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SUMMARY

Several new planar four node piezoelectric elements with drilling degrees of freedom are presented.
We begin by deriving two families of variational formulations accounting for piezoelectricity and
in-plane rotations. The first family retains the skew-symmetric part of the stress tensor, while in the
second, the skew part of stress is eliminated from the functional. The finite elements derived from
two of the variational formulations derived in this paper are investigated. The first element is based
on an ‘irreducible’ form, while the other is based on a fully mixed functional, with both stress and
electric flux density assumed. Our new elements are shown to be accurate and robust in comparison
with a number of existing elements, for several benchmark test problems. Copyright � 2005 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

In recent years, the use of smart materials has become widespread and almost commonplace.
The technology employed in piezoelectric applications in particular, has reached a mature level,
and piezoelectric materials are frequently used in engineering applications.

Piezoelectric materials transfer electric energy to mechanical energy and vice versa, and
can therefore be used as either actuators or sensors, or both. Applications include ultrasonic
transducers for sonar and medical purposes, compact piezoelectric motors, structural monitoring
and/or active damping elements, and even ignition systems.
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Analytical closed-form solutions to problems involving piezoelectric materials are often dif-
ficult to compute, unless geometries and boundary conditions are relatively simple, see for
example References [1, 2]. A general numerical method for the solution of piezoelectric prob-
lems is therefore essential. Analytical solutions are, however, very useful as benchmark prob-
lems.

The finite element method has become a standard modelling utility for various physical
processes, including piezoelectricity. Development of piezoelectric finite elements has progressed
significantly since the early paper of Allik and Hughes [3]. In fact, Benjeddou [4] presented a
survey article in which over 100 recent papers from the open literature are reviewed, indicating
the research interest in the field.

The original implementation of Allik and Hughes, and many of the finite elements since, (see
Benjeddou for examples), have been based on formulations interpolating for only kinematic-
like variables, i.e. displacement and electric potential. These elements are often stiff, inaccurate
and sensitive to mesh distortion. To alleviate these problems, mixed and hybrid variational
formulations have been developed (see for example Reference [5]), with original contributions
in variational formulations for piezoelectric media credited to EerNisse and Holland [6, 7].
Various hybrid and mixed finite elements have since been developed, with notable contributions
by Cannarozzi and Ubertini [8] and Sze and co-workers [9–13].

Independent of the development of piezoelectric finite elements, many advances have been
made in the development of elastic finite elements. One of the significant contributions has
been the addition of in-plane rotations, or drilling degrees of freedom (dof’s). Drilling dof’s
are particularly important in shell elements, since the result is a shell element with six dof’s
per node, which allows for the modelling of beam-slab connections and folded plates.

After several attempts to develop membrane elements with drilling dof’s failed, Allman
[14] and Bergan and Felippa [15] achieved a previously unattained level of success. Instead
of the cubic functions previously used, they employed a quadratic displacement function for
the normal component of displacement. Since then, many papers on the subject have ap-
peared, notably those by Jetteur, Jaamei and Frey [16–19] and by Taylor and Simo et al.
[20–22]. However, these elements all suffer from the serious drawback that they are rank
deficient.

These issues were addressed by Hughes and Brezzi [23], who presented a rigorous mathe-
matical framework in which to formulate elements with independent rotational interpolations.
They argue that, utilizing the formulation of Reissner [24], formulations employing ‘convenient’
displacement, rotation and stress interpolations are doomed to failure. Instead, they propose a
modified variational principle, with improved stability properties in the discrete form.

Finite element implementations employing the formulation of Hughes and Brezzi were finally
presented by Hughes et al. [25] and Ibrahimbegovic et al. [26, 27]. Since then, the development
of membrane finite elements with drilling dof’s has been significant. Sze and co-workers [28, 29]
developed elements with in-plane rotations and assumed stress fields. Groenwold and Stander
[30, 31] applied the five-point quadrature presented by Dovey [32] to drilling degree of freedom
(dof) membranes, which improved the element behaviour through the introduction of a ‘soft’
higher order deformation mode. Later Geyer and Groenwold [33] also developed assumed stress
finite elements with drilling dof’s.

The aim of this paper is to combine the theory, developed for elastic elements with drilling
dof’s, with some recent advances in piezoelectric finite element technology. The result is two
new families of accurate, piezoelectric finite elements with drilling dof’s.
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We endeavour to, not only improve on element accuracy, but importantly, improve on the
modelling capabilities of existing piezoelectric finite elements. In fact, the piezoelectric elements
developed herein are currently being used in a topology optimization environment, together with
elastic elements possessing drilling dof’s [34]. Their accuracy can also be exploited in fracture
analyses. Aside from the improved accuracy, these elements can be employed to calculate
through-thickness phenomena in thick piezoelectric shells. The variational formulations can
also be used to generate three-dimensional solid elements with drilling dof’s. These solid
elements would possess three displacement, three rotational and one potential dof per node.

Our paper is set out as follows. In Section 2, the equations governing the linear electroelastic
problem are presented. Section 3 introduces a number of variational formulations accounting
for piezoelectricity and in-plane rotations. In Section 4 the interpolations used in the finite
element implementations are given. Section 5 details the finite element implementation of our
variational formulations. Section 6 contains the results of a numerical evaluation of our new
elements. Finally, in Section 7 some closing remarks are communicated.

2. GOVERNING EQUATIONS

In this section, the equations governing the linear electroelastic problem are presented in strong
form. Let �̄ be a closed and bounded domain occupied by a body in three-dimensional space.
The interior part of �̄ is denoted by � and its boundary by ��, � ∪ �� = �̄. The measure
of � is V and the measure of �� is S. V is the vector space associated with the Euclidean
point space and L the space of all linear applications of V into V, which possesses inner
product A · B = tr(AtB), A, B ∈L and At the transpose of A (see Reference [35]). Reference
will also be made to subsets of L, namely S and W which contain, respectively symmetric
and skew-symmetric tensors in L.

The boundary ��, is split into four parts, ��u, ��t , ��� and ��d such that ��u∪��t = ���∪
��d = �� and ��u ∩ ��t = ��� ∩ ��d = ∅. On ��u displacements ū are prescribed, while on
��t the traction t̄ is prescribed. Similarly, on ��� the prescribed potentials are �̄ and on ��d

the density of the electric charge d̄ is prescribed.
The Euclidean decomposition of second-rank tensors is frequently employed, e.g.

T = symm T + skew T (1)

where

symm T = 1
2 (T + Tt) (2)

skew T = 1
2 (T − Tt) (3)

The linear electroelastic problem is governed by the following conditions at all points x ∈ �̄.

2.1. Constitutive equations

There exist four equivalent versions of the electroelastic constitutive equations, depending on the
choice of independent variables (see for example Reference [36]). The constitutive equations,
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in terms of strain and electric field are:

T = cES − etE

D = eS + �SE
(4)

where T and S are the stress and strain tensors, D is the electric flux density, also referred
to as electric displacement (see for example Reference [10]), and E denotes the electric field.
Furthermore, cE is a fourth-order tensor of elastic stiffness, measured at constant electric field
as indicated by the subscript ‘E’. �S is the second-order permittivity tensor at constant strain,
and e is a third-order electroelastic, or piezoelectric, coupling tensor. Both cE and �S are
symmetric and positive definite. As described by Cannarozzi and Ubertini [8], e is such that
the product eta is a second-order symmetric tensor for each vector a, with et defined as
A · eta = eA · a, and A a symmetric second-order tensor. Incidentally, the constitutive relations
in terms of strain and electric field were used in the original finite element implementations
[3].

Since the derivation of the other forms of the constitutive equations, through Legendre
transformation, are well known (see for example References [8, 36]) they will simply be stated
here without further elaboration.

In terms of strain S and electric flux density D, the relations are

T = cDS − htD

E = −hS + �SD
(5)

and the constitutive terms are computed as

cD = cE + et�−1
S e, h = �−1

S e, �S = �−1
S (6)

Rewriting in terms of stress T and electric field E, we get

S = sET + dtE

D = dT + �T E
(7)

with

sE = c−1
E , d = ec−1

E , �T = �S + ec−1
E et (8)

Finally, with stress T and electric flux density D selected as independent variables, we have

S = sDT + gtD

E = −gT + �T D
(9)

with

sD = (cE + et�−1
S e)−1, g = �−1

S esD, �T = �−1
S − �−1

S esDet�−1
S (10)

The tensors cD , sE , sD , �S , �T and �T are all symmetric and positive definite, and h, d and
g are third-order tensors with the same properties as e. In the presentation of the constitutive
equations we have used a condensed notation, assuming symmetric stress and strain tensors for
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the sake of clarity. That is to say, in (4), (5), (7) and (9), T ≡ symm T and S ≡ symm S. This
is of importance, since the stress tensor in the formulations to follow are not a priori assumed
to be symmetric.

2.2. Compatibility conditions

The strain–displacement and electric field–potential relationships, together with the displacement
and electric potential boundary conditions are, respectively

S = symm ∇u in � (11)

E = −∇� in � (12)

u = ū on ��u (13)

� = �̄ on ��� (14)

where u is the displacement vector field, and � represents the scalar electric potential field.

2.3. Equilibrium conditions

The static force equilibrium equations and Gauss’s Law in differential form, together with the
boundary conditions, are given by

div T + f = 0 in � (15)

div D − q = 0 in � (16)

symm Tn = t̄ on ��t (17)

D · n = −d̄ on ��d (18)

where f is a distributed body force, q is a distributed electric charge in �, and n is the unit
outward normal vector on ��. Usually q is taken as zero [5], but for completeness it will be
included in the presentation to follow.

2.4. Stress symmetry condition and definition of infinitesimal rotation

In the current formulation, the stress tensor T is not a priori assumed to be symmetric, and
in-plane rotations are included. The following two additional conditions need to be satisfied:

skew T = 0 in � (19)

� = skew ∇u in � (20)

where (19) represents the symmetry condition for stress and (20) is the definition of infinitesimal
rotations in terms of displacement gradient.
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3. VARIATIONAL FORMULATION

Hughes and Brezzi [23] presented a general framework to construct variational formulations
for problems which include rotational freedom. The most general type is their Hu-Washizu-
like variational formulation accounting for rotations and non-symmetric stress tensors. We now
generalize the variational framework of Hughes and Brezzi to account for the piezoelectric
effect.

In the functionals to follow, unless otherwise stated, u, �, E and D are the displacement,
electric potential, electric field and electric flux density fields, respectively. The non-symmetric
stress tensor is denoted T ∈L. The skew-symmetric infinitesimal spin or rotation tensor is
� ∈W, and S ∈ S is the symmetric strain tensor. Where applicable, they are sufficiently regular
and square integrable functions of x.

3.1. Hu-Washizu-like variational formulations

We propose a Hu-Washizu-like variational formulation. We also show how this leads to a
Hellinger-Reissner-like functional, as well as functionals in an irreducible form. We do not aim
to present a rigorous mathematical study of the presented formulations. Rather, in the second
part of this paper, a numerical study of the discrete finite element implementation is presented.

Two formulation families are proposed. The first, designated here as M-Type, retains the
skew-symmetric part of the stress tensor. Since part of the stress tensor is always retained,
even in its simplest or irreducible form, M-Type functionals will result in a mixed formulation.
In the second family, denoted K-Type, the skew-symmetric part of stress is eliminated. The
result is an irreducible form which requires only kinematic-like interpolations, i.e. displacement
and potential.

3.1.1. M-Type formulation based on functional �H
M. We propose the Hu-Washizu-like functional

�H
M(u, �, T, S, �, D, E)

= 1

2

∫
�

cES · S dV −
∫

�
eS · E dV − 1

2

∫
�

�SE · E dV

+
∫

�
(symm ∇u − S) · symm T dV +

∫
�
(skew ∇u − �) · skew T dV

+
∫

�
(∇� + E) · D dV − 1

2
�−1

∫
�

|skew T|2 dV −
∫

�
f · u dV +

∫
�

q� dV

−
∫

��t

t̄ · u dS +
∫

��d

d̄� dS −
∫

��u

(u − ū) · (Tn) dS −
∫

���

(� − �̄)(D · n) dS (21)

where the subscript ‘M’ emphasizes that the functional is of M-Type and the superscript ‘H’
that it is a Hu-Washizu-like functional. The term 1

2 �−1
∫
� |skew T|2 dV was shown to preserve

the ellipticity of the discrete problem in linear elastostatics [23]. Recalling the Gauss–Green
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identities, given by ∫
�

u · div T dV = −
∫

�
T · ∇u dV +

∫
��

u · Tn dS (22)

∫
�

� div D dV = −
∫

�
D · ∇� dV +

∫
��

�D · n dS (23)

and employing the condition of stationarity gives rise to the following variational equation:

0 = ��H
M =

∫
�
(cES − etE − symm T) · �S dV −

∫
�
(eS + �SE − D) · �E dV

+
∫

�
(symm ∇u − S) · symm �T dV +

∫
�
(skew ∇u − � − �−1skew T) · skew �T dV

−
∫

�
skew T · �� dV +

∫
�
(∇� + E) · �D dV −

∫
�
(divT + f) · �u dV

−
∫

�
(divD − q)�� dV +

∫
��t

(Tn − t̄) · �u dS +
∫

��d

(D · n + d̄)�� dS

−
∫

��u

(u − ū) · (�Tn) dS −
∫

���

(� − �̄)(�D · n) dS (24)

All of the necessary Euler–Lagrange equations appear in (24). The variation �� enforces
skew T = 0 in �, while skew �T enforces compatibility between rotations and the skew part of
the displacement gradient.

3.1.2. K-Type formulation based on functional �H
K. The skew-symmetric part of the stress tensor

can be eliminated using the Euler–Lagrange equation �−1skew T = skew ∇u −� which appears
in (24) as demonstrated by Hughes and Brezzi [23], to obtain the K-Type Hu-Washizu-like
functional:

�H
K(u, �, T, S, �, D, E) = 1

2

∫
�

cES · S dV −
∫

�
eS · E dV

−1

2

∫
�

�SE · E dV +
∫

�
(symm ∇u − S) · symm T dV

+
∫

�
(∇� + E) · D dV + 1

2
�
∫

�
|skew ∇u − �|2 dV

−
∫

�
f · u dV −

∫
�

q� dV −
∫

��t

t̄ · u dS +
∫

��d

d̄� dS

−
∫

��u

(u − ū) · (Tn) dS −
∫

���

(� − �̄)(D · n) dS (25)
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Taking the first variation, applying the Gauss–Green identities and recognizing �(skew ∇u −�)

as being skew T, we get

��H
K = 0 =

∫
�
(cES − etE − symm T) · �S dV −

∫
�
(eS + �SE − D) · �E dV

+
∫

�
(symm ∇u − S) · symm �T dV −

∫
�
(�(skew ∇u − �)) · �� dV

+
∫

�
(∇� + E) · �D dV −

∫
�
(divT + f) · �u dV −

∫
�
(divD − q)�� dV

+
∫

��t

(Tn − t̄) · �u dS +
∫

��d

(D · n + d̄)�� dS

−
∫

��u

(u − ū) · (�Tn) dS −
∫

���

(� − �̄)(�D · n) dS (26)

which again contains all the necessary Euler equations. Here, the variation �� simultaneously
enforces skew T = 0 in � and compatibility between rotations and the skew part of displacement
gradient.

3.2. Irreducible formulations

In order to simplify the formulation for finite element implementation, the irreducible form of
�H

M is now derived.

3.2.1. M-Type formulation based on functional �M. The mechanical and electrical compatibil-
ities (11) and (12), respectively, are enforced a priori. Therefore, S = symm ∇u, and E = −∇�
are substituted into (21). The functional which results is

�M(u, �, skew T, �) = 1

2

∫
�

cEsymm ∇u · symm ∇u dV +
∫

�
esymm ∇u · ∇� dV

−1

2

∫
�

�S∇� · ∇� dV +
∫

�
(skew ∇u − �) · skew T dV

−1

2
�−1

∫
�

|skew T|2 dV −
∫

�
f · u dV +

∫
�

q� dV

−
∫

��t

t̄ · u dS +
∫

��d

d̄� dS (27)

where both u and � are admissible, and therefore satisfy the essential boundary conditions.
After some algebra, the first variation of �M reduces to

��M = 0 =
∫

�
(skew ∇u − � − �−1skew T) · skew �T dV −

∫
�

skew T · �� dV
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−
∫

�
(div T + f) · �u dV −

∫
�
(div D − q)�� dV +

∫
��t

(Tn − t̄) · �u dS

+
∫

��d

(D · n + d̄)�� dS (28)

which again contains all the necessary Euler–Lagrange equations.

3.3. Fully mixed Hellinger-Reissner-like formulations

Strain S and electric field E can be eliminated from the Hu-Washizu-like functionals by
substituting the constitutive relations in (9) into functionals �H

M and �H
K, resulting in fully

mixed Hellinger-Reissner-like functionals.

3.3.1. M-Type formulation based on functional �T D
M . We substitute the constitutive relations

in terms of stress T and electric flux density D into �H
M, and introduce the functional �T D

M .
The superscripts ‘T ’ and ‘D’ represent the additional independent variables (supplemental to
the kinematic variables):

�T D
M (u, �, T, �, D) = −1

2

∫
�

sDsymm T · symm T dV −
∫

�
g symm T · D dV

+1

2

∫
�

�T D · D dV +
∫

�
symm ∇u · symm T dV +

∫
�

∇� · D dV

+
∫

�
(skew ∇u − �) · skew T dV − 1

2
�−1

∫
�

|skew T|2 dV −
∫

�
f · u dV

+
∫

�
q� dV −

∫
��t

t̄ · u dS +
∫

��d

d̄� dS −
∫

��u

(u − ū) · (Tn) dS

−
∫

���

(� − �̄)(D · n) dS (29)

After applying the Gauss–Green identities, the result of the first variation is

��T D
M = 0 = −

∫
�
(sDsymm T + gtD − symm ∇u) · symm �T dV

+
∫

�
(skew ∇u − � − �−1skew T) · skew �T dV

+
∫

�
(−g symm T + �T D + ∇�) · �D dV −

∫
�

skew T · �� dV
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−
∫

�
(divT + f) · �u dV −

∫
�
(divD − q)�� dV +

∫
��t

(Tn − t̄) · �u dS

+
∫

��d

(D · n + d̄)�� dS −
∫

��u

(u − ū) · (�Tn) dS −
∫

���

(� − �̄)(�D · n) dS (30)

where the Euler equation sDsymm T+gtD = symm ∇u weakly enforces the relationship between
strain derived from compatibility conditions (11), and strain based on stress and electric flux
density from constitutive equations (9). Similarly, −g symm T + �T D = −∇� enforces weakly
the relationship between compatibility (12) and constitutive equations (9) for electric field.

3.4. Degenerate Hellinger-Reissner-like formulations

It is also possible to derive functionals with only stress T or electric flux density D assumed,
additionally to u and �, using the remaining forms of the constitutive equations. Since only
stress or electric flux density is assumed, we will refer to these functionals as degenerate.

For example, if S = symm ∇u and the second equation in (5) are substituted into �H
M, we

get a functional with electric flux density D assumed, i.e.

�D
M(u, �, skew T, �, D) = 1

2

∫
�

cDsymm ∇u · symm ∇u dV −
∫

�
hsymm ∇u · D dV

+1

2

∫
�

�SD · D dV +
∫

�
(skew ∇u − �) · skew T dV +

∫
�

∇� · D dV

−1

2
�−1

∫
�

|skew T|2 dV −
∫

�
f · u dV +

∫
�

q� dV −
∫

��t

t̄ · u dS

+
∫

��d

d̄� dS −
∫

���

(� − �̄)(D · n) dS (31)

where u is admissible.
If on the other hand, we substitute E = −∇� and the first equation of (7) into �H

M, a
functional with symm T assumed is achieved, i.e.

�T
M(u, �, T, �) = −1

2

∫
�

sE symm T · symm T dV +
∫

�
d symm T · ∇� dV

−1

2

∫
�

�T ∇� · ∇� dV +
∫

�
symm ∇u · symm T dV

+
∫

�
(skew ∇u − �) · skew T dV − 1

2
�−1

∫
�

|skew T|2 dV
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−
∫

�
f · u dV +

∫
�

q� dV −
∫

��t

t̄ · u dS

+
∫

��d

d̄� dS −
∫

��u

(u − ū) · (Tn) dS (32)

where � is admissible.
The K-Type counterparts of (27), (31) and (32) naturally also exist. They can be constructed

by eliminating the skew-symmetric part of the stress tensor similar to the construction of �H
K

from �H
M. For the sake of brevity, the variational formulations based on these functionals are

not presented in this paper. They are, however, available from the first author upon request [37].
There is, naturally an alternative formulation with the mechanical part based on the method of
incompatible modes [35, 38, 39], which falls outside the scope of the current study.

4. FINITE ELEMENT INTERPOLATIONS

In this section the interpolations, used in the finite element implementation, are briefly discussed.
The scalar potential and the independent rotation fields are interpolated as

�h = ∑
e

4∑
i=1

Ne
i (�, �)�i (33)

�h = ∑
e

4∑
i=1

Ne
i (�, �)�i (34)

respectively, with Ne
i the standard bilinear shape functions. The in-plane displacement approx-

imation is taken as an Allman-type interpolation field, after Ibrahimbegovic et al. [26]{
u1

u2

}
= uh = ∑

e

4∑
i=1

Ne
i (�, �)ui + ljk

8

∑
e

8∑
i=5

NSe
i (�, �)(�k − �j )njk (35)

with NSi the Serendipity shape functions. We do not include a hierarchical bubble shape
function. Furthermore, ljk and njk denote the length and the outward unit normal vector on
the element side associated with the corner nodes j and k (see Figure 1), i.e.

njk =
{

n1

n2

}
=

{
cos �jk

sin �jk

}
(36)

and

ljk = ((xk − xj )
2 + (yk − yj )

2)1/2 (37)

The indices in the above are explicitly given in Appendix A.1.
The skew-symmetric stress field is chosen constant over the element, i.e.

skew Th = ∑
e

T e
0 (38)
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Figure 1. A planar four-node piezoelectric element with drilling rotations.

Using matrix notation, symm ∇ue and skew ∇ue are, respectively, given by

symm ∇ue = Be
i ui + Ge

�i�i (39)

and

skew ∇ue = be
i ui + ge

i �i (40)

The operators arising from this interpolation are also summarized in Appendix A.1. The ‘mem-
brane locking correction’, due to Taylor [20] is used, i.e. element strains are modified to
become

symm ∇ũe = Be
i ui +

(
Ge

�i − 1

�e

∫
�e

Ge
�i dV

)
�i (41)

For interpolations of stress and electric flux density, the necessary (but not sufficient) con-
ditions for element stability are:

n�T � nu − mu (42)

n�D � n� − m� (43)

where n�T and n�D are the number of assumed stress and electric flux density modes, respec-
tively. Furthermore, nu and n� are the number of displacement and potential modes, respectively.
The number of rigid body displacement modes is mu, and m� represents the single (constant
potential) distribution resulting in zero field. The equality conditions in (42) and (43) represent
the optimal number of parameters in both cases.

For our planar elements with drilling dof’s, nu = 12, and n� = 4. The single potential dis-
tribution resulting in zero field means m� = 1, and usually membrane elements possess three
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rigid body modes (mu = 3). The optimal number of parameters required is therefore n�T = 9
for stress and n�D = 3 for flux density. One more than optimal, i.e. n�D = 4, parameters are
required for interpolation of the electric flux density in order to ensure the element is invariant
[10]. Stability is achieved if no spurious zero energy modes appear, viz. if rank sufficiency of
the mechanical stiffness and dielectric stiffness matrices is maintained [8].

Sze et al. [28, 29] presented a rank sufficient elastic element with drilling dof’s using only
eight interpolating stress modes, which appears to be one less than the optimal prescribed in
(42). However, n�T = 8 seems adequate, since mu in (42) is in fact equal to 4 and not 3. The
additional so-called 	1-mode (in which rotations at each node are equal) is intrinsic to the
reduced displacement interpolation. The strain corresponding to this state is zero.

Geyer and Groenwold [33] also presented a family of membrane elements with drilling dof’s,
some of which employ only eight stress modes for interpolation and retain stability. We will
test elements with both eight and nine stress interpolating modes.

The assumed electric flux density vector is interpolated using

Dh = ∑
e

[Ie
Dc Ae

DPe
Dh]

{
�e
Dc

�e
Dh

}
(44)

where Ie
Dc is a 2 × 2 identity matrix to account for the constant flux density case and �e

Dc are
the corresponding parameters. Ae

D is a transformation matrix [10, 13, 40], and Pe
Dh represents the

interpolation of the higher order part of charge density with �e
Dh the corresponding parameters.

Ae
D and Pe

Dh are given explicitly as

Ae
D =

[
a1 a3

b1 b3

]
(45)

where for each element, ai and bi are based on the nodal co-ordinates x and y and are given
by

⎡
⎢⎢⎣

a1 b1

a2 b2

a3 b3

⎤
⎥⎥⎦ = 1

4

⎡
⎢⎢⎣

−1 1 1 −1

1 −1 1 −1

−1 −1 1 1

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x1 y1

x2 y2

x3 y3

x4 y4

⎤
⎥⎥⎥⎥⎥⎦ (46)

The interpolation based on the local � − � co-ordinates is given by

Pe
Dh =

[
� 0

0 �

]
(47)

The interpolation for electric flux density Dh can therefore be given explicitly by

Dh = ∑
e

[
1 0 a1� a3�

0 1 b1� b3�

] {
�e
Dc

�e
Dh

}
(48)
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The assumed symmetric part of stress is similarly interpolated as

symm Th = ∑
e

[Ie
T c Ae

T Pe
T hn]

{
�e
T c

�e
T h

}
(49)

where Ie
T c is a 3 × 3 identity matrix accounting for a constant stress state, with corresponding

stress parameters �e
T c. Ae

T is a transformation matrix given by

Ae
T =

⎡
⎢⎢⎣

a2
1 a2

3 2a1a3

b2
1 b2

3 2b1b3

a1b1 a3b3 a1b3 + a3b1

⎤
⎥⎥⎦ (50)

There are many other constraint matrices, (see for example Reference [41]), which can be
used, but are not considered here for the sake of brevity. We implement two different higher
order stress interpolations. The first has eight (i.e. five non-constant) �T -parameters and the
other nine (six non-constant). The element with the eight �T -parameters has a higher order
interpolation matrix given by

Pe
T h5 =

⎡
⎢⎢⎣

� 0 −� 0 �2

0 � 0 −� −�2

0 0 � � 0

⎤
⎥⎥⎦ (51)

which is similar to the field used by Sze and Ghali [29]. The element containing 9 �T -para-
meters has a matrix given by

Pe
T h6 =

⎡
⎢⎢⎣

� 0 −� 0 �2 0

0 � 0 −� 0 �2

0 0 � � 0 0

⎤
⎥⎥⎦ (52)

Alternative interpolations are given by Geyer and Groenwold [33].

5. FINITE ELEMENT IMPLEMENTATION

For simplicity, in this section we will neglect the boundary terms, which may be included in
the usual manner. We also neglect the body charge q terms, as is usually done [5]. In what is to
follow, uh, symm Th, skew Th, �h, Dh represent the interpolations for displacement, symmetric
and skew-symmetric stress, electric potential and electric flux density, respectively. The fields
uh and �h satisfy the necessary boundary conditions, and �h denotes the interpolated rotation
field.

Due to space considerations, only two elements derived from the foregoing variational for-
mulations will be presented. The first is denoted P4dM and is derived from �M. The second
will be denoted P4dMnTD and is derived from �T D

M .
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5.1. P4dM element based on �M

The discrete form of the formulation based in �M can be written in matrix form as⎡
⎢⎢⎢⎣

Ke
uu Ke

u� he

[Ke
u�]t −Ke

�� 0

[he]t 0 −�−1�e

⎤
⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

a

�

T e
0

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

f

0

0

⎫⎪⎪⎬
⎪⎪⎭ , a =

{
u

�

}
(53)

The skew symmetric part of the stress tensor can be eliminated on the element level using
static condensation, so that the system of equations necessary to solve the problem are

[
Ke

M

] {
a

�

}
=

{
f

0

}
(54)

where

Ke
M =

⎡
⎢⎣ Ke

uu + �

�e he[he]t Ke
u�

[Ke
u�]t −Ke

��

⎤
⎥⎦ (55)

Individual partitioned stiffness matrix terms are given in Appendix A.2. Both Ke
uu and Ke

u�
are evaluated using a five-point numerical integration scheme, while he and Ke

�� employ a
standard four-point scheme. The top left (12 × 12) portion of the stiffness matrix represents the
mechanical part. The 12 × 4 partition, denoted Ke

u�, represents the piezoelectric part, and the
bottom right portion, −Ke

��, the 4 × 4 dielectric part of the stiffness matrix.
The skew part of the stress tensor (constant over each element) can be recovered as a

post-processing step, and is given by

T e
0 = �

[he]ta
�e (56)

5.2. P4dMnTD element based on �T D
M

Considering functional �T D
M , the discrete version of the formulation can be rewritten in matrix

form as ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 he Ke
uT 0

0 0 0 0 Ke
�D

[he]t 0 −�−1�e 0 0

[Ke
uT ]t 0 0 −KT De

T T −KT De
T D

0 [Ke
�D]t 0 −[KT De

T D ]t KT De
DD

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a

�

T e
0

�e
T

�e
D

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f

0

0

0

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(57)
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The matrix form of (57) can be simplified to

[
KT De

M

] {
a

�

}
=

{
f

0

}
(58)

where the stress and electric flux density �-parameters reduce to

{
�e
T

�e
D

}
=

[
KT De

T T KT De
T D

[KT De
T D ]t −KT De

DD

]−1 ⎡
⎣ [Ke

uT ]t 0

0 [Ke
�D]t

⎤
⎦

{
a

�

}
(59)

and the stiffness matrix for this element reduces to

KT De
M =

⎡
⎣ �

�e he[he]t 0

0 0

⎤
⎦ +

[
Ke

uT 0

0 Ke
�D

] [
KT De

T T KT De
T D

[KT De
T D ]t −KT De

DD

]−1 ⎡
⎣ [Ke

uT ]t 0

0 [Ke
�D]t

⎤
⎦
(60)

Again, individual partitioned stiffness matrix terms are given in Appendix A.2. The partitioned
submatrices Ke

uT , KT De
T T and KT De

T D are calculated using a five-point integration scheme, while
Ke

�D
and KT De

DD are evaluated using a four-point scheme. The number of stress parameters in
�e
T is denoted n in the element designation P4dMnTD.

6. NUMERICAL EVALUATION

In this section, the developed piezoelectric finite elements are assessed numerically and com-
pared with existing elements. The effect of selected parameters are also quantified. For brevity,
only the two elements presented in Section 5 are reported on. However, eight different elements
resulting from the formulations herein have been implemented. Further information regarding
the performance of the other elements is available from the first author on request [37]. The
elements used in the comparison are denoted as follows:

• P4—a standard, planar four node, quadrilateral piezoelectric element without drilling
dof’s. Only the displacement u and the potential � are interpolated for, see for example
Reference [3].

• P4TD—a mixed four node element with both stress T and electric flux density D assumed
additionally to displacement and electric potential, as proposed in Reference [10].

• P4dM—a four node element with drilling dof’s, derived from functional �M in (27), and
with stiffness matrix given by (55).

• P4dMnTD—a mixed four node element, based on functional �T D
M given in (29), with

interpolations for u, �, T and D. The number of stress interpolation parameters is given
by n. The stiffness matrix of P4dMnTD is given in (60).

In the test problems to follow, unless otherwise stated, the material constants of PZT-4 given
by Sze et al. [9] are employed so that our piezoelectric elements may be compared to theirs.
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To this end, the following material constants are used:

c11 = 139 × 103, c33 = 113 × 103, c13 = 74.3 × 103, c55 = 25.6 × 103 (in N/mm2)

c15 = 13.44 × 106, e31 = −6.98 × 106, e33 = 13.84 × 106 (in pC/mm2)


11 = 6.00 × 109, 
33 = 5.47 × 109 (in pC/(GVmm)).

The units of length, force, stress, charge, electric displacement and electric potential, respec-
tively, are taken as mm, N, N/mm2, pC, pC/mm2 and GV. This unusual unit choice alleviates
the ill effects resulting from the poor scaling of the global stiffness matrix. The poling direction
in the test problems to follow, unless otherwise stated, is taken as the global y-direction. The
constitutive equations which result are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Txx

Tyy

Txy

Dx

Dy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11 c13 0 0 −e31

c13 c33 0 0 −e33

0 0 c55 −e15 0

0 0 e15 
11 0

e31 e33 0 0 
33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sxx

Syy

Sxy

Ex

Ey

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(61)

Constants used in the analytical solutions of some of the tests to follow, are given by⎡
⎢⎢⎣

s11 s13 g31

s13 s33 g33

−g31 −g33 �33

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

c11 c13 −e31

c13 c33 −e33

e31 e33 
33

⎤
⎥⎥⎦

−1

(62)

6.1. Effect of �

The elements developed in the foregoing are dependant on the problem-dependent penalty
parameter �. The effect of � has been the focus of a number of recent studies [33, 42, 43]. For
linear elastic isotropic Dirichlet problems, the formulation is reported to be relatively insensitive
to the value of � [23, 26, 44], and it was proposed that � = �, the shear modulus. Under different
conditions, e.g. orthotropy (as in the case of piezoelectric materials) or dynamic problems, a
greater sensitivity to � is expected. For dynamic problems, for example, Hughes et al. [45]
propose a value of � = �/10.

To determine an appropriate value for �, an eigenvalue analysis of an undistorted (square)
P4dM element is performed. Although results are only reported for the P4dM element, the
trends depicted in Figures 2 and 4 are typical for all of our new elements. Figure 2 depicts
the effect of � on the non-zero eigenvalues, arranged in descending order. The eigenvalues are
normalized with respect to their values at � = c33. It is clear that the ‘softer’ modes are most
sensitive to � at values of �/c33 < 1. For values of �/c33 > 1, on the other hand, the ‘harder’
modes are significantly more sensitive, in particular �1 and �2, indicative of a locking-like
phenomena. This results from the terms in the stiffness matrix containing � dominating the
response.
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Figure 2. Effect of � on eigenvalues (normalized with respect to their values at �/c33 = 1).

Figure 3. Ten element cantilever beam subjected to pure bending.

In order to determine the effect of � on the accuracy of the current formulations, a repre-
sentative test problem is studied for an array of � values. The 10 element cantilever, depicted
Figure 3, is selected for this study. In Figure 4 some accuracy measures are plotted as a
function of �/c33.

Figure 4 shows how the accuracy of uyB , the y-displacement at point B and of �C ,
the electric potential at C (see Figure 3), decrease at values of �/c33 > 1. Also plotted is
an indication of the error on the skew-symmetric part of stress, T0. The plotted values are
normalized with respect to principle stresses at points D and E. T0D and T0E are the constant
skew-symmetric part of stress in the elements containing points D and E, respectively. T2D is
the second (compressive) principle stress calculated at D and T1E is the first principle stress
at E. Since the skew-symmetric part of stress should be zero, both T0D/T2D and T0E/T1E

should in turn be zero. Notably, the error on the skew-symmetric stress increases with larger
values of �/c33. To avoid operating in the regime where the gradient change of the accuracy
measures occurs, we suggest the use of �/c33 = 10−2.
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Figure 4. Effect of � on skew part of stress and other accuracy measures.

6.2. Eigenvalue analysis

Since a reduced integration scheme is employed during stiffness calculations and a non-
standard � value is used, element rank sufficiency needs to be verified by means of an
eigenvalue analysis. The eigenvalues of 2 × 2, undistorted (square) elements are computed.
(Eigenvalue analyses should in general be carried out on undistorted elements, since distortion
may actually suppress zero energy modes due to the inaccuracies of an approximate integration
scheme.)

In the case of planar piezoelectric elements, the mechanical partition of the stiffness matrix
should contain only three zero eigenvalues corresponding to the three rigid body modes. An
eigenvalue analysis of the dielectric part of the element stiffness matrix should reveal a single
zero eigenvalue, corresponding to the constant potential distribution resulting in zero electric
field. For the sake of brevity, the eigenvalues are not reported here. It was, however verified
that each element possesses the proper number of non-zero eigenvalues.

6.3. Patch test

The patch test is a standard method to test for element convergence, as well as any possible
implementation or programming errors. We perform the test with the geometry and mesh
suggested by Sze et al. [9], as shown in Figure 5. Kinematic (displacement and potential)
terms on the boundary are prescribed, corresponding to

ux = s11
0x, uy = s13
0y, � = g31
0y (63)

with 
0 a stress parameter. The corresponding stress and electric displacement can be shown
to be constant, and are given by

Txx = 
0, Tyy = Txy = Dx = Dy = 0 (64)

Compliance with the conditions above was verified for each of the elements used in this study.
A force patch test, with prescribed boundary forces corresponding to (64), was also conducted.

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 65:1802–1830



PLANAR FOUR NODE PIEZOELECTRIC ELEMENTS WITH DRILLING DOF’S 1821

Figure 5. Mesh for piezoelectric patch test.

6.4. Two element beam

The two element beam bending test is used to quantify the effect of distortion on element
accuracy. Figure 6 depicts a cantilever beam of length L = 10 and height h = 2, modelled
using two elements with a common distortion e. The electric potential of all nodes at y = −1
is prescribed to be zero. The exact solution for this problem was presented by Sze et al. [9].
The analytical solutions to this problem include:

ux = −s11
0xy, uy = s13
0

2

(
h2

4
− y2

)
+ s11

2

0x

2

� = g31
0

2

(
h2

4
− y2

)
, Tx = −
0y

Ty = Txy = Dx = Dy = 0, M =
∫ h/2

−h/2
yTx dy = −h3
0

12
= −hF

Figure 7 depicts the relative error of the y-displacement at point A, i.e. uyA
/uyExact − 1,

for the various elements being tested. Considering the two irreducible elements, the superior
accuracy and stability of the P4dM element over the standard P4 elements is clear. It is
also demonstrated that the P4dM8TD element is accurate and stable, even at extreme mesh
distortions. In fact, for this problem P4d8MTD performs slightly better than the stabilized plane
element developed by Sze et al. [9], as shown in Figure 7.

Figure 8 depicts the absolute error on the electric potential at point A, �A. The two irreducible
elements, P4 and P4dM, achieve the best potential approximations. However, the parabolic
‘through-thickness’ potential distribution can, of course, not be captured using bilinear potential
interpolations with the current mesh. The result is that for a regular mesh, zero electric field
is predicted and therefore relatively large errors on displacement accrue due to the inherent
coupling. In this instance, our two new elements are more sensitive to mesh distortion than the
P4TD element. However, if a similar test is conducted with two elements through the thickness,
i.e. four elements in total, the predictions of the mixed elements are similar. (Results for this
mesh are not explicitly shown here.) This, in our opinion, is a more reasonable mesh for this
problem, since the physics of the problem can be approximated by all elements used in the
comparison. That is to say, the parabolic potential distribution can be approximated using the
bilinear potential interpolations of the aforementioned elements. Unfortunately Sze et al. [9]
did not report on this quantity, so comparison with their element was not possible.
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Figure 6. Two element cantilever beam subject to pure bending.

Figure 7. Two element beam: effect of distortion on uyA.

Figure 8. Two element beam: effect of distortion on �A.
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Table I. Ten element cantilever subject to pure bending.

Relative Relative Relative Relative Relative Absolute Absolute
% error % error % error % error % error error error

uxB uyB �C TxD TxE DyD DyE

P4 −40.4175 −36.1072 −48.1191 −21.3819 −5.2331 90.1438 −10.0964
P4TD −5.7885 −4.0462 1.7121 0.7077 0.4331 −6.6586 7.4355
P4dM −3.4094 −1.3680 −5.3626 9.2982 18.1271 97.7308 −102.4166
P4dM8TD −6.4972 −4.8806 1.2997 1.9039 7.1635 −4.7693 8.3963
P4dM9TD −6.4364 −4.8969 1.0597 −0.9267 7.1655 −4.3515 8.4282

Figure 9. Cook’s membrane.

6.5. Ten element beam

The same beam geometry as used in the two element test (with identical boundary conditions)
is modelled, but this time with 10 irregular elements as shown in Figure 3. Displacements and
electric potentials are evaluated at points A, B and C and stresses and electric flux densities
are calculated directly at points D and E. This problem was used by Wu et al. [10] to verify
the accuracy of their P4TD element. Results are presented in Table I. Again, considering the
two irreducible elements used in this comparison, the superior accuracy with respect most fields
of the P4dM element relative to P4 is evident. For this specific problem, all of the elements
with stress and electric flux density assumed, exhibit a similar good performance.

6.6. Cook’s membrane

The final pathological test of element accuracy under mechanical actuation is depicted in
Figure 9. The geometry and loading is similar to the popular Cook’s membrane consisting of
a swept and tapered beam with distributed tip load. The lower surface is prescribed to have
a voltage of 0 V. Since no analytical solution exists for this problem, the predicted solutions
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Figure 10. Cook’s membrane: y-displacement at C(uyC).

Figure 11. Cook’s membrane: electric potential at C(�yC).

are compared to a finite element approximation with a fine mesh. The best known values of
uyC and �C are 2.109 × 10−4 mm and 1.732 × 10−8 GV, respectively. Figure 10 depicts the
magnitude of the relative error on uyC , the y-displacement of point C, for different mesh
refinements on a log scale. The relative accuracy of the P4dM element is again illustrated,
and in fact, P4dM achieves the best prediction for uyC . On the whole, all the mixed elements
perform similarly well.

Figure 11 depicts the magnitude of the relative error on �C , the electric potential at point
C. The two new mixed elements, P4dM8TD and P4dM9TD, perform slightly better than the
P4TD element in this case. Once again P4dM is superior to P4.
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Table II. Relative percentage error for stress and electric displacement for Cook’s membrane.

2 × 2 mesh 4 × 4 mesh 8 × 8 mesh

T1A |DB | T1A |DB | T1A |DB |
P4 −44.6706 −80.3136 −19.8108 −68.3021 −3.7775 −33.9002
P4TD −20.9579 −45.4065 −6.0842 −23.5878 −1.6060 −10.6112
P4dM −9.2049 −38.4155 −0.7867 −9.7136 −0.7298 −6.7096
P4dM8TD −35.3104 −48.9795 −7.3783 −25.3382 −2.1842 −11.6869
P4dM9TD −18.2960 −47.2924 −4.7375 −25.4509 −1.3131 −11.6292

(a) (b)

(c)

Figure 12. Bimorph based on MacNeal’s elongated beam: (a) regular shape elements; (b) trapezoidal
shape elements; and (c) parallelogram shape elements.

Table II presents the relative percentage errors on the first principle stress at point A, T1A

and the magnitude of the electric flux density at B, |DB |. Again, the P4dM performs very
well compared to the P4 element. Once again, all the four field elements perform similarly
well. In this case P4dM9TD performs slightly better than the other four field elements on
stress predictions, while P4TD achieves the greatest accuracy on electric flux density. The best
known values for T1A and |DB | are 0.21613 N/mm2 and 22.409 pC/mm2, respectively.

6.7. Piezoelectric bimorph beam

The final problem, evaluating element accuracy under electrical actuation, takes the form of a
piezoelectric bimorph beam. The physical problem consists of two identical layers of piezoelec-
tric material with opposite polarities, as indicated in Figure 12. Upon application of an electric
field in the through-thickness direction, the bimorph bends as a result of moments caused by
the layers’ opposing polarities.

This problem is often solved using PVDF material constants and compared to the solution of
Tzou [46]. For the purpose of the current study, tests are conducted using two different materials.
To assess the element accuracy by beam solution, the Poisson’s ratio is set to zero. There-
fore, the material properties for the PVDF material are [47] E1 = E2 = E3 = 2 × 103 (N/mm2),
�12 = �13 = �23 = 0, e31 = e32 = −0.046 × 106 (pC/mm2) and 
11 = 
33 = 
33 = 0.1062 × 109

(pC/GVmm). The e33 coefficient is assumed to be zero [47]. In the second case, the ma-
terial properties of PZT-4, as used in the preceding problems, are used and the solution is
compared to a refined finite element solution.
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Table III. Relative percentage error on vertical tip displacement of piezoelectric bimorph.

PVDF PZT-4

Regular Trapezoidal Parallel Regular Trapezoidal Parallel

P4 −75.7576 −85.7547 −88.7211 −63.2273 −80.9720 −87.5199
P4TD −0.2484 −29.3670 −4.4527 −2.6514 −26.4455 −5.2251
P4dM 0.0 −35.4700 −10.4663 −6.3609 −27.7086 1.9377
P4dM8TD −0.2484 −33.9872 −5.2288 −2.9145 −29.0260 −5.5317
P4dM9TD −0.2484 −34.0154 −5.2717 −3.2111 −29.4803 −5.8180

Since at least two elements are required through the thickness, the meshes used here repre-
sents a bisection of the discretizations suggested by MacNeal and Harder [48]. The top surface
of the beam is subjected to 1 V, and the bottom surface to −1 V. The relative percentage
error on the tip displacement is reported for the two different materials and the three meshes
in Table III. The beam solution for the PVDF material is 6.2100 × 10−5 mm, while the best
known solution for the PZT-4 material is 4.3622 × 10−4 mm.

The poor performance of the P4 element is once again highlighted. For this problem, the
displacement predictions for the distorted meshes of P4TD are slightly better than the P4dM8TD
and P4dM9TD elements. The irreducible element with drilling dof’s, P4dM, demonstrates a
performance comparable with the mixed elements.

7. CLOSURE

We have presented a number of variational formulations accounting for piezoelectricity and
in-plane rotations. We have introduced two new families of functionals, namely M-Type, which
retains the skew-symmetric part of the stress tensor, and K-Type, in which the skew part of
stress is eliminated.

From the M-Type Hu-Washizu-like functional we have developed an irreducible formulation
with only ‘kinematic’ independent variables, i.e. displacement and electric potential. We have
also shown how a ‘fully’ mixed formulation, with stress and electric flux density assumed, can
be generated. Two M-Type ‘degenerate’ Hellinger-Reissner-like functionals with either stress or
electric flux density assumed, are also given. Due to space considerations, their formulations
are, however, not presented. We have further indicated how the K-Type counterparts of our
M-Type functionals can be constructed.

For the sake of brevity, only numerical implementations of selected M-Type finite elements
are presented. We have demonstrated the accuracy and robustness of our elements on a number
of benchmark problems. The addition of drilling dof’s enriches the interpolated displacement
field, resulting in improved element performance. This is borne out by the improved accuracy
and robustness of the P4dM element over the standard P4 piezoelectric element. The improved
performance of our mixed elements with drilling dof’s is less marked when compared to existing
mixed piezoelectric elements. In fact, it is difficult to conclusively state that any one of the
elements used in this study is better in terms of accuracy than all the others. This is so since
none of the elements herein consistently outperforms all the other elements on all reported
accuracy measures. Our ‘fully mixed’ elements, however, are shown to be accurate and stable,

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 65:1802–1830



PLANAR FOUR NODE PIEZOELECTRIC ELEMENTS WITH DRILLING DOF’S 1827

even at extreme element distortions. They also allow for improved modelling capabilities due
to the additional rotational dof, e.g. compatibility with elastic elements with drilling dof’s is
ensured. The results presented herein, therefore indicate that the P4dMnTD elements are useful
for modelling engineering applications.

What is more, the variational formulations constructed in this work can be used to establish
three-dimensional solid piezoelectric elements with drilling dof’s. Furthermore, the planar ele-
ments derived here, when combined with piezoelectric plate elements, can be used to calculate
through-thickness phenomena in thick piezoelectric shell elements.

APPENDIX A

A.1. Element operators

In (39), the operators Bi and G�i are given as

Bi =

⎡
⎢⎢⎣

Ni,1 0

0 Ni,2

Ni,2 Ni,1

⎤
⎥⎥⎦ , i = 1, 2, 3, 4 (A1)

with Ni , i = 1, 2, 3, 4, the Lagrangian interpolation functions. The strain operator associated
with the drilling rotation is defined by

G�i = 1

8

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
lij cos �ijNl,1 − lik cos �ikNm,1

)
(
lij sin �ijNl,2 − lik sin �ikNm,2

)
⎧⎪⎪⎨
⎪⎪⎩

lij cos �ijNl,2 − lik cos �ikNm,2

+
lij sin �ijNl,1 − lik sin �ikNm,1

⎫⎪⎪⎬
⎪⎪⎭

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A2)

where ljk represent the lengths of sides jk and, using a FORTRAN pseudo-language,

i = 1, 2, 3, 4; m = i + 4; l = m − 1 + 4 int(1/i)

k = mod(m, 4) + 1; j = l − 4
(A3)

The functions Ni , i = 5, 6, 7, 8 are serendipity mid-side interpolation functions.
The operators associated with the skew-symmetric part of the displacement gradient are

bi = 〈− 1
2Ni,2

1
2Ni,1〉, i = 1, 2, 3, 4 (A4)

and

gi = − 1
16 (lij cos �ijNl,2lik cos �ikNm,2)

+ 1
16 (lij sin �ijNl,1lik sin �ikNm,1) − Ni, i = 1, 2, 3, 4 (A5)
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with indices j, k, l, m again defined by (A3). In (35), a FORTRAN-like definition of adjacent
corner nodes is also employed:

j = i − 4, k = mod(i, 4) + 1 (A6)

A.2. Partitioned stiffness matrices

The partitioned stiffness matrices are given in matrix form by

Ke
uu

(5) =
∫

�e
[Be

u Ge
u]tcE[Be

u Ge
u] dV (A7)

Ke
u�

(5) =
∫

�e
[Be

u Ge
u]tet[Be

�] dV (A8)

Ke
��

(4) =
∫

�e
[Be

�]t�S[Be
�] dV (A9)

he(4) =
∫

�e
[be ge]t dV (A10)

Ke
�D

(4) =
∫

�e
[Be

�]t[Pe
D] dV (A11)

Ke
uT

(5) =
∫

�e
[Be

u Ge
u]t[Pe

T ] dV (A12)

KT De
T D

(5) =
∫

�e
[Pe

T ]tgt[Pe
D] dV (A13)

KT De
T T

(5) =
∫

�e
[Pe

T ]tsD[Pe
T ] dV (A14)

KT De
DD

(4) =
∫

�e
[Pe

D]t�T [Pe
D] dV (A15)

The superscript in parentheses (·) represents the number of integration points used to perform
the numerical integration.
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