

Seotsanyana Page 1 of 11

25th International Conference of CAD/CAM, Robotics & Factories of the Future Conference,
13-16 July 2010, Pretoria, South Africa

TEMPORAL LOGIC RUNTIME VERIFICATION OF DYNAMIC SYSTEMS

Motlatsi Seotsanyana

Mobile Intelligent Autonomous Systems, Modelling and Digital Science,
Council for Scientific and Industrial Research, P.O. Box 395,

Pretoria 0001, SOUTH AFRICA.
Email: mseotsanyana@csir.co.za

ABSTRACT

Robotic computer systems are increasingly ubiquitous in everyday life and this has led to a
need to develop safe and reliable systems. To ensure safety and reliability of these systems,
the following three main verification techniques are usually considered: (1) theorem proving,
(2) model checking, and (3) testing. However, the behaviour of robotic systems depends
heavily on the environment and changes over time, which makes it hard to predict and
analyse prior to their execution. Therefore, this paper provides a novel framework that
automatically and verifiably monitors these systems at runtime. The main aim of the
framework is to assist the operator through witnesses and counterexamples that are
generated during the execution of the system. The framework is suitable for manufacturing
and mine operations. In addition, the framework can explicitly capture sensor specifications
of the environment and react to the changes accordingly to ensure safe and reliable
operation during runtime of the system. The framework first constructs a region automaton of
the environment and then represents operation rules in a formal specification language
called universal computation tree logic (ACTL). This formal specification language allows
the expression of complex desired behaviours, such as collision avoidance in the case of haul
truck operations.

Keywords: runtime, verification, theorem proving, model checking, testing, temporal logic,
automaton, observer-pattern.

1 INTRODUCTION

Robotic computer systems are increasingly ubiquitous in everyday life and this has led to
a need to develop safe and reliable systems. To ensure safety and reliability of these
systems, the following three main verification techniques are usually considered: (1)
theorem proving, (2) model checking, and (3) testing. Theorem proving is the process of
using deductive methods to develop computer programs that show that some statement
(i.e., conjecture) is a logical consequence of a set of axioms and hypotheses.
Unfortunately, theorem proving process is generally harder and requires considerable
technical expertise and a deep understanding of the specification. It is also generally
slower, more error-prone and labour intensive. Model checking, on the other hand, is an
automatic verification technique for finite state concurrent systems such as safety critical
systems, communication protocols, and sequential circuit design. Model checking is an
attractive alternative to simulation and testing to validate and verify systems. But, model
checking techniques are hindered by the state-space explosion problem, where the size of
the representation of the behavior of a system grows exponentially with the size of the
systems. Often, software systems have infinite state spaces, due to unbounded real and
integer input variables and timing constraints, and thus model checking software systems
without any abstractions is almost always impossible. The current practice is that the

Seotsanyana Page 2 of 11

25th International Conference of CAD/CAM, Robotics & Factories of the Future Conference,
13-16 July 2010, Pretoria, South Africa

correctness of computer systems is achieved by human inspection: peer reviews and
testing with little or no automation. Peer reviews refer to the inspection of software by a
team of engineers that were preferably not involved in the design of the system, while
testing refers to a process whereby software is executed with some inputs, called test
cases, along different execution paths known as runs. However, testing is never complete:
it is difficult to say when to stop as it is infeasible to check all the runs of a complex
system and it is easy to omit those runs which may reveal subtle errors. It also has a
drawback of showing the presence of errors, but not their absence.

All the aforementioned verification techniques often do not scale up well to large systems
such as robotic systems, which depends heavily on the environment and changes over
time. This behaviour makes it hard to predict and verify these dynamic systems prior to
their execution. Therefore, runtime verification is an appropriate technique to
complement these techniques. Leucker and Schallhart [1] define runtime verification as
the “discipline of computer science that deals with the study, development, and
application of those verification techniques that allow checking whether a run of a system
under scrutiny satisfies or violates a given correctness property”. Although not new,
runtime verification is receiving increasing interest due to the advent of new verification
techniques such as model checking techniques.

In this paper, we provide a novel framework that automatically and verifiably monitors
robotic systems at runtime. The runtime verification monitor is implemented as a
lightweight model checking algorithm. The main aim of the framework is to assist the
operator through witness and counterexample sets that are generated during the execution
of the system. Witness is a set of states of a system that satisfy a formal property
specification, while counterexample is a set of states of a system that violates a property.
The framework is suitable for manufacturing, and mine operations and it is based on
observer design pattern. In addition, the framework can explicitly capture sensor
specifications of the environment and react to the changes accordingly to ensure safe and
reliable system operation at runtime. The framework requires the construction of a region
automaton for the environment and then representation of operation rules in a formal
specification language called universal computation tree logic (ACTL). This formal
specification language allows the expression of complex desired behaviours, such as
collision avoidance in the case of haul truck operations.

The rest of the paper is organized as follows. Section 2 outlines part of the related work.
Section 3 describes the general problem of the dynamic environment that is augmented
with sensors. Section 4 presents an overview of temporal logic and describes the syntax
and semantics of computation tree logic -and another class of the logic called universal
computation tree logic. Section 5 describes the runtime monitor; the focus is on its inputs
(the environment and formal specification properties) and outputs (the witness and
counterexample sets) at runtime. Section 6 illustrates the application of the framework
with a case study, while Section 7 concludes the paper. Section 8 highlights the possible
extension of the framework.

Seotsanyana Page 3 of 11

25th International Conference of CAD/CAM, Robotics & Factories of the Future Conference,
13-16 July 2010, Pretoria, South Africa

2 RELATED WORK

There is currently an increasing amount of work being done on runtime verification. In
this paper we only present a part of this work. We discuss only work done in [6, 7, 8, 9,
10] since all these papers use formal methods techniques.

Monitoring and Checking (MaC) [6] provides a general framework that makes sure that
the target program runs correctly with respect to a formal requirement specification. The
framework consists of two specification languages: Primitive Event Definition Language
(PEDL) and Meta Event Definition Language (MEDL). The former is used to define
methods and objects to be monitored; a filter keeps a list of monitored local and global
variables, as well as, addresses of monitored objects. The later is used to write high
specification requirement. The main reason for using two specification languages is to
separate the implementation details from high-level requirement checking and thus makes
the framework portable to different programming languages and specification formalisms.

Monitoring –Oriented Programming (MoP) [7] is a framework and methodology for
building program monitors. It allows formal property specification to be added to the
target program and does not place any restriction on a formalism to be used, as long as the
corresponding translator of the specification language exists. The translated code must
contain the following components: declaration, initialization, monitoring body, success
condition, and failure condition. The user puts annotations in the target program at which
the monitoring code must be inserted. Currently, the MoP supports three specification
languages: past time and future time linear temporal logic as well as extended regular
expressions.

Java with assertion (Jass) [8] is a general monitoring methodology implemented for
sequential, concurrent and reactive systems written in java. The tool Jass is a pre-
compiler that translates annotations into a pure java code in which a compliance with
specification is tested dynamically at runtime. Assertions extends the Design by Contract
[11], that allows specification of assertions in the form of pre- and post-conditions, class
invariants, loop invariants, and additional check to be inserted in any part of the program
code. Jass also offers refinement check and trace assertion. Refinement check is used to
facilitate specification of classes on different levels of abstraction, while trace assertion
are used to monitor the correct behaviour of method invocations, ordering and timing of
methods invocation.

Java PathExplorer (JPaX) [9] is a general purpose monitoring approach for sequential and
concurrent programs developed in Java. The tool offers two main facilities: logic-based
monitoring and error pattern analysis. Formal specifications are written in linear temporal
logic (both past and future) or in Maude [12, 13]. JPaX instruments Java byte code to
send stream of events to the observer that performs two functions: it checks events against
a high-level specification (logic-based monitoring) and also checks low-level
programming error (error pattern analysis).

Temporal Rover [10] is a specification based commercial tool for programs written in C,
C++, Java, Verilog and VHDL. In Temporal Rover, the user annotates the sections of the
target program where a property needs to be checked at runtime. Temporal Rover
supports the following formalisms: Linear–Time Temporal Logic (LTL) and Metric
Temporal Logic (MTL) and the properties which can be specified with these logics

Seotsanyana Page 4 of 11

25th International Conference of CAD/CAM, Robotics & Factories of the Future Conference,
13-16 July 2010, Pretoria, South Africa

include: future time temporal properties as well as lower and upper bound properties, and
relative-time and real-time properties. The tool takes the target program as its input and
its parser generates an identical program to the properties inserted in the target program
and during execution the generated code validates the executing program against
specified properties.

3 PROBLEM FORMULATION

The goal of this paper is to present a framework that enables the verification of dynamic
robotic systems at runtime. We have developed a reactive monitor that takes an
automaton of the environment and formal specifications of operation rules as inputs and
synthesis warnings, alerts or errors that might lead to system failures. The synthesis is
based on the witness and counterexample sets. The problem that we are out to solve is
depicted by Figure 1. In this section the environment and operation rules as well as the
design pattern employed are described in detail.

Figure 1: An overview for framework

Environment: To achieve our goal, we assume that the environment is partitioned into a
finite number of regions of interest nππ ,,1 K , where i

n
i π∪=Π and φππ =∩ ji if ji ≠ .

There are a number of objects m
n

j
i οο ,,K moving in the environment, where n denotes

the number of regions and m the number of objects in the environment. These objects
maybe machines (e.g., haul trucks), people (e.g., workers), etc., and they form part of the
environment to one another (i.e., one object becomes part of environment of another
object). The partition creates Boolean propositions { }m

nοοογ K,, 1
2

1
1= which are true if the

objects are located in iπ , for example 1
1ο and 2

1ο are true if and only if { }2
1

1
11 ,οοπ = . The

objects interact with their environment through sensors, which are assumed to be binary.
The m binary sensors },,{ 1

1
m
nxx K=ξ in n regions have their own dynamics which are

not explicitly modeled in this paper. The possible behaviour of these variables will be
captured with a suitable temporal logic formulas presented in Section 3. Finally, the
environment is formally defined as an automaton),,,,,(0 LSSA δγξ= where:

• ξ is a set of binary sensor inputs

• γ is a set of Boolean propositions of objects interacting in the environment

change the state of environment (e.g., teleoperation)

set or modify
operation rules Operation rules

witnesses

counterexamples

Monitor

(light verification)

sensor inputs

ACTL inputs

The Operator

E
nv

iro
nm

en
t

Seotsanyana Page 5 of 11

25th International Conference of CAD/CAM, Robotics & Factories of the Future Conference,
13-16 July 2010, Pretoria, South Africa

• Π is a set of partitions of interests that form the environment
• ⊂S N is a set of states
• SS ⊂0 is a set of initial states

• SS 22: →× ξδ is the transition relation, i.e. SSXs ⊆= '),(δ where Ss∈ is a
state and ξ⊆X is the subset of sensor propositions that are true

• γ2: →SL is a state labelling function where ysL =)(and γ2∈y is the set
of propositions that are true in state .Ss∈

Operation rules: These are rules that describe the desired behaviour of objects interacting
within the environment. In our framework these rules will be formally expressed in a
suitable universal computation tree logic (ACTL) [2, 3] presented in Section 3. Informally
speaking, ACTL will be used to specify a variety of operation rules grouped in the
following categories: avoidance, coverage, sequencing, and conditions. Avoidance refers
to the use of sensors to avoid colliding with other objects, coverage refers to those rules
that specify regions of interest to traverse, sequencing refers to the traversal of specific
regions in a certain order, and condition refers to those logical conditions that express a
function from truth values to truth values.

Design pattern: The monitor module detailed in Section 4 is reactive to changes caused by
both the environment and operation rules. That is, the monitor looks after the dynamic
environment and operation rules which maybe modified either predictably or
unpredictably, and also oversees the distributed interactions of objects in the environment.
An appropriate design pattern in this kind of setup is the observer design pattern, also
known as Publish-Subscribe or Dependents. The observer design pattern defines a one-to-
many dependency between interacting objects so that when one object (the subject)
changes state, all its dependents (the observers) are notified and updated automatically.
Although not new, the pattern is receiving increasing interest because of its usefulness in
event-driven systems. It encompasses a well-established communications paradigm that
allows any number of subjects (publishers) to communicate with any number of observers
(subscribers) asynchronously and anonymously via event channels. In our case, the
monitor is implemented as an observer while the environment and operation rules are
implemented as subjects.

4 TEMPORAL LOGICS

Temporal logics are special types of modal logic that investigate the notion of time and
order of execution paths in computer systems. These logics have been used to precisely
describe the properties of concurrent systems (such as safety and liveness properties) and
were first introduced by Pnueli around 1977 for the specification and verification of computer
systems. In the early eighties Clarke and Emerson introduced another type of temporal
logic called Computation Tree Logic (CTL) [3, 4]. This temporal logic (i.e., CTL)
together with linear temporal logic (LTL) [4] are the mostly widely-used temporal logics
in the formal methods community. In this paper, we use a fragment of CTL called
universal computation tree logic (ACTL) [2] and the following subsections present the
syntax and semantic of CTL as well as formally describing the ACTL.

Seotsanyana Page 6 of 11

25th International Conference of CAD/CAM, Robotics & Factories of the Future Conference,
13-16 July 2010, Pretoria, South Africa

4.1 Computation tree logic

The CTL is based on the concept that for each state there are many possible successors,
unlike in LTL which is based on a model where each state s has only one successor state

's . Because of this branching notion of time, CTL is classified as a branching temporal
logic. The interpretation of CTL is therefore based on a tree rather than a sequence as in
LTL.

CTL Syntax: The formulas of CTL consist of atomic propositions, standard Boolean
connectives of propositional logic, and temporal operators. Each temporal operator is
composed of two parts, a path quantifier (universal ∀ or existential ∃) followed by a
temporal modality (UXFG ,,,). Note that some authors use □ and ◊ for G and ,F
respectively. The syntax is given by the BNF:

][|][|||||:: βαβαααβααα UUXXp ∀∃∀∃∨¬=

The operators GFfalsetrue ,,,,,, ⇔⇒∧ which are not mentioned in this syntax can be
thought of merely as abbreviations by using the following rules:

)(βαβα ¬∨¬¬≡∧)(βαβα ∨¬≡⇒
)()(αββαβα ⇒∧⇒≡⇔)(αα ∨¬≡true

truefalse ¬≡ αα UtrueF ≡
αα ¬¬≡ FG

CTL Semantics: CTL semantics slightly differs from that one of LTL, that is, the notion
of a sequence is replaced by a notion of a tree. The interpretation of CTL is defined by a
satisfaction relation ╞ between a model ,M one of its states s and some formula. Let

},,{ rqpAP = be a set of atomic propositions,),,(LabelRSM = be CTL-Model, Ss∈
α and β be CTL-formulas. In order to define the satisfaction relation (╞), the following
definitions are first given:

• A path is an infinite sequence of states K,,, 210 sss such that Rss ii ∈+),(1

• Let wS∈ρ denotes a path. For][,0 ii ρ≥ denotes the thi)1(+ element of ,ρ i.e., if

K,,, 210 sss=ρ then isi =][ρ

• }]0[|{)(sSsP w
M =∈= ρρ is a set of paths starting at s.

The satisfaction relation (╞) is then mathematically defined as follows:

s╞ p iff)(sLabelp∈
s╞ α¬ iff s(¬ ╞)α
s╞ βα ∨ iff s(╞ ∨)α s(╞)β
s╞ αX∃ iff]1[:)(ρρ sP∈∃ ╞ α
s╞ αX∀ iff]1[:)(ρρ sP∈∀ ╞ α
s╞][βαU∃ iff][(:0:)(jjsP ρρ ≥∃∈∃ ╞

∧β k≤∀0 <][: kj ρ ╞ α)
s╞][βαU∀ iff][(:0:)(jjsP ρρ ≥∃∈∀ ╞

∧β k≤∀0 <][: kj ρ ╞ α)

Seotsanyana Page 7 of 11

25th International Conference of CAD/CAM, Robotics & Factories of the Future Conference,
13-16 July 2010, Pretoria, South Africa

4.2 Universal computation tree logic

In this paper, we consider a fragment of CTL called universal computation tree logic
(ACTL). The ACTL allows only universal assertions of CTL [2]. The syntax of an ACTL
formula α is given by:

][|||||||:: βααααβαβααα UGFXp ∀∀∀∀∧∨¬=

For each ACTL formula, there exists an equivalent existential normal form (ENF). Since
our algorithm outlined in Section 4 uses ENF, The syntactic abbreviations for ACTL
formulas are provided in Table 1:

Table 1: The syntactic abbreviation for ACTL formulas

5 THE MONITOR

In [1], the monitor is defined as a device that reads a finite trace of a run and outputs a
verdict. In [5] a verdict is a true value from some domain that ranges over true, false, and
inconclusive. The true value true means that the specification is satisfied, false means that the
specification is not satisfied while inconclusive means that a conclusion cannot be reached
with the current trace. However, our approach is not the same as followed by other authors
[6, 7, 8, 9, 10], that is our approach do not verify finite prefixes of a run instead the monitor
reacts every time the environment or operation rules change and outputs warning messages to
the operator based on the set of witnesses and counterexamples emitted (as explained in
Section 4.1). The monitor is formally defined as follows:

[][] [][]{ }AAA cwfAmonitor ,: →× , where:

• A is an automaton that represents the environment,
• Af is a set of ACTL formulas that defines operation rules,

• [][] ssw A |{= ╞ }α denotes the set of states for which the ACTL formula α is true,
and

• [][] ssc A |{= ╞ }α¬ denotes the set of states for which the ACTL formula α is
false.

αX∀ ≡ αX¬∃

this means that α holds at all
successor states of the current state.

αF∀ ≡ α¬¬∃G

this mean that for every path there
exists a state on the path at which
α holds.

αG∀ ≡ α¬¬∃F

this means that for every path , α
holds in each state on the path.

][βαU∀ ≡ ββαβ ¬∃∧¬∧¬¬¬∃ GU)]([

this means that for every path, there
exists an initial prefix of the path
such that β holds at the last state of
the prefix and α holds at all other
states of the prefix.

Seotsanyana Page 8 of 11

25th International Conference of CAD/CAM, Robotics & Factories of the Future Conference,
13-16 July 2010, Pretoria, South Africa

The computation of these sets (i.e., the witness and counterexample sets) has its roots in a
fixed point theory [4], that is, the set can be computed using fixed point iterations that are
guaranteed to terminate. The following rules are applied to determine these states. Let ϕ and ψ be

ACTL formulas and p be atomic proposition (i.e., APp∈), then:

[][]Ap =)}(|{ sLabelpSs ∈∈

[][]Aϕ¬ = [][]AS ϕ\

[][]Aψϕ ∨ = [][] [][]AA ψϕ ∪

[][]Aψϕ ∧ = [][] [][]AA ψϕ ∩

[][]AAGϕ = [][])}()('|{ ZFsRsSsA ∩∈∀∈∩ϕ

[][]AAFϕ = [][])}()('|{ ZFsRsSsA ∩∈∀∈∪ϕ

Where)(sR is the successor state of Ss∈ and Z is the power set of S (i.e., S2) and)(ZF is a
recursive function that terminates when either a greatest fix-point or a least fix-point is reached.

5.1 Counterexamples and Witnesses

In model checking, a counterexample is a set of states that violates an ACTL formula α
(i.e., [][] ssc A |{= ╞ }α¬), whereas a witness is a set of states in which the ACTL formula

α holds (i.e., [][] ssw A |{= ╞ }α). We provide an example to illustrate the difference

between these two sets. Let APrqp ∈,, , }5,4,3,2,1,0{=S , }0{0 =S , and pG∀ be the

ACTL specification. Therefore: [][] }3,2,1{=Aw and [][] }.5,4,0{=Ac

Figure 2: A Kripke structure of the environment

The computation of these sets automatically is a major advantage of model checking and
with proper annotations of the automaton that models the environment, these sets provide
an operator with valuable information that can lead to the avoidance of catastrophic
system failures. For example, the operator can see that the environment modeled by
Figure 2 does not satisfy the ACTL formula because the initial state 0S is not in the

witness set, which is the requirement in model checking that the initial state must be the
element of a witness set in order for the specification to hold. If the requirement must
hold, then the operator can modify the environment so that the specification holds. In this
case, the operator can label the initial state 0S with atomic proposition p (if this change

does not violate other operation rules).

{ q,r}

1

4

2

3

5

0

{ p}

{ p}

{ p}

{ q,r} { q,r}

Seotsanyana Page 9 of 11

25th International Conference of CAD/CAM, Robotics & Factories of the Future Conference,
13-16 July 2010, Pretoria, South Africa

5.2 Light model checking

The model checking problem is defined as follows: Given a Kripke structure (or an
automaton) A that represents a finite state system1 and a temporal ACTL formula α
expressing some desired specification, compute the set of all states in S that satisfy α .
This is mathematically expressed as: sASs ,|{ ∈ ╞ }α . The system satisfies the
specification provided all the initial states are in the computed set of states. Algorithm 1
outlines a modified version of a model checking algorithm. For the original model
checking algorithm, the reader is referred to [4].

Algorithm 1 (A modified ACTL model checking)
1. Input: automaton A and ACTL formula α
2. Output: [][] [][]AA cw ∪
3. for ||α≤i do
4. for all)(αβ Subformula∈ with i=|| β do

5. compute [][]Aw from [][]AwS/
6. od
7. od
8. return [][] [][]AA wSw /∪

The algorithm operates in a number of steps. The first step processes all sub-formula of
length 1, the second step processes all sub-formulas of length 2, and so on. At the end of
i th step all the states will be labeled with sub-formulas of length equal to or less than i that
are true in that state. Finally, the algorithm returns two sets of states that contain states
where the formula of interest holds (i.e., witness set) and also where it does not hold (i.e.,
counterexample set).

6 CASE STUDY

Mining areas are vulnerable to a number of hazards including: flooding, roof fall, and
environmental factors that prevent safe human access. These hazards have necessitated
the use of robots to enter, explore, and map these areas. For a better understanding of our
framework, we present a bi-dimensional and easy to visualize mining environment
depicted in Figure 2(a). The specification that we want to verify at runtime is the
reachability of a UAV to region 3 followed by surveillance task of regions 4 and 5. That
is, we assume that the UAV will eventually reach region 3 and continuously remote video
regions 4 and 5. The corresponding specification is formally defined as follows:

))((1
3

1
2

1
3 xxFGxF ∨∀∀∧∀

where 1
2x and 1

3x are sensors augmented in regions 2π and 3π , respectively.

Figure 3: The environment (a) and its automaton (b).

1 In our case, this system represents the environment.

}{ 1
5x }{ 1

3x }{ 1
2x

},{ 2
4

1
4 xx }{ 1

1x 1 4

2 3 5

(a) (b)

1

4
3

2 5

Seotsanyana Page 10 of 11

25th International Conference of CAD/CAM, Robotics & Factories of the Future Conference,
13-16 July 2010, Pretoria, South Africa

The specification is runtime verified with the automaton representing the environment
depicted in Figure 3(b) and it took approximately 0.41 seconds for our framework to
output the two sets: [][] }5,4,3{=Aw and [][] }2,1{=Ac . This means that if we compute a

set of paths (i.e., runs) using only states in [][]Aw , the specification will always be
satisfied (i.e., starting from any of these states the specification will eventually always
hold). But if we compute the set of paths with the states including state 1 or 2 (e.g., {2, 3,
4, 5}), the states 4 and 5 might not infinitely often be visited as there is a cycle of
execution between states 2 and 3. It is clear that the execution of the system might stay in
that cycle forever and this situation violates our specification. These two sets play an
important role in assisting the operator to notice errors that might lead to catastrophic
system failures.

7 CONCLUSION

In this paper, we have presented a framework that is appropriate for robotic systems that
are reactive to changes made in both the operation rules and the dynamic environment.
Motivated by the difficulty of theorem proving, model checking and testing these systems
prior to their execution due to their heavily dependence on the dynamic environment and
changes over time, our framework is based on the observer design pattern. The observer
design pattern is useful in event-driven systems since it encompasses a well-established
communications paradigm that allows any number of subjects (publishers) to
communicate with any number of observers (subscribers) asynchronously and
anonymously via event channels. At runtime the framework takes operation rules written
in a temporal logic called universal computation tree logic, and an automaton
representing the environment and outputs two set of states: witness and counterexample.
Witness is a set of states that satisfy the operation rules while counterexample is a set that
contains states that do not satisfy the operation rules. The case study and the results have
shown that the framework is a promising platform for runtime verification of robotic
systems to ensure safe and reliable functioning of these systems.

8 RECOMMENDATIONS

The presence of environmental uncertainty, while at the same time trying to meet high-
level expectations of autonomous operation, is the main challenge in robotics. This
challenge necessitates the use of stochastic modeling, discrete and continuous dynamics,
quantitative and qualitative measures, and goal-oriented approaches of which the current
software verification tools are unable to address. Therefore, we intend to expand our
framework to include the runtime verification of discrete-time Markov chains (DTMCs),
continuous-time Markov chains (CTMCs) and Markov decision processes (MDPs). We
believe that the runtime verification of these processes will ensure the safety and
reliability of systems that rely on the dynamic environment.

9 ACKNOWLEDGEMENTS

The research conducted and reported on in this paper was funded by the Council for
Scientific and Industrial Research (CSIR), South Africa. The authors would like to thank
Professor Jitendra Raol and Fred Senekal for their advice and comments.

Seotsanyana Page 11 of 11

25th International Conference of CAD/CAM, Robotics & Factories of the Future Conference,
13-16 July 2010, Pretoria, South Africa

10 REFERENCES

[1] Leucker, M., Schallhart, C., A brief account of runtime veri_cation. Journal of Logic
and Algebraic Programming, 78(5):293 - 303, 2009. The 1st Workshop on Formal
Languages and Analysis of Contract- Oriented Software (FLACOS'07).

[2] Clarke, E.M., Grumberg, O., Peled, D.A., Model checking, MIT Press, Cambridge, MA,
1999.

[3] Clarke E.M, Emerson, E.A, “Design and synthesis of synchronization skeletons using
branching-time temporal logic,” in Logic of Programs, Workshop. London, UK:
Springer-Verlag, 1982, vol 131 pp. 52–71.

[4] Christel Baier, Joost-Pieter Katoen, Principles of Model Checking, MIT Press, 55
Hayward Street, Cambridge, MA, 2008.

[5] Bauer, A., Leucker, M., Schallhart, C., “The good, the bad, and the ugly, but how ugly
is ugly?” In Workshop on Runtime Verification (RV'07), pages 126-138, 2007

[6] Kim, M., Kannan, S., Lee, I., Sokolsky, O., and M. Viswanathan, “Java- MaC: Run-
time Assurance Tool for Java Programs “Proc. Of the Fourth IEEE Int’l High
Assurance Systems Eng. Symposium”, pp. 115-132, 1999.

[7] Chen, F., Roşu, G., “Towards Monitoring-Oriented Programming: A Paradigm
Combining Specification and Implementation” Electronic Notes in Theoretical
Computer Science, vol. 89, no. 2, Elsevier, 2003.

[8] Bartetzko, D., “Jass - Java with Assertions,” Proc. of the First Workshop Runtime
Verification (RV'01), Paris, France, Jul. 2001, K. Havelund and G. Roşu, eds.,
Electronic Notes in Theoretical Computer Science, Elsevier Science vol. 55, no. 2,
2001.

[9] Havelund, K., Roşu, G., “Java PathExplorer – A Runtime Verification Tool,”
Symposium on Artificial Intelligence, Robotics and Automation in Space, Montreal,
Canada, June 2001

[10] Drusinsky, D., “The Temporal Rover and the ATG Rover,” SPIN 2000, Springer-Verlag
2000.

[11] Meyer, B., “Applying Design by Contract,” IEEE Computer, vol. 25, no. 10, pp. 40-51,
1992

[12] Clavel, M., Eker, S., Lincoln, P., Meseguer, J., Principles of Maude, Electronic Notes in
Theoretical Computer Science, vol. 4, 1996.

[13] Clavel, M., Duran, F., Eker, S., Lincoln, P., Marti-Oliet, N., Meseguer, J., Quesada J.,
Using Maude, Proc. of the Third Int’l Conf. on Fundamental Approaches to SE, Lecture
Notes in CS 1783, pp. 371-374, 2000.

