Seotsanyana Page 1 of 11

TEMPORAL LOGIC RUNTIME VERIFICATION OF DYNAMIC SYSTEMS

Motlatsi Seotsanyana

Mobile Intelligent Autonomous Systems, Modellinglabigital Science,
Council for Scientific and Industrial Research, PBOx 395,
Pretoria 0001, SOUTH AFRICA.
Email: mseotsanyana@csir.co.za

ABSTRACT

Robotic computer systems are increasingly ubigsitoueveryday life and this has led to a
need to develop safe and reliable systems. To ersafety and reliability of these systems,
the following three main verification techniqueg arsually considered: (1) theorem proving,
(2) model checking, and (3) testing. However, tebaviour of robotic systems depends
heavily on the environment and changes over tintéchwmakes it hard to predict and

analyse prior to their execution. Therefore, thisppr provides a novel framework that
automatically and verifiably monitors these systeatsruntime. The main aim of the

framework is to assist the operator through witesssand counterexamples that are
generated during the execution of the system. fidmeefvork is suitable for manufacturing

and mine operations. In addition, the framework explicitly capture sensor specifications
of the environment and react to the changes acngidito ensure safe and reliable

operation during runtime of the system. The framk\icst constructs a region automaton of
the environment and then represents operation rites formal specification language

called universal computation tree logic (ACTL). §tormal specification language allows

the expression of complex desired behaviours, asatollision avoidance in the case of haul
truck operations.

Keywords: runtime, verification, theorem provingoael checking, testing, temporal logic,
automaton, observer-pattern.

1 INTRODUCTION

Robotic computer systems are increasingly ubigsiiaweveryday life and this has led to
a need to develop safe and reliable systems. Torersafety and reliability of these
systems, the following three main verification teicjues are usually considered: (1)
theorem proving, (2) model checking, and (3) testitheorem proving is the process of
using deductive methods to develop computer progrémat show that some statement
(i.e., conjecture) is a logical consequence of & & axioms and hypotheses.
Unfortunately, theorem proving process is generhbyder and requires considerable
technical expertise and a deep understanding ofspleeification. It is also generally
slower, more error-prone and labour intensive. Matiecking, on the other hand, is an
automatic verification technique for finite statencurrent systems such as safety critical
systems, communication protocols, and sequentialitidesign. Model checking is an
attractive alternative to simulation and testingyatidate and verify systems. But, model
checking techniques are hindered by the state-spguesion problem, where the size of
the representation of the behavior of a system gremponentially with the size of the
systems. Often, software systems have infiniteestptices, due to unbounded real and
integer input variables and timing constraints, #mgs model checking software systems
without any abstractions is almost always impossililhe current practice is that the

25" International Conference of CAD/CAM, Robotics & Fates of the Future Conference,
13-16 July 2010, Pretoria, South Africa

Seotsanyana Page 2 of 11

correctness of computer systems is achieved by humspection: peer reviews and
testing with little or no automation. Peer reviesgger to the inspection of software by a
team of engineers that were preferably not involiethe design of the system, while
testing refers to a process whereby software i€wrd with some inputs, called test
cases, along different execution paths known as. idowever, testing is never complete:
it is difficult to say when to stop as it is infédas to check all the runs of a complex
system and it is easy to omit those runs which mesyeal subtle errors. It also has a
drawback of showing the presence of errors, buthet absence.

All the aforementioned verification techniques oftéo not scale up well to large systems
such as robotic systems, which depends heavilyhenehvironment and changes over
time. This behaviour makes it hard to predict aedfy these dynamic systems prior to
their execution. Therefore, runtime verification ®sn appropriate technique to
complement these techniques. Leucker and Schallbjpdefine runtime verification as
the “discipline of computer science that deals with #tedy, development, and
application of those verification techniques thidw checking whether a run of a system
under scrutiny satisfies or violates a given cotness property”.Although not new,
runtime verification is receiving increasing interelue to the advent of new verification
technigues such as model checking techniques.

In this paper, we provide a novel framework thabmatically and verifiably monitors
robotic systems at runtime. The runtime verificatiomonitor is implemented as a
lightweight model checking algorithm. The main awihthe framework is to assist the
operator through witness and counterexample satsatke generated during the execution
of the system. Witness is a set of states of aesydhat satisfy a formal property
specification, while counterexample is a set ofestaf a system that violates a property.
The framework is suitable for manufacturing, anchenoperations and it is based on
observer design pattern. In addition, the framewodn explicitly capture sensor
specifications of the environment and react tod@nges accordingly to ensure safe and
reliable system operation at runtime. The framewerduires the construction of a region
automaton for the environment and then representaif operation rules in a formal
specification language called universal computaticee logic (ACTL). This formal
specification language allows the expression of mlem desired behaviours, such as
collision avoidance in the case of haul truck opens.

The rest of the paper is organized as follows.i&e@ outlines part of the related work.
Section 3 describes the general problem of the dymanvironment that is augmented
with sensors. Section 4 presents an overview opteat logic and describes the syntax
and semantics of computation tree logic -and amatlass of the logic called universal
computation tree logic. Section 5 describes thémenmonitor; the focus is on its inputs
(the environment and formal specification propsiti@and outputs (the withess and
counterexample sets) at runtime. Section 6 illtssrahe application of the framework
with a case study, while Section 7 concludes thgepaSection 8 highlights the possible
extension of the framework.

25" International Conference of CAD/CAM, Robotics & Fates of the Future Conference,
13-16 July 2010, Pretoria, South Africa

Seotsanyana Page 3 of 11

2 RELATED WORK

There is currently an increasing amount of workngeilone on runtime verification. In
this paper we only present a part of this work. 8iseuss only work done in [6, 7, 8, 9,
10] since all these papers use formal methods igebs.

Monitoring and Checking (MaC) [6] provides a gehdramework that makes sure that
the target program runs correctly with respect formal requirement specification. The
framework consists of two specification languadg@&smitive Event Definition Language
(PEDL) and Meta Event Definition Language (MEDL)herl former is used to define
methods and objects to be monitored; a filter kesefist of monitored local and global
variables, as well as, addresses of monitored tshjdte later is used to write high
specification requirement. The main reason for gigimo specification languages is to
separate the implementation details from high-leggqlirement checking and thus makes
the framework portable to different programminggaages and specification formalisms.

Monitoring —Oriented Programming (MoP) [7] is arnfrawork and methodology for
building program monitors. It allows formal propedpecification to be added to the
target program and does not place any restrictioa fmrmalism to be used, as long as the
corresponding translator of the specification laaggpi exists. The translated code must
contain the following components: declaration,iaiization, monitoring body, success
condition, and failure condition. The user puts@ahons in the target program at which
the monitoring code must be inserted. Currentlg, MoP supports three specification
languages: past time and future time linear tempogac as well as extended regular
expressions.

Java with assertion (Jass) [8] is a general mdngomethodology implemented for

sequential, concurrent and reactive systems writtefava. The tool Jass is a pre-
compiler that translates annotations into a puva jeode in which a compliance with

specification is tested dynamically at runtime. é&ssns extends the Design by Contract
[11], that allows specification of assertions ie florm of pre- and post-conditions, class
invariants, loop invariants, and additional chezlbé inserted in any part of the program
code. Jass also offersfinement checlkndtrace assertionRefinement check is used to

facilitate specification of classes on differentdks of abstraction, while trace assertion
are used to monitor the correct behaviour of methgdcations, ordering and timing of

methods invocation.

Java PathExplorer (JPaX) [9] is a general purposeitaring approach for sequential and
concurrent programs developed in Java. The to@r®ffwo main facilities: logic-based
monitoring and error pattern analysis. Formal dpetions are written in linear temporal
logic (both past and future) or in Maude [12, 1.BPaX instruments Java byte code to
send stream of events to the observer that perfammé$unctions: it checks events against
a high-level specification (logic-based monitoringdnd also checks low-level
programming error (error pattern analysis).

Temporal Rover [10] is a specification based conmmétool for programs written in C,
C++, Java, Verilog and VHDL. In Temporal Rover, tieer annotates the sections of the
target program where a property needs to be cheekedintime. Temporal Rover
supports the following formalisms: Linear—Time Tesrgd Logic (LTL) and Metric
Temporal Logic (MTL) and the properties which ca@a $pecified with these logics

25" International Conference of CAD/CAM, Robotics & Fates of the Future Conference,
13-16 July 2010, Pretoria, South Africa

Seotsanyana Page 4 of 11

include: future time temporal properties as wellaager and upper bound properties, and
relative-time and real-time properties. The todlegathe target program as its input and
its parser generates an identical program to thpgties inserted in the target program
and during execution the generated code validadtes executing program against
specified properties.

3 PROBLEM FORMULATION

The goal of this paper is to present a framewosk &mables the verification of dynamic
robotic systems at runtime. We have developed a&tivea monitor that takes an
automaton of the environment and formal specificetiof operation rules as inputs and
synthesis warnings, alerts or errors that mightl lsasystem failures. The synthesis is
based on the witness and counterexample sets. rbidem that we are out to solve is
depicted by Figure 1. In this section #evironmentandoperation rulesas well as the
design patterremployed are described in detail.

set or modify
Operation rules B operation rules

l

ACTL inputs

v witnesses

sensor inputs

A 4

The Operator

. Mon.iFor . counterexamples
(light verification) >

Environment

change the state of environment (e.g., teleoperation)

A

Figure 1: An overview for framework

Environment To achieve our goal, we assume that the enviromrsepartitioned into a
finite number of regions of interest,..., 77, whereM =07z and 7z n g, =@if i # .
There are a number of objeatd,...,of" moving in the environment, whene denotes

the number of regions anal the number of objects in the environment. Thegeat®
maybe machines (e.g., haul trucks), people (e.grkevs), etc., and they form part of the
environment to one another (i.e., one object besopet of environment of another

object). The partition creates Boolean propositigms{oj,oé,...o?} which are true if the
objects are located i, for exampleo;and o] are true if and only iz ={011,0f}. The
objects interact with their environment throughss®s, which are assumed to be binary.
The m binary sensor€ ={x;,...,x" Jn n regions have their own dynamics which are

not explicitly modeled in this paper. The possiblhaviour of these variables will be
captured with a suitable temporal logic formulagsented in Section 3. Finally, the
environment is formally defined as an automator (¢,),S,S,,0,L whgre:

» ¢ is aset of binary sensor inputs
* y is a set of Boolean propositions of objects irdéng in the environment

25" International Conference of CAD/CAM, Robotics & Fates of the Future Conference,
13-16 July 2010, Pretoria, South Africa

Seotsanyana Page 5 of 11

* [l is a set of partitions of interests that form éngironment
« SUONis a set of states
+ § US isasetofinitial states

e 0:Sx2¢ . 2% is the transition relation, i.€)(s,X) = S'0 SwheresOS is a
state andX [¢ is the subset of sensor propositions that are true

e L:S - 2" is astate labelling function whetgs) =y and y[d2” is the set
of propositions that are true in staté S.

Operation rules These are rules that describe the desired belrawfmbjects interacting
within the environment. In our framework these sulgill be formally expressed in a
suitable universal computation tree logic (ACTL) & presented in Section 3. Informally
speaking, ACTL will be used to specify a variety @feration rules grouped in the
following categories: avoidance, coverage, sequgna@nd conditions. Avoidance refers
to the use of sensors to avoid colliding with otbbjects, coverage refers to those rules
that specify regions of interest to traverse, saqung refers to the traversal of specific
regions in a certain order, and condition refershtwse logical conditions that express a
function from truth values to truth values.

Design patternThe monitor module detailed in Section 4 is r&cto changes caused by
both the environment and operation rules. Thaths, monitor looks after the dynamic
environment and operation rules which maybe madlifieither predictably or
unpredictably, and also oversees the distributetantions of objects in the environment.
An appropriate design pattern in this kind of seisigthe observer design pattern, also
known as Publish-Subscribe or Dependents. The wdisdesign pattern defines a one-to-
many dependency between interacting objects so wi&n one object (the subject)
changes state, all its dependents (the observershdified and updated automatically.
Although not new, the pattern is receiving incraegsnterest because of its usefulness in
event-driven systems. It encompasses a well-estedali communications paradigm that
allows any number of subjects (publishers) to comigate with any number of observers
(subscribers) asynchronously and anonymously vientexhannels. In our case, the
monitor is implemented as an observer while theirenment and operation rules are
implemented as subjects.

4 TEMPORAL LOGICS

Temporal logics are special types of modal logat ihvestigate the notion of time and
order of execution paths in computer systems. Thages have been used to precisely
describe the properties of concurrent systems (asshfetyandlivenessproperties) and
were first introduced by Pnueli around 1977 for #ipecification and verification of computer
systems.In the early eighties Clarke and Emerson introduaedther type of temporal
logic called Computation Tree Logic (CTL) [3, 4]hi$ temporal logic (i.e., CTL)
together with linear temporal logic (LTL) [4] areet mostly widely-used temporal logics
in the formal methods community. In this paper, wse a fragment of CTL called
universal computation tree logic (ACTL) [2] and tf@lowing subsections present the
syntax and semantic of CTL as well as formally déstg the ACTL.

25" International Conference of CAD/CAM, Robotics & Fates of the Future Conference,
13-16 July 2010, Pretoria, South Africa

Seotsanyana Page 6 of 11

4.1 Computation treelogic

The CTL is based on the concept that for each ¢it@te® are many possible successors,
unlike in LTL which is based on a model where esiztes has only one successor state
S'. Because of this branching notion of time, CTlclisssified as &ranching temporal
logic. The interpretation of CTL is therefore based drea rather than aequenceas in
LTL.

CTL Syntax: The formulas of CTL consist of atomic propositiostandard Boolean
connectives of propositional logic, and temporakrapors. Each temporal operator is
composed of two parts, a path quantifier (univefsabr existentialC) followed by a
temporal modality G,F, X,U). Note that some authors useand¢ for G and F ,

respectively. The syntax is given by the BNF:
a:=p|l-a|lal f|Xa|OXa |JaUB] | OaUg]

The operators_,=, < ,true, falsge F,G which are not mentioned in this syntax can be
thought of merely as abbreviations by using thio¥ahg rules:

aLpB==(-al-p) a=pL=(-al)
a-= pf=s(a=>pPL(L=a) trues(~ala)
false= —true Fa=trueU a
Ga=-F-a

CTL Semantics. CTL semantics slightly differs from that one of I, Tthat is, the notion
of a sequence is replaced by a notion of a tree.ifiterpretation of CTL is defined by a
satisfaction relationf between a modeM one of its states and some formula. Let

AP={p,q,r} be a set of atomic propositiony] =(S,R,Label bg CTL-ModelsOS
a and S be CTL-formulas. In order to define the satisfactrelation (]=), the following
definitions are first given:

» A pathis an infinite sequence of stagss,s,,... such thaf(s,s,,) R

« Let pOS" denotes a path. For= 0,p i [denotes thdi +1)™ element ofp, i.e., if
P=%,S,S,... thendi] =5
« B,(s)={p0S"|p[0]=¢} is a set of paths starting at s.

The satisfaction relationf) is then mathematically defined fadlows:

skp iff p O Label(s)
sk-a iff -(ska)
skalp iff skEa)C (sk B
sk Xa iff CpOP(s): o] Ea
s F OXa iff OpOP(s): o] F a

s F Qaup] iff CpOP(s):G=0:(Aj] E
AL O0<k<j:plk] Fa)
f OpOP(s):020:(o[j] F
AL O0<k<j:plk] Fa)

=+

Sk Olaug] i

25" International Conference of CAD/CAM, Robotics & Fates of the Future Conference,
13-16 July 2010, Pretoria, South Africa

Seotsanyana Page 7 of 11

4.2 Universal computation treelogic

In this paper, we consider a fragment of CTL calledversal computation tree logic
(ACTL). The ACTL allows only universal assertions@rL [2]. The syntax of an ACTL
formula a is given by:

a:=plalalflalp|IXa|UFa|0Ga|JaUp]

For each ACTL formula, there exists an equivalestential normal form (ENF). Since
our algorithm outlined in Section 4 uses ENF, Tlatactic abbreviations for ACTL
formulas are provided in Table 1:

this means thata holds at all

OXa =-[Xa successor states of the current state.

this mean that for every path there
UFa =-[G-a exists a state on thgath at which

a holds.

this means that for evenyath , a
UGa =-lF-a holds in each state on tpath.

this means that for every path, there
exists an initial prefix of the path
aU Bl =-0-pU(—al-L)CLG-L | such thatB holds at the last state pf
the prefix anda holds at all other
states of the prefix.

Table 1: The syntactic abbreviation for ACTL forasul

5 THEMONITOR

In [1], the monitor is defined as a device thatdeea finite trace of a run and outputs a
verdict. In [5] a verdict is a true value from somh@main that ranges ovéwue, false and
inconclusive The true valué¢rue means that the specification is satisfiedise means that the
specification is not satisfied whileaconclusivemeans that a conclusion cannot be reached
with the current trace. However, our approach isthe same as followed by other authors
[6, 7, 8, 9, 10], that is our approach do not wefiite prefixes of a run instead the monitor
reacts every time the environment or operationsraleange and outputs warning messages to
the operator based on the set of withesses andierexamples emitted (as explained in
Section 4.1). The monitor is formally defined aidws:

monitor: Ax f, — {[[w]]..[[c]|.}, where:

* A is an automaton that represents the environment,
« f, isasetof ACTL formulas that defines operatioles,

. [[w]]A ={s|s ka} denotes the set of states for which the ACTL fdem is true,

and
. [[c]]A ={s|s - a} denotes the set of states for which the ACTL fdema is

false

25" International Conference of CAD/CAM, Robotics & Fates of the Future Conference,
13-16 July 2010, Pretoria, South Africa

Seotsanyana Page 8 of 11

The computation of these sets (i.e., the witneskamunterexample sets) has its roots in a
fixed point theory [4], that is, the set can be poied using fixed point iterations that are
guaranteed to terminatehd following rules are applied to determine theaages. Let¢ andy be

ACTL formulas ang be atomic proposition (i.ep] AP), then:

A

{sOS]| pLabel(s)}

[-ell. = s\[¢]l.

g oull, = [l Dl

g 0wl = lgllan],

[AGe]l, = [[#]]. n{sOSIOSOR(S) n F(Z)}
[aFg]l, = [#l.O{sOSIOSOR(E) n F(2)}

Where R(S) is the successor state 8f1S and Z is the power set o8 (i.e., 2°) and F(Z) is a
recursive function that terminates when eithereatgst fix-point or a least fix-point is reached.

5.1 Counterexamplesand Witnesses

In model checking, aounterexamplés a set of states that violates an ACTL formala
(i.e., [[c]]A ={s|s |=—| a}), whereas avitnessis a set of states in which the ACTL formula

a holds (i.e.,[[w]]A ={s|s fa}). We provide an example to illustrate the differen
between these two sets. Lptq,r DAP, S= {012345}, S ={0}, andJG p be the
ACTL specification. Thereforew]], ={12,3} and[[c[], ={0,4,5}.

{a.n {a.1}
{a.n} .
W@
P}

Figure 2: A Kripke structure of the environment

The computation of these sets automatically is ppinavantage of model checking and
with proper annotations of the automaton that netie® environment, these sets provide
an operator with valuable information that can l¢adthe avoidance of catastrophic
system failures. For example, the operator cantlsaethe environment modeled by

Figure 2 does not satisfy the ACTL formula becatrse initial state§, is not in the

witness set, which is the requirement in model kimgcthat the initial state must be the
element of a witness set in order for the spedificato hold. If the requirement must
hold, then the operator can modify the environnsenthat the specification holds. In this
case, the operator can label the initial st§fevith atomic propositionp (if this change

does not violate other operation rules).

25" International Conference of CAD/CAM, Robotics & Fates of the Future Conference,
13-16 July 2010, Pretoria, South Africa

Seotsanyana Page 9 of 11

5.2 Light model checking

The model checking problem is defined as follow$ve@ a Kripke structure (or an
automaton)A that represents a finite state systeand a temporal ACTL formula
expressing some desired specification, computes¢hef all states ir5 that satisfya .
This is mathematically expressed afs[S|A,s |=a}. The system satisfies the
specification provided all the initial states anetihe computed set of states. Algorithm 1
outlines a modified version of a model checkingoathm. For the original model
checking algorithm, the reader is referred to [4].

Algorithm 1 (A modified ACTL model checking)

1. Input automatonA and ACTL formulaa

- output [[w]], O{[c]l,

.fori<|a |do

for all 0 Subformulda)with | 5|=i do
computd[w]], from S/[[w]],

od
.od

retu rn[[w]] A0S/ [[W]]A

©NO O AW

The algorithm operates in a number of steps. Tise $tep processes all sub-formula of

length 1, the second step processes all sub-fosmileength 2, and so on. At the end of

i™ step all the states will be labeled with sub-folasiof length equal to or less thiathat

are true in that state. Finally, the algorithm resutwo sets of states that contain states
where the formula of interest holds (i.e., witneef and also where it does not hold (i.e.,
counterexample set).

6 CASE STUDY

Mining areas are vulnerable to a number of hazardsiding: flooding, roof fall, and
environmental factors that prevent safe human accdsese hazards have necessitated
the use of robots to enter, explore, and map thesas. For a better understanding of our
framework, we present a bi-dimensional and easyisoalize mining environment
depicted in Figure 2(a). The specification that want to verify at runtime is the
reachability of a UAV to region 3 followed by suil@nce task of regions 4 and 5. That
is, we assume that the UAV will eventually reacioa 3 and continuously remote video
regions 4 and 5. The corresponding specificatidarisally defined as follows:

OF (x; OOGOF (x; 0x3))
where x; and x; are sensors augmented in regignsand 7z, respectively.

Y . . (b)
Figuie o. The environment (a) and its automawon (b)

Y In our case, this system represents the environment.

25" International Conference of CAD/CAM, Robotics & Fates of the Future Conference,
13-16 July 2010, Pretoria, South Africa

Seotsanyana Page 10 of 11

The specification is runtime verified with the aotaton representing the environment
depicted in Figure 3(b) and it took approximatel$10seconds for our framework to
output the two sets[{w]]A ={34,5} and [[c]]A ={1,2}. This means that if we compute a

set of paths (i.e., runs) using only states[['W]]A, the specification will always be

satisfied (i.e., starting from any of these stdtes specification will eventually always
hold). But if we compute the set of paths with s@tes including state 1 or 2 (e.g., {2, 3,
4, 5}), the states 4 and 5 might not infinitely esft be visited as there is a cycle of
execution between states 2 and 3. It is cleartbeaexecution of the system might stay in
that cycle forever and this situation violates gpecification. These two sets play an
important role in assisting the operator to noticeors that might lead to catastrophic
system failures.

7 CONCLUSION

In this paper, we have presented a framework thappropriate for robotic systems that
are reactive to changes made in both the operati@s and the dynamic environment.
Motivated by the difficulty of theorem proving, mglcchecking and testing these systems
prior to their execution due to their heavily degence on the dynamic environment and
changes over time, our framework is based on tlserebr design pattern. The observer
design pattern is useful in event-driven systemsesit encompasses a well-established
communications paradigm that allows any number abjexts (publishers) to
communicate with any number of observers (subs@)beasynchronously and
anonymously via event channels. At runtime the &ark takes operation rules written
in a temporal logic called universal computatioreetrlogic, and an automaton
representing the environment and outputs two setaiéswitnessandcounterexample
Witness is a set of states that satisfy the operatiles while counterexample is a set that
contains states that do not satisfy the operatitesr The case study and the results have
shown that the framework is a promising platform fontime verification of robotic
systems to ensure safe and reliable functionirntgese systems.

8 RECOMMENDATIONS

The presence of environmental uncertainty, whil¢hatsame time trying to meet high-

level expectations of autonomous operation, is rtke@n challenge in robotics. This

challenge necessitates the use of stochastic nggeliscrete and continuous dynamics,
guantitative and qualitative measures, and goalnted approaches of which the current
software verification tools are unable to addrelserefore, we intend to expand our
framework to include the runtime verification osdiete-time Markov chains (DTMCs),

continuous-time Markov chains (CTMCs) and Markowid®n processes (MDPs). We

believe that the runtime verification of these msses will ensure the safety and
reliability of systems that rely on the dynamic omment.

9 ACKNOWLEDGEMENTS

The research conducted and reported on in thisrpape funded by the Council for
Scientific and Industrial Research (CSIR), Southoaf The authors would like to thank
Professor Jitendra Raol and Fred Senekal for #ukiice and comments.

25" International Conference of CAD/CAM, Robotics & Fates of the Future Conference,
13-16 July 2010, Pretoria, South Africa

Seotsanyana Page 11 of 11

10REFERENCES

[1] Leucker, M., Schallhart, C., A brief account of tiare veri_cationJournal of Logic
and Algebraic Programming’8(5):293 - 303, 2009. The 1st Workshop on Formal
Languages and Analysis of Contract- Oriented Sa#wWBLACOS'07).

[2] Clarke, E.M., Grumberg, O., Peled, D.A., Model dhieg, MIT Press, Cambridge, MA,
1999.

[3] Clarke E.M, Emerson, E.A, “Design and synthesisyofchronization skeletons using
branching-time temporal logic,” ibogic of Programs, Workshopondon, UK:
Springer-Verlag, 1982, vol 131 pp. 52-71.

[4] Christel Baier, Joost-Pieter Katoen, Principle$/loidel Checking, MIT Press, 55
Hayward Street, Cambridge, MA, 2008.

[5] Bauer, A., Leucker, M., Schallhart, C., “The gotitt bad, and the ugly, but how ugly
is ugly?”In Workshop on Runtime Verification (RV'0Q@gages 126-138, 2007

[6] Kim, M., Kannan, S., Lee, I., Sokolsky, O., andWikwanathan, “Java- MaC: Run-
time Assurance Tool for Java Prograr®sdc. Of the Fourth IEEE Int’l High
Assurance Systems Eng. Symposipm 115-132, 1999.

[71 Chen, F., Rgu, G., “Towards Monitoring-Oriented ProgrammingPAradigm
Combining Specification and Implementation” EleaioNotes in Theoretical
Computer Science, vol. 89, no. 2, Elsevier, 2003.

[8] Bartetzko, D., “Jass - Java with Assertiori3rdc. of the First Workshop Runtime
Verification (RV'01)Paris, France, Jul. 2001, K. Havelund and GuReds.,
Electronic Notes in Theoretical Computer Sciendse®er Science vol. 55, no. 2,
2001.

[9] Havelund, K., Reu, G., “Java PathExplorer — A Runtime Verificatibool,”
Symposium on Artificial Intelligence, Robotics aAdtomation in Space, Montreal,
Canada, June 2001

[10] Drusinsky, D., “The Temporal Rover and the ATG RgVE8PIN 2000 Springer-Verlag
2000.

[11] Meyer, B., “Applying Design by ContractlEEE Computervol. 25, no. 10, pp. 40-51,
1992

[12] Clavel, M., Eker, S., Lincoln, P., Meseguer Rtinciples of MaudgElectronic Notes in
Theoretical Computer Science, vol. 4, 1996.

[13] Clavel, M., Duran, F., Eker, S., Lincoln, P., Madiet, N., Meseguer, J., Quesada J.,
Using MaudeProc. of the Third Int'l Conf. on Fundamental Apacbes to SE, Lecture
Notes in CS 1783, pp. 371-374, 2000.

25" International Conference of CAD/CAM, Robotics & Fates of the Future Conference,
13-16 July 2010, Pretoria, South Africa

