996; Johnes and Hyclak, 1999; Rapach and Strauss, 2007, 2009). For 
instance, income, interest rates, construction costs, labor market variables, stock prices, industrial 
production, and consumer confi dence index—which are included in the DFM—are potential predic-
tors. In addition, given that movements in the housing market are likely to play an important role 
in the business cycle, not only because housing investment is a very volatile component of demand 
(Bernanke and Gertler, 1995), but also because changes in house prices tend to have important wealth 
effects on consumption (International Monetary Fund, 2000) and investment (Topel and Rosen, 
1988), the importance of forecasting house price infl ation is vital, since the housing sector serves as 
a leading indicator of the real sector of the economy.

To the best of our knowledge, this is the fi rst attempt to compare the forecasting performances of 
a DFM with spatial and non-spatial econometric models in terms of predicting regional house price 
infl ation. Rapach and Strauss (2007, 2009) used autoregressive distributed lag (ARDL) models 
containing, respectively, 25 and 30 variables to forecast real housing price growth for the individual 
states of the Federal Reserve’s Eighth District and the 20 largest US states. Given the diffi culty in 
determining a priori the particular variables that are most important for forecasting real housing price 
growth, the authors used various methods to combine the individual ARDL model forecasts, which 
in turn resulted in better forecasting of real housing price growth compared to the individual ARDL 
models. Vargas-Silva (2008) point to the importance of using as many as 120 monthly series to 
analyze the impact of monetary policy actions on the housing sector of four different regions of the 
USA based on a factor-augmented VAR (FAVAR) model. The author indicates that the housing 
market tends to be negatively affected by positive interest rate shocks but, more importantly, marked 
heterogeneity in the responses of the housing market variables for the four regions were depicted, 
with the Southern region driving the aggregate US housing market. The remainder of the paper is 
organized as follows: the second and third sections, respectively, lay out the DFM and outline the 
basics of the VAR, the Minnesota-type BVARs, and the SBVARs based on the fi rst-order spatial 
contiguity (FOSC) and the random walk averaging (RWA) priors developed by LeSage and Pan 
(1995) and LeSage and Krivelyova (1999), respectively. The fourth section discusses the data used 
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to estimate the DFM, while the fi fth section reports the results from the forecasting exercise. The 
sixth section concludes.

DYNAMIC FACTOR MODEL (DFM)

This study uses the generalized dynamic factor model (DFM) developed by Forni et al. (2005) to 
extract common components between macroeconomics series, which are then used to forecast 
metropolitan house price infl ation for the South African housing market. In the VAR models, since 
all variables are used in forecasting, the number of parameters to be estimated depends on the number 
of variables n. With such a large information set, n, the estimation of a large number of parameters 
leads to a curse of dimensionality problem. The generalized DFM expresses individual times series 
as the sum of two unobserved components: a common component driven by a small number of 
common factors and an idiosyncratic component, which are specifi c to each variable. Forni et al. 
(2005) demonstrated that when the number of factors is small relative to the number of variables 
and the panel is heterogeneous, the factors can be recovered from present and past observations.

Consider an n × 1 covariance stationary process Yt = (y1t, . . . , ynt)′. Defi ne Xt as the standardized 
version of Yt. The generalized DFM of by Forni et al. (2005) is given by

 X B L f Ft t t t t= ( ) + = +ξ ξΛ  (1)

where ft is a q × 1 vector of dynamic factors, while Ft is an r × 1 vector of static factors, with 
r = q(s + 1), B(L) = B0 + B1L + . . . + BsLs is an n × q factor loadings matrix polynomial of order s 
and Λ is the factor loadings matrix related to static factors, ξt is the n × 1 vector of idiosyncratic 
components. Note that L denotes the lag operator.

The generalized DFM is a weighted version of the static principal components estimator of Stock 
and Watson (2002), which exploits information of leads and lags of variables where time series are 
converted to the frequency domain. However, dynamic principal component analysis (PCA) is a 
two-sided fi lter. This causes a problem at the end of the sample, making it diffi cult to estimate and 
forecast the common component since no future observations are available. The generalized DFM 
solves this problem by proposing a two-step approach. In the fi rst step, it relies on the dynamic 
approach in the estimation of the covariance matrices of the common and idiosyncratic component 
(at all leads and lags) through an inverse Fourier transform of the spectral density matrices. It 
involves estimating the eigenvalues and eigenvectors decomposition of the spectral density matrix 
for Xt, Σ̂(θ) with rank q, corresponding to the q largest eigenvalues. For each frequency, −π < θ < 
π, the spectral density matrix of Xt can be decomposed into the spectral densities of the common 
and the idiosyncratic component, Σ(θ) = Σχ(θ) + Σξ(θ). Hence the estimated spectral density matrix 
of common component Σ̂χ(θ) can be constructed. In the second step, this information is used to 
compute r linear combinations of Xt that maximizes the contemporaneous covariance matrices esti-
mated explained by the common factors, estimated in the fi rst step. Further, it reduces the idiosyn-
cratic noise in the common factor space to a minimum, by selecting the variables with the highest 
common/idiosyncratic variance ratio. This step is a one-sided approach and is only used to estimate 
and forecast the common component.

For forecasting purposes, we adopt the method of Boivin and Ng (2005). The forecasting equation 
is as follows:
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 � �
y Lt h t h t+ += + ( )ˆ ˆχ φ ξ  (2)

where χ̂t+h is obtained by artifi cially projecting χt+h on the estimated dynamic factor, F̂t obtained from 
(1), such that χ̂t+h = Γ̂χ(k)Z(Z′Σ̂Z)−1Z′Xt, Z is the r generalized eigenvectors of Γ̂χ(k) with respect to 
Γ̂ξ(k) under normalization Z′Γ̂χ(0)Z = 1, and Γ̂χ(k) and Γ̂ξ(k) are covariance matrices of common and 
idiosyncratic components at different leads and lags. Since F̂t = Z′Xt, then χ̂t+h = Γ̂χ(θ)Z(Z′Σ̂Z)−1F̂t.

VECTOR AUTOREGRESSIVE (VAR) MODELS

In this study, the generalized DFM is our benchmark model. To evaluate the forecasting performance 
of the DFM we consider alternative models: in our case, the unrestricted classical VAR, BVARs 
based on the Minnesota prior, and the SBVARs based on the FOSC and RWA priors. This section 
outlines the basics of the above-mentioned competing models.

Classical VARs
The VAR model, as suggested by Sims (1980), can be written as follows:

 y A A L yt t t= + ( ) +0 ε  (3)

where y is an n × 1 vector of variables being forecast; A(L) is an n × n polynomial matrix in the 
backshift operator L with lag length p, i.e., A(L) = A1L + A2L

2 + . . . + ApL
p; A0 is an n × 1 vector of 

constant terms; and ε is an n × 1 vector of error terms. In our case, we assume that εt ≈ N(0, σ2In), 
where In is an n × n identity matrix. The VAR model is estimated based on ordinary least squares 
(OLS) and forecasting is straightforward (See Hamilton, 1994, ch. 11).

Non-spatial Bayesian VARs
The BVAR model, on the other hand, as described in Litterman (1981), Doan et al. (1984), Todd 
(1984), Litterman (1986), and Spencer (1993), imposes priors on the coeffi cients of the VAR model. 
Besides a diffuse prior on the constants, the means of the prior, popularly called the Minnesota prior, 
take the following form:

 β σ β σβ βi jN N
i j

~ , ~ ,1 02 2( ) ( )and  (4)

where βi denotes the coeffi cients associated with the lagged dependent variables in each equation of 
the VAR, while βj represents any other coeffi cient. The specifi cation of the standard deviation of 
the distribution of the prior imposed on variable j in equation i at lag m, for all i, j and m, denoted 
by S1(i, j, m), is specifi ed as follows:

 S i j m w g m F i j i

j
1 , , ,( ) = × ( ) × ( )[ ] σ

σ
ˆ
ˆ

 (5)

with F(i, j) = 1, if i = j and kij otherwise, with (0 ≤ kij ≤ 1); g(m) = m−d, d > 0. Note that σ̂i is the 
estimated standard error of the univariate autoregression for variable i. The ratio σ̂i/σ̂j scales the 
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variables to account for differences in the units of measurement, and hence causes specifi cation of 
the prior without consideration of the magnitudes of the variables. The term w indicates the overall 
tightness and is also the standard deviation on the fi rst own lag, with the prior getting tighter as we 
reduce the value. The parameter g(m) measures the tightness on lag m with respect to lag 1, and is 
assumed to have a harmonic shape with a decay factor of d, which tightens the prior on increasing 
lags. The parameter F(i, j) represents the tightness of variable j in equation i relative to variable i, 
and by increasing the interaction, i.e., the value of kij, we can loosen the prior. Note that the overall 
tightness (w) and the lag decay (d) hyperparameters used in the standard Minnesota prior have values 
of 0.1 and 1.0, respectively, while kij = 0.5 implies a weighting matrix (F) with 1.0 on the diagonals 
and 0.5 as the off-diagonal elements.

Spatial Bayesian VARs
Given that the Minnesota prior treats all variables in the VAR, except for the fi rst own lag of the 
dependent, in an identical manner, several attempts have been made to alter this fact. Usually, this 
has boiled down to increasing the value of the overall tightness (w) hyperparameter from 0.10 to 
0.20, so that the larger value of w can allow for more infl uence from other variables in the model. 
In addition, as proposed by Dua and Ray (1995), we also try out a prior that is even more loose, 
specifi cally with w = 0.30 and d = 0.50. Alternatively, LeSage and Pan (1995) have suggested the 
construction of the weight matrix based on the FOSC, which implies the creation of a non-symmetric 
F matrix that emphasizes the importance of the variables from the neighboring states/provinces more 
than those of the non-neighboring states/provinces. Lesage and Pan (1995) suggest the use of a value 
of unity on the diagonal elements of the weight matrix, as in the Minnesota prior, as well as in 
place(s) that correspond to the variable(s) from other state(s)/province(s) with which the specifi c 
state in consideration has common order(s). However, for the elements in the F matrix that corre-
sponds to variable(s) from state(s)/province(s) that are not immediate neighbor(s), Lesage and an 
(1995) propose a value of 0.1. (See the Appendix for further details regarding the construction of 
the F matrix based on FOSC.)

In addition to the FOSC-based prior, LeSage and Krivelyova (1999) have also put forth another 
approach to remedy the equal treatment nature of the Minnesota prior by the RWA prior. This 
involves both the prior means and the variances based on a distinction made between important 
variables (like house price infl ation of neighboring metropolitan area(s)), and unimportant variables 
(like house price infl ation of non-neighboring metropolitan area(s)), in each equation of the VAR 
model. To understand the motivation behind the design of the prior means, consider the weight 
matrix F for the VAR consisting of house price infl ation of the fi ve metropolitan areas. Retaining 
the ordering of the fi ve metropolitan areas as outlined in the FOSC prior, the weight matrix contains 
values of unity in positions associated with the house price infl ation(s) of neighboring metropolitan 
area(s), i.e., for important variables in each equation of the VAR model, while zero values are 
assigned to the unimportant variables, i.e., house price infl ation of non-neighboring metropolitan 
area(s), with neighbors and non-neighbors identifi ed as discussed under the FOSC prior. As with 
the Minnesota prior, we continue to have a value of one on the main diagonal of the F matrix, 
which is then standardized to a matrix C, so that the rows sum to unity and we can consider the 
random walk with drift, which averages over the important variables in each equation i of the VAR. 
(See the Appendix for further details on the design of the F and C matrices under RWA prior. The 
prior on the standard deviations for the RWA-based model has also been outlined in the 
Appendix.)
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Estimation of BVARs
Finally, the BVARs and the SBVARs, based on the FOSC and the RWA priors, are estimated using 
Theil’s (1971) mixed estimation technique (See Hamilton, 1994, pp. 360–362). In each equation of 
the different types of VARs, there are 41 parameters including the constants, given the fact that the 
model is estimated with eight lags of each variable, which are essentially the house price infl ation 
(percentage change in house prices) of the fi ve metropolitan areas. All data on house price infl ation 
are seasonally adjusted, before being converted to house price infl ation, in order to (inter alia) 
address the fact that, as pointed out by Hamilton (1994, p. 362), the Minnesota-type priors are not 
well suited for seasonal data. The choice of eight lags is based on the unanimity of the sequential 
modifi ed LR test statistic, Akaike information criterion (AIC) and the fi nal prediction error (FPE) 
criterion.

The fi ve-variable VAR, BVAR and SBVAR models for an initial prior are estimated for the period 
of 1980:1 to 2000:4 and then forecast from 2001:1 through to 2006:4. Since we use eight lags, the 
initial eight quarters of the sample 1980:1 to 1981:4 are used to feed the lags. We generate dynamic 
forecasts, as would naturally be achieved in actual forecasting practice. The models are re-estimated 
each quarter over the out-of-sample forecast horizon in order to update the estimate of the coeffi -
cients, before producing the four-quarters-ahead forecasts. This iterative estimation and four-steps-
ahead forecast procedure was carried out for 24 quarters, with the fi rst forecast beginning in 2001:1. 
This experiment produced a total of 24 one-quarter-ahead forecasts, 24 two-quarters-ahead forecasts, 
and so on, up to 24 four-steps-ahead forecasts. The RMSEs for the 24 quarter 1 through quarter 4 
forecasts, for the period 2001:1 to 2006:4, are then calculated and compared for the house price 
infl ation of the fi ve metropolitan areas obtained from that of the generalized DFM. Note that if At+n 
denotes the actual value of a specifi c variable in period t + n and tFt+n is the forecast made in period 
t for t + n, the RMSE statistic can be defi ned as

 1
1002

N
A Ft n t t n+ +−( ) ×∑

For n = 1, the summation runs from 2001:1 to 2006:4, and for n = 2 the same covers the period of 
2001:2 to 2006:4, and so on.

DATA

We study the South African house price data empirically. As in Burger and Van Rensburg (2008) 
and Gupta and Das (2008), we do not consider the residential market in general; rather, we subdivide 
the market in terms of size and price of the houses. Specifi cally, we use the ABSA (one of the leading 
South African private banks) house price index, which distinguishes between three price categories, 
expressed in the domestic currency rand (R), as luxury houses (R2.6 million to R9.5 million), middle-
segment houses (R226,000 to R2.6 million) and affordable houses (R226,000 and below). Further, 
the middle-segment category has three subcategories based on size (measured by square meters of 
house): small (80–140 m2), medium (141–220 m2) and large (221–400 m2). Given that regional 
house price infl ation data are only available for the middle-segment houses, we restrict our study to 
this category. Although ABSA reports data for both metropolitan and non-metropolitan areas, the 
availability is limited and lacks clarity regarding the area of coverage, especially for the rural areas. 
We thus limit our analysis to the fi ve major metropolitan areas of South Africa.
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Besides the 15 house price series (fi ve metropolitan areas for each of the three middle-segment 
houses), the dataset contains 267 quarterly series of South Africa, ranging from real, nominal, and 
fi nancial sectors; intangible variables, such as confi dence indices and survey variables, and addition-
ally to national variables; we also use a set of global variables such as commodity industrial inputs 
price index and crude oil prices. The data comprise series of major trading partners such as Germany, 
the UK and the USA. All series are seasonally adjusted. The more powerful Dickey–Fuller general-
ized least squares (DF-GLS) test of Elliott et al. (1996) is used to assess the degree of integration 
of all series. All non-stationary series are made stationary through differencing. The Schwarz infor-
mation criterion is used to select the appropriate lag length so that no serial correction is left in 
the stochastic error term. Where there were doubts about the presence of unit root, the KPSS test 
(Kwiatowski et al., 1992), with the null hypothesis of stationarity, was applied. All series are stan-
dardized to have a mean of zero and a constant variance. The in-sample period contains data from 
1980:1 to 2000:4, while the out-of-sample set is 2001:1 to 2006:4.

There are various statistical approaches in determining the number of factors in the DFM. The 
Bai and Ng (2002) approach suggests fi ve static factors in our dataset, while the Bai and Ng (2007) 
approach suggests two dynamic factors. The approach of Forni et al. (2000) also suggests two 
dynamic factors, with the fi rst two dynamic principal components explaining approximately 99% of 
the variation.

EVALUATION OF FORECAST ACCURACY

To evaluate the accuracy of forecasts generated by the DFM, we compare its performance with the 
alternative models using the same statistic, namely the RMSE. Given that there are seven alternative 
models, we use a parsimonious approach while reporting the results in Tables I–III.1 We compare 
each of the one- to four-quarters-ahead forecasts generated by the DFM with those from a specifi c-
type of VAR model that performs the best, in terms of average RMSEs2 for one- to four-quarters-
ahead forecasts, within the category of VAR models for a specifi c region, under a particular category 
of housing, over the out-of-sample horizon of 2001:1 to 2006:4.3 Note the values for these hyper-
parameters are based on the ranges suggested by LeSage (1999). The main observations can be 
summarized as follows:

• Large middle-segment houses. From Table I we observe that for the category of large middle-
segment houses the DFM, barring the cases of third- and fourth-quarter-ahead forecasts for Port 
Elizabeth, and fi rst-, third- and fourth-quarter-ahead forecasts for Cape Town, outperforms the 
best-performing model within the VAR category. Amongst the alternative VARs, the SBVAR 
model based on the FOSC prior is the standout performer for all the metropolitan areas, except 

1 In Tables I–III, the metropolitan areas have been abbreviated to ECAP, JOBU, KWAZ, PRET, and WCAP for Eastern 
Cape (Port Elizabeth), Johannesburg, KwaZulu Natal (Durban Unicity), Pretoria, and Western Cape (Cape Town), 
respectively.
2 The decision to use average RMSEs for choosing the best-performing VAR model within this category is standard practice. 
For two recent examples, refer to Liu et al. (2009a,b). However, all the other forecasting results for the alternative types of 
VAR models will be made available upon request.
3 Note that for the SBVAR model based on the RWA prior that did best amongst other SBVAR models consistently for all 
house sizes and majority of the metropolitan areas had the following values of the hyperparameters: σc = 0.3, η = 8, and 
ρ = 1 (refer to the Appendix for further details).
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Table I. RMSEs for large middle-segment houses (2001:1 to 2006:4)

Region Model Quarters ahead

1 2 3 4

ECAP DFM 5.1070 
(−3.4843***)

5.2891 
(−2.8597***)

5.4843 
(1.4047)

5.7861 
(1.4125)

SBVAR1 11.9550 9.1444 4.1622 4.3177

JOBU DFM 2.0938 
(−1.9688**)

2.8122 
(−4.1425***)

2.7223 
(−3.3087***)

2.5270 
(−3.7419***)

SBVAR1 4.1098 9.4896 7.0795 7.3525

KWAZ DFM 4.8798 
(−3.0842***)

5.3617 
(−2.8666***)

5.2879 
(−1.0528)

5.0944 
(−3.4439***)

BVAR1 10.2062 8.4188 5.3277 9.9729

PRET DFM 2.3077 
(−1.9613**)

3.4558 
(−2.6433***)

2.4556 
(−3.1497***)

2.5799 
(−4.2843***)

SBVAR1 4.9353 7.0118 6.4439 13.3315

WCAP DFM 2.3846 
(1.2997)

2.3843 
(−1.1664)

2.8635 
(1.3863)

2.9397 
(1.6584*)

SBVAR1 2.0253 2.5750 2.4713 1.2203

Note: DFM, dynamic factor model; BVAR1, BVAR model based on the standard Minnesota prior with w = 0.1, d = 1.0; 
SBVAR1, spatial BVAR based on the fi rst-order spatial contiguity (FOSC) prior. Numbers in parentheses represent 
the Diebold and Mariano (1995) tests statistic, with asterisks indicating signifi cance at ***1%, **5% and *10% levels, 
respectively.

Table II. RMSEs for medium middle-segment houses (2001:1 to 2006:4)

Region Model Quarters ahead

1 2 3 4

ECAP DFM 3.3023 
(−2.6537***)

4.0077 
(−3.2237***)

3.5462 
(−1.9832**)

3.5971 
(−4.7779***)

BVAR1 7.7311 10.0543 5.1025 13.4312

JOBU DFM 2.3033 
(−4.7008***)

2.4067 
(−1.7855*)

2.4604 
(−2.0133**)

2.4403 
(−4.2055***)

BVAR3 10.0155 3.9097 7.3349 9.1191

KWAZ DFM 3.3450 
(1.0634)

4.1419 
(−1.8226*)

4.0736 
(−3.9921***)

4.0927 
(−3.2368***)

SBVAR1 3.1487 6.2767 8.9245 8.0334

PRET DFM 1.6371 
(−1.6876*)

1.7522 
(−1.9747**)

1.7688 
(−1.9513**)

1.7456 
(−1.6536*)

BVAR2 3.6546 4.4684 4.4186 3.3969

WCAP DFM 2.0675 
(2.4400**)

2.1097 
(2.4469**)

2.2301 
(1.9381**)

2.3201 
(2.4345**)

BVAR1 0.4921 0.3304 0.9992 0.6025

Note: See note to Table I. In addition, BVAR2 and BVAR3 are the BVAR models based on the standard Minnesota prior 
with w = 0.2, d = 1.0 and w = 0.3, d = 0.5, respectively.
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for Durban Unicity under the KwaZulu Natal metropolitan area, which in turn is forecast with the 
lowest errors by the BVAR model with w = 0.1, d = 1.0.

• Medium middle-segment houses. From Table II we learn that the DFM outperforms the best-
performing model within the VAR category in four of the fi ve metropolitan areas, with the excep-
tion of the fi rst-quarter-ahead forecast for the Durban Unicity and all of the one- to 
four-quarters-ahead forecasts for Cape Town, for which the BVAR model with w = 0.1, d = 1.0 
does the best. Unlike the case of large middle-segment housing, there does not exist a unique 
overwhelmingly favorite VAR model across all of the fi ve metropolitan areas. The BVAR model 
with w = 0.1, d = 1.0 performed the best for the Eastern and Western Capes, while the BVARs 
with w = 0.2, d = 1.0 and w = 0.3, d = 0.5 stood out for Johannesburg and Pretoria, respectively. 
The SBVAR model based on the FOSC prior was the best-performing model for Durban Unicity.

• Small middle-segment houses. From Table III we observe that, as with the large and medium 
middle-segment housing, the DFM in general stands out as the best-suited model for forecasting 
house price infl ation in all fi ve metropolitan areas for all of the one- to four-quarters-ahead fore-
casts. The minor exceptions are the third-quarter-ahead forecast for Pretoria and the second- and 
third-quarter-ahead forecasts for Cape Town. Amongst the VARs, the SBVAR model based on 
the FOSC prior produces the lowest RMSEs for four of the fi ve metropolitan areas, with the excep-
tion of KwaZulu Natal metropolitan area, for which the BVAR model with w = 0.3, d = 0.5 
outperforms the other VAR models. Thus, as with the large middle-segment housing, the SBVAR 
model based on the FOSC prior is the overwhelming favorite within the category of VAR models.

Gupta and Das (2008) observed that the spatial models tended to outperform the other models for 
large middle-segment houses, while the unrestricted VAR and the BVAR models produced lower 
average out-of-sample forecast errors for middle and small middle-segment houses, respectively. In 

Table III. RMSEs for small middle-segment houses (2001:1 to 2006:4)

Region Model Quarters ahead

1 2 3 4

ECAP DFM 4.7737 
(−2.6052***)

5.1827 
(−3.2060***)

4.8109 
(−4.6989***)

4.7781 
(−3.9490***)

SBVAR1 9.5527 15.3944 19.7870 13.2875

JOBU DFM 2.8092 
(−1.9640**)

2.7369 
(−2.7922***)

3.2401 
(−2.3022**)

3.6976 
(−3.1810***)

SBVAR1 4.5326 7.3926 6.1887 12.9415

KWAZ DFM 4.1300 
(−1.7266*)

4.8269 
(−3.5030***)

4.3750 
(−1.6997*)

4.4162 
(−3.0940***)

BVAR1 5.9458 13.0952 5.4940 9.8042

PRET DFM 2.4921 
(−1.9651**)

2.9355 
(−2.1687**)

2.6855 
(1.6355)

2.5327 
(−2.0016**)

SBVAR1 4.3445 4.7499 1.7359 4.7650

WCAP DFM 2.2799 
(−1.6604*)

2.5541 
(1.6566*)

2.7095 
(1.2202)

2.6751 
(−1.1130)

SBVAR1 3.5421 1.7169 2.0921 2.9398

Note: See note to Table 1.
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our case though, in general, and especially for the large and small middle-segment houses, the 
SBVAR model based on the FOSC stands out once we take the DFM out of consideration.

When we take into account the cross-model tests of forecast accuracy proposed by Diebold and 
Mariano (1995), in the majority of cases where the DFM outperforms a specifi c type of the VAR 
model the statistics are signifi cant at least at the 10% level. The exceptions are the third- and second-
quarter-ahead forecasts for Pretoria and Western Cape, respectively, under the large middle-segment 
housing, and the fourth-quarter-ahead forecast for Cape Town for the small middle-segment houses. 
At the same time, in most cases where the alternative model tends to outperform the DFM, the 
Diebold–Mariano (1995)4 test statistics are insignifi cant.

CONCLUSIONS

This paper analyzes whether the wealth of information contained in the DFM framework can be 
useful in forecasting regional house price infl ation. As a case study illustration we use the DFM to 
predict house price infl ation in fi ve metropolitan areas of South Africa, namely Cape Town, Durban, 
Johannesburg, Port Elizabeth and Pretoria, using quarterly data over the period 1980:1 to 2006:4. 
The in-sample period contains data from 1980:1 to 2000:4, and the out-of-sample forecasts are based 
on one- to four-quarter-ahead forecasts over a 24-quarter forecasting horizon covering 2001:1 to 
2006:4. The forecast performance of DFM is evaluated in terms of the RMSEs by comparing it with 
SBVAR models, based on the FOSC and the RWA priors, besides non-spatial models like the VAR 
and BVAR models with the Minnesota prior, estimated merely based on house price infl ation of the 
fi ve above-mentioned metropolitan areas of South Africa. Our results thus indicate that a data-rich 
DFM, in general, is best suited in forecasting regional house price infl ation when compared to the 
alternative VARs.

APPENDIX: FOSC- AND RWA-BASED MINNESOTA PRIORS

FOSC prior
Given equation (5) in the text, i.e., S i j m w g m F i j i

j

1 , , ,( ) = × ( ) × ( )[ ] σ
σ
ˆ

ˆ
, and referring to the 

provincial map of South Africa given in Figure 1, the design of the F matrix based on the FOSC 
prior, discussed in the main text, given the alphabetical ordering5 of the fi ve metropolitan areas as 
the Eastern Cape Metropolitan area (Port Elizabeth/Uitenhage), Greater Johannesburg, the KwaZulu 
Natal Metropolitan area (Durban Unicity), Pretoria and the Western Cape Metropolitan area (Cape 
Town), can be formalized as in equation (A1). Note that each element of F represents the relation-
ship between the respective pair of location, with 1.0 representing pairs that are neighbors, while 

4 If {et
DFM}T

t=1 denotes the forecast errors from the DFM model and {et
ALT}T

t=1 denotes the forecast errors 

from the alternative model, the Diebold and Mariano (1995) test statistic is then defi ned as: s
l

= 1

σ
, where l is the sample 

mean of the ‘loss differentials’, {lt}T
t=1, using lt = (et

DFM)2 − (et
ALT)2 for all t = 1, 2, 3, . . . , T, and σl is the standard error of l. 

The s statistic is asymptotically distributed as a standard normal random variable and can be estimated under the null 
hypothesis of equal forecast accuracy, i.e., l = 0. Therefore, a negative value of s would suggest that the DFM model out-
performs the alternative model in terms of out-of-sample forecasting.
5 It must, however, be pointed out that alternative ordering of the fi ve metropolitan areas do not affect our fi nal results in 
any way.
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0.1 represents non-neighbors. To illustrate the design of the F matrix, let us, for example, consider 
the fi rst row of the matrix that corresponds to Port Elizabeth/Uitenhage in the Eastern Cape province. 
Eastern Cape has the provinces of KwaZulu Natal and Western Cape as immediate neighbors; hence 
the metropolitan areas of Durban Unicity and Cape Town that fall under these two provinces, respec-
tively, have been treated as neighbors of Port Elizabeth/Uitenhage. Thus, speaking formally in terms 
of the entries in the different columns of the fi rst row of the F matrix, we have a value of 1.0 on the 
third and fi fth off-diagonal elements, besides the diagonal, since these two entries correspond to 
Durban Unicity and Cape Town, respectively. Since Johannesburg and Pretoria belong to the 
Gauteng province, which is not an immediate neighbor of the Eastern Cape province, the second 
and fourth columns of the fi rst row of the F matrix have a value of 0.1. We follow a similar reason-
ing for the remaining entries of the F matrix, realizing that the immediate neighbor of Johannesburg 
is Pretoria and vice versa, while Port Elizabeth/Uitenhage is the only metropolitan area next to 
Durban Unicity and Cape Town. Mathematically, we have

 F =

1 0 0 1 1 0 0 1 1 0

0 1 1 0 0 1 1 0 0 1

1 0 0 1 1 0 0 1 0 1

0 1 1 0 0 1 1

. . . . .

. . . . .

. . . . .

. . . .00 0 1

1 0 0 1 0 1 0 1 1 0

.

. . . . .

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

 (A1)

Figure 1. Provincial Map of South Africa. Source: CSIR, Pretoria, South Africa
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RWA prior
To distinguish the F matrix under the RWA prior, discussed in the main text, from that in equation 
(A1), we denote it as F1 as follows:

 F1

1 0 0 1 0 0 1 0

0 1 0 0 1 0 0

1 0 0 1 0 0 0

0 1 0 0 1 0 0

1 0 0 0 0 1 0

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

. . .

. .

. .

. .

. .

⎤⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

 (A2)

The weight matrix given above is then standardized so that the rows sum to unity. Formally, we can 
write the standardized F1 matrix, C, as follows:

 C =

0 33 0 0 33 0 0 33

0 0 50 0 0 50 0

0 50 0 0 50 0 0

0 0 50 0 0 50 0

0 50 0 0 0 0

. . .

. .

. .

. .

. .550

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

 (A3)

Formally:

 y C y uit i ij jt
j

n

it= + +−
=

∑δ 1
1

 (A4)

On expanding equation (A4), we observe that multiplying yjt−1 containing the house price growth 
rates of fi ve metropolitan areas at t − 1 by the matrix C would produce a set of explanatory variables 
for each equation of the VAR equal to the mean of observations from the important variables 
(neighboring house prices) in each equation i at t − 1. In other words, after normalization of the 
rows, one needs to calculate the neighborhood weighted average of the variable yt from previous 
periods. This also suggests that the prior mean for the coeffi cients on the fi rst own-lag of the impor-
tant variables is equal to 1/ci, with ci being the number of important variables in a specifi c equation 
i of the VAR model. However, as in the Minnesota prior, the RWA prior uses a prior mean of zero 
for the coeffi cients on all lags, except for the fi rst own lags, and δ is estimated based on a diffuse 
prior.

Note that the RWA approach of specifying prior means requires the variables to be scaled to have 
similar magnitudes, as it does not make much intuitive sense to suggest that the value of a variable 
at t is equal to the average of values from the important variables at t − 1. This transformation is 
not much of an issue as the data on the variables, in our case the house price infl ation, can always 
be expressed as percentage change, or annualized growth rates, thus meeting the similar-magnitude 
requirements of the RWA prior.

As proposed by LeSage and Krivelyova (1999), a fl exible form of the RWA prior standard devia-
tions, S2(i,j,m), for a variable j in equation i at lag length m, is as follows:
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 (A5)

where 0 < σc < 1; η > 1 and 0 < ρ ≤ 1. For the variables j = 1, . . . , n in equation i, those variables 
that are important in explaining the movements in variable i ( j ∈ C), the prior mean for the lag length 
of 1 is set to the average of the number of important variables in equation i, and to zero for the 
unimportant variables ( j ∉ C). With 0 < σc < 1, the prior standard deviation for the fi rst own-lag 
imposes a tight prior mean to refl ect averaging over important variables. For important variables at 
lags greater than one, the variance decreases as m increases, but the restriction of η > 1 allows for 
the zero prior means on the coeffi cients of these variables to be imposed loosely. Finally, we use 
ρσc/m for lags on unimportant variables, which has prior means of zero, to indicate that the variance 
decreases as m increases. In addition, with 0 < ρ ≤ 1, we impose the zero means on the unimportant 
variables with more certainty.
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