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Abstract. In this paper we present a new method of numerical evalua-
tion of unknown coefficients of a dynamical system having available information
about unknown phase trajectories at some time values. The method consists in
the direct integration of given dynamical system with posterior application of
a quadrature rules. Using the least square method and possible Constraints we
obtain a linear system for determining an unknown coefficient. A numerical
example illustrates the method.

INTRODUCTION

The problem of determination of dynamical systems coefficients from ex-
perimental data is solved for a practically important case of the linear systems
with respect to their unknown coefficients . The problem often occurs in in-
terpretation of experimental data in mathematical biology, ecology, medicine,
chemical kinetics, economy etc. One of the first example of such problems (the
predator-prey equations) consists of a pair of first order, non-linear differen-
tial equations frequently used to describe the dynamics of biological systems
in which two species interact. They were proposed independently by Alfred J.
Lotka [1] and Vito Volterra in 1926 [2]. This system can be written in the form

x′1(t) = x1 (a11 − a12x2)
x′2(t) = x2 (ηa12x1 − a22)

When solved for x1 and x2 the above system of equations yields

x1 = 0, x1 = 0

and
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x1 =
a22

ηa12
, x1 =

a11

a12

hence there are two equilibria.
The solution in the neighborhood of the first (saddle) fixed point does not

have any essential physical meaning. The second (center) fixed point represents
neighbourhood at which both populations uphold their current, non-zero num-
bers. The level of population at which this equilibrium is achieved depends on
the chosen values of the parameters a11, a12, a22, η. The value of these parame-
ters are, generally speaking, unknown and determining of its values is confronted
with serious difficulties. In general case the structure of interactions between
species in the dynamical system proceeds from a real physical problem and is
supposed to be known.

The method of finding the unknown parameters is based on integration of
both parts of equations of the dynamical system and on applying regression
methods to the obtained overdetermined system of linear algebraic equations
with constraints. The least squares method is used for solution of this problem.
An example of a classical model predator- prey is considered.

The proposed method could be used for approximate determination of the
dynamical system parameters. The method can be easily generalized for systems
with non-linear dependence on coefficients, for example for systems [3] which
describe a deterministic mathematical model for the transmission dynamics of
HIV infection in the presence of a preventive vaccine.

EVALUATION OF COEFFICIENTS
Let x (t) =(x1(t), x2(t), ..., xm(t))ᵀ be a vector in Rm depending on variable

t where xk(t) : [t0, tN ] → R and f(t,x(t)) = (f1(t,x), f2(t,x), ..., fn(t,x))ᵀ a
vector in Rn where fj(t,x) : [t0, tN ]× Rm → R

Consider a dynamical system

x′k(t) =
n∑

j=1

ak,jfj(t,x (t)), (k = 1, 2, ...,m) (1)

or, in the matrix form

x′ (t) = Af(t,x(t)) (1′)

with initial conditions

x (t0) = x0 = (x1,0, x20, ..., xm,0 )ᵀ
. (2)

The entries ajk of matrix A are unknown but we suppose that there is informa-
tion about values of functions xk(t) at some points tj = t0 + jhj . It may be, for
example, some statistical data of the form

t0 t1 · · · ti · · · tM
xk(t0) = xk,0 xk(t1) = xk,1 · · · xk(ti) = xk,i · · · xk(tN ) = xk,M

,
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where (k = 1, 2, ...,m) . For the sake of simplicity we suppose that hj = h is a
constant.

We suppose that system (1)− (3) has on interval [t0, tN ] a unique solution.
Moreover, we suppose that the mapping Fj : [t0, tN ] → R where Fj(t) =
fj(t,x(t)) is bounded and has a bounded second derivative with respect to
t on the interval [t0, tN ], that is for all j there exist constants C such that∣∣F ′′

j (t)
∣∣ ≤ C and |Fj(t)| ≤ C for all t ∈ [t0, tN ].

To avoid further use of triple subscripts we introduce the following notations
using the columns of the transpose

Aᵀ=


a1,1 a2,1

... am,1

a1,2 a2,2

... am,2

· · · · · ·
. . . · · ·

a1,n a2,n

... am,n

=
(

α1 α2 · · · αn

)

of matrix A, that is we introduce vectors αk =
(

ak,1 ak,2 · · · ak,n

)ᵀ def
=(

αn(k−1)+1 αn(k−1)+2 · · · αkn

)ᵀ
, (k = 1, 2, ...,m) and also we denote by

α the N × 1 column α =
(

α1 α2 · · · αm

)ᵀ where N = mn.
Now system (1) can be rewritten in the form

x′k(t) = (αk, f(t,x(t)) =
n∑

j=1

α(k−1)n+jfj(t,x), ( k = 1, 2, ...,m) (3)

Integration with respect to t from t0 to ti , (i = 1, 2, ...,M) gives

ti∫
t0

x′k(t)dt =
n∑

j=1

α(k−1)n+j

ti∫
t0

fj(t,x)dt. (4)

The left hand side of (5) after integration can be written as

ti∫
t0

x′k(t)dt = xk(ti)− xk (t0) = xk,i − xk,0
def
= ∆k,i. (5)

We evaluate the integrals in the right hand side of (4) using a quadrature
rule, for example the adaptive trapezoidal rule in the form

ti∫
t0

fj(t,x (t))dt = Ti(fj)
def
= qi,j . (6)

We denote here
qi,j

def
= Ii (fj) + Ri (fj)

def
= Ii,j + Rij (7)
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where

Ii,j =
h

2

i∑
l=1

[fj(t,x (tl)) + fj(t,x (tl−1))] (8)

and the error functional Ri (fj) can be evaluated by

|Rij | ≤
1
12

C(tN − t0)h2. (9)

Thus, we obtain the following, generally speaking, overdetermined system
for finding the unknown numbers α1, ...αN :

n∑
j=1

α(k−1)n+jqij −∆ki = 0, k = 1, 2, ...,m; i = 1.2, ..., N (10)

In many cases the numbers α1, ...αN satisfy certain Constraints. Frequently
these Constraints are linear. We limit ourselves to this case. Thus system (10)
must be resolved providing that the following Constraints are satisfied:

N∑
j=1

ci,jαj = bi, (11)

and system (11) in matrix form can be written as

Cα = b (12)

where C is an N1 ×N matrix and N1 ≤ mn:

C =


c1,1 c1,2 · · · c1,N

c2,1 c2,2 · · · c2,N

...
...

. . .
...

cN1,1 cN1,2 · · · cN1,N


.

The values of entries of A can be found using method of least squares by
minimization of the functional

L =
1
2

M∑
i=1

m∑
k=1

 n∑
j=1

α(k−1)n+jqi,j −∆k,i

2

−
N1∑
i=1

λi

bi −
N∑

j=1

ci,jαj

 (13)

To minimize functional F we write all M equations

∂L

∂α1
= 0, ...,

∂L

∂αM
= 0.
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This is equivalent to the system

n∑
j=1

α(k−1)n+j

(
N∑

i=1

qi,jqi,l

)
+

N1∑
i=1

λici,(k−1)n+l =
M∑
i=1

∆k,iqi,l,

(l = 1, 2, ..., n) , (k = 1, ...,m)

(14)

and we have to solve this system provided that (11) is satisfied.
Introducing the notations

M∑
i=1

qi,jqi,l = Tj,l;
M∑
i=1

∆k,iqi,l = pk,l (15)

we obtain the system

n∑
j=1

Tj,lα(k−1)n+j +
M1∑
i=1

λici,(k−1)n+l = pk,l ( l = 1, 2, ..., n) , (k = 1, ...,m)

(16)

This system together with Constraints can be written in the following matrix
form: 

T 0 0 0 C1

0 T 0 0 C2

...
...

. . .
...

...
0 0 0 T Cm

Cᵀ
1 Cᵀ

2 · · · Cᵀ
m 0




α1

α1

...
αm

λ

 =


p1

p2

...
pm

b

 (17)

where

T =


T1,1 T2,1 · · · Tn,1

T1,2 T2,2 · · · Tn,2

...
...

. . .
...

T1,n T2,n · · · Tn,n

 ; (18)

is an n× n− matrix. The matrix C1 is the n×N1 matrix consisting of first n
rows of Cᵀ, analogously, C2 consists of next n rows of Cᵀ etc. so that

C =
(

Cᵀ
1 Cᵀ

2 · · · Cᵀ
m

)
.

λ =
(

λ1 λ2 · · · λN1

)ᵀ ; p1 =
(

p11 p12 · · · p1n

)ᵀ ; ...;

pm =
(

pm,1 pm,2 · · · pm,n

)ᵀ ;b =
(

b1 b2 · · · bN1

)ᵀ
.

Relations (16) are exact. The idea of our method is to replace of Tj,l with

Ii,j =
h

2

i∑
l=1

[fj(t,x (tl)) + fj(t,x (tl−1))] . It is possible to prove that the error
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after this replacement will be of order h meaning that it will be small if h is
small.

Remark 1. If the assumption of boundedness of F ′′ is replaced by assumption
that F is Lipschitzian or is continuous with bounded variation then inequality
(9) must be replaced by |Rij | ≤ C(tN − t0)h (see for example [4]) and in this
case we can not guarantee that the error will be small.

In what follows, we suppose that qi,j defined by (7) is replaced with

ri,j = Ii(fj)

(defined by (8)) and pk,l is replaced by sk,l =
M∑
i=1

∆k,iri,l. At the same time we

have to replace Tj,l by Ij,l =
N∑

i=1

ri,jri,l. Thus our system can be written in the

following form:
I 0 0 0 C1

0 I 0 0 C2

...
...

. . .
...

...
0 0 0 I Cm

Cᵀ
1 Cᵀ

2 · · · Cᵀ
m 0




α1

α1

...
αm

λ

 =


s1

s2

...
sm

b

 (19)

where

I =


I1,1 I2,1 · · · In,1

I1,2 I2,2 · · · In,2

...
...

. . .
...

I1,n I2,n · · · In,n

 ; (20)

is an n× n− matrix and

s1 =
(

s11 s12 · · · s1n

)ᵀ ; ...; sm =
(

sm,1 sm,2 · · · sm,n

)ᵀ ;

.
EXAMPLE (Predator-Prey Model)

x′1(t) = a11x1(t)− a12x1(t)x2(t) + 0x2

x′2(t) = 0x1 + ηa12x1(t)x2(t)− a22x2(t)

}
(21)

Here m = 2, n = 3 and according to our notations

x =
(

x1

x2

)
; f =

 x1

x1x2

x2

 ; A =
(

a11 −a12 0
0 ηa12 −a22

)
;

Aᵀ =

 a11 0
−a12 ηa12

0 −a22

 ;
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α1 =

 a11

−a12

0

 =

 α1

α2

α3

 ; α2 =

 0
ηa12

−a22

 =

 α4

α5

α6

 ;α =
(

α1

α2

)

Constraints (Cα = b) can be written as

ηα2 + α5 = 0, α3 = 0, α4 = 0

In matrix form 0 η 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0

( α1

α2

)
=

 α5 + ηα2

α4

α3

 = 0

Thus,

Cᵀ =


0 0 0
η 0 0
0 0 1
0 1 0
1 0 0
0 0 0

 , C1=

 0 0 0
η 0 0
0 0 1

 , C2=

 0 1 0
1 0 0
0 0 0



and to find α we must solve the system I 0 C1

0 I C2

Cᵀ
1 Cᵀ

2 0

  α1

α2

λ

 =

 s1

s2

0


where

s1



M∑
i=1

(x1,i − x1,0) Ii(f1)

M∑
i=1

(x1,i − x1,0) Ii(f2)

M∑
i=1

(x1,i − x1,0) Ii(f3)


; s2 =



M∑
i=1

(x2,i − x2,0) Ii(f1)

M∑
i=1

(x2,i − x2,0) Ii(f2)

M∑
i=1

(x2,i − x2,0) Ii(f3)



I =



M∑
i=1

I2
i (f1)

M∑
i=1

Ii(f2)Ii(f1)
M∑
i=1

Ii(f3)Ii(f1)

M∑
i=1

Ii(f1)Ii(f2)
M∑
i=1

I2
i (f2)

M∑
i=1

Ii(f3)Ii(f2)

M∑
i=1

Ii(f1)Ii(f3)
M∑
i=1

Ii(f2)Ii(f3)
M∑
i=1

I2
i (f2)


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and

Ii(f1) =
h

2

i∑
l=1

(x1,l + x1,l−1) , Ii(f2) =
h

2

i∑
l=1

(x1,lx2,l + x1,l−1x2,l−1) ,

Ii(f3) =
h

2

i∑
l=1

(x21,l + x2,l−1)

Numerical realization was accomplished using MathCad13.
Let us generate 120 points of solution of the system (21) with the coefficients

a11 = 1.8, a12 = 0.25, a22 = 0.7, η = 0.1 (a21 = 0.025) by means of direct
solution of the initial value problem with x (0) = 100, y (0) = 10 by the Runge-
Kutta method. These points are considered further as ”experimental data”.

Application of the proposed method gives us the following set of estimated
parameters: ã11 = 1.839, ã12 = 0.256, ã21 = 0.026, ã22 = 0.715. We see that
the values of coefficients are close enough to original values.

Further, the initial value problem was solved with the new coefficients and
old initial conditions. Comparison of the ”experimental Data” with the esti-
mated solutions are presented in figures 1 and 2. One can see that the estimated
values of predators and preys are close enough to the original ”experimental
data”. Divergence of the graphs is stipulated by the errors of the trapezoidal
rule used at the stage of numerical integration. Application of the quadrature
formulae of higher orders allows to achieve more accurate results.

and

Ii(f1) =
h

2

iX
l=1

(x1;l + x1;l�1) ; Ii(f2) =
h

2

iX
l=1

(x1;lx2;l + x1;l�1x2;l�1) ;

Ii(f3) =
h

2

iX
l=1

(x21;l + x2;l�1)

Numerical realization was accomplished using MathCad13.
Let us generate 120 points of solution of the system (21) with the coe¢ cients

a11 = 1:8; a12 = 0:25; a22 = 0:7; � = 0:1 (a21 = 0:025) by means of direct
solution of the initial value problem with x (0) = 100; y (0) = 10 by the Runge-
Kutta method. These points are considered further as "experimental data".
Application of the proposed method gives us the following set of estimated

parameters: ea11 = 1:839; ea12 = 0:256; ea21 = 0:026; ea22 = 0:715: We see that
the values of coe¢ cients are close enough to original values.
Further, the initial value problem was solved with the new coe¢ cients and old

initial conditions. Comparison of the "experimental Data" with the estimated
solutions are presented in �gures 1 and 2. One can see that the estimated
values of predators and preys are close enough to the original "experimental
data". Divergence of the graphs is stipulated by the errors of the trapezoidal
rule used at the stage of numerical integration. Application of the quadrature
formulae of higher orders allows to achieve more accurate results.
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CONCLUSION
1. The Method of identi�cation of unknown parameters of a given dynam-

ical system from experimental data is formulated on the basis of least squares
method.
2. The error functional is estimated as a value of order h - the step in

statistical data.
3. Example of predator-prey model identi�cation is considered as an exam-

ple of general theory and it is shown that obtained parameters give accurate
interpretation of the experimental data.
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