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1. Introduction  
 

Most real systems are non-linear. Extended Kalman Filter (EKF) uses non-linear models of 
both the process and observation models while the Kalman Filter (KF) uses linear models. 
EKF is a good way to learn about Simultaneous Localisation and Mapping (SLAM). Much of 
the literature concentrates on advanced SLAM methods which stems from EKF or uses 
probabilistic techniques. This makes it difficult for new researchers to understand the basics 
of this exciting area of research.  
SLAM asks if it is possible for a robot, starting with no prior information, to move through 
its environment and build a consistent map of the entire environment. Additionally, the 
vehicle must be able to use the map to navigate and hence plan and control its trajectory 
during the mapping process. The applications of a robot capable of navigating, with no 
prior map, are diverse indeed. Domains in which 'man in the loop' systems are impractical 
or difficult such as sub-sea surveys and disaster zones are obvious candidates. Beyond 
these, the sheer increase in autonomy that would result from reliable, robust navigation in 
large dynamic environments is simply enormous (Newman 2006). SLAM has been 
implemented in a number of different domains from indoor robots to outdoor, underwater, 
and airborne systems. In many applications the environment is unknown. A priori maps are 
usually costly to obtain, inaccurate, incomplete, and become outdated. It also means that the 
robot‘s operation is limited to a particular environment (Neira 2008). 
This goal of the chapter is to provide an opportunity for researchers who are new to, or 
interested in, this exciting area with the basics, background information, major issues, and 
the state-of-the-art as well as future challenges in SLAM with a bent towards EKF-SLAM. It 
will also be helpful in realizing what methods are being employed and what sensors are 
being used. It presents the 2 – Dimensional (2D) feature based EKF-SLAM technique used 
for generating robot pose estimates together with positions of features in the robot’s 
operating environment, it also highlights some of the basics for successful EKF – SLAM 
implementation: (1) Process and observation models, these are the underlying models 
required, (2) EKF-SLAM Steps, the three-stage recursive EKF-SLAM process comprising 
prediction, observation and update, (3) Feature Extraction and Environment modelling, a 
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process of extracting  well defined entities or landmarks (features) which are recognisable 
and can be repeatedly detected to aid navigation, (4) Data Association, this  consists of 
determining the origin of each measurement, in terms of map features, (5) Multi – Robot – 
EKF – SLAM, the two types of multi robot systems are described: Collaborative and 
Cooperative multi robot systems with more emphasis  on the Cooperative SLAM Scheme. 

 
2. Basic Structure of EKF - SLAM 
 

The EKF-SLAM process consists of a recursive, three-stage procedure comprising 
prediction, observation and update steps. The EKF estimates the pose of the robot made up 
of the position ( , )r rx y  and orientation r , together with the estimates of the positions of 

the N  environmental features ,f ix  where Ni ....1 , using observations from a sensor 

onboard the robot (Williams et al. 2001). We will constrain ourselves to using the simplest 
feature model possible; a point feature such that the coordinates of the thi  feature in the 
global reference frame are given by: 
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SLAM considers that all landmarks are stationary, hence the state transition model for the 
thi  feature is given by: 

 
 , , ,( ) ( 1)f i f i f ik k  x x x  (2) 

 
It is important to note that the evolution model for features does have any uncertainty since 
the features are considered static.  

 
2.1 Process Model 
Implementation of EKF - SLAM requires that the underlying state and measurement models 
be developed. This section describes the process models necessary for this purpose. 

 
2.1.1 Kinematic Model 
Modeling of the kinematic states involves the study of the geometrical aspects of motion. 
The motion of a robot through the environment can be modeled through the following 
discrete time non-linear model: 
 
 ( ) ( ( 1), ( ), )r rk k k k X f X u  (3) 
  

 

Thus, ( )r kX  is the state of the robot at time k , ( )ku  is the robot control input at time k . 

(, , )f  is a function that relates the robot state at time 1k , known control inputs to the 
robot state at time k .  
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Equation (4) above is a little unrealistic, we need to model uncertainty. One popular way to 
model uncertainty is to insert noise terms into the control input ( )ku  such that: 
 
 ( ) ( ) ( )n uk k k u u   (5) 

  
Thus ( )n ku  is a nominal control input and ( )u k  is a vector of control noise which is 
assumed to be temporally uncorrelated, zero mean and Gaussian with standard deviation 
 .  
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The strength (covariance) of the control noise is denoted uQ , and is given by: 
 

  2 2
1 . .u Ndiag  Q  (7) 

 
The complete discrete time non-linear kinematic model can now be expressed in general 
form as: 
 
 ( ) ( ( 1), ( ) ( ))r r n uk f k k k  X X u   (8) 

 
2.1.2 Using Dead-Reckoned Odometry Measurements 
Sometimes a navigation system will be given a dead reckoned odometry position as input 
without recourse to the control signals that were involved. The dead reckoned positions can 
be converted into a control input for use in the core navigation system. It would be a bad 
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2.1.2 Using Dead-Reckoned Odometry Measurements 
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idea to simply use a dead-reckoned odometry estimate as a direct measurement of state in a 
Kalman Filter (Newman 2006).  
Given a sequence (1), (2), (3)... ( )o o o o kx x x x  of dead reckoned positions, we need to 
figure out a way in which these positions could be used to form a control input into a 
navigation system. This is given by: 
 
 ( ) ( 1) ( )o o ok k k   u x x  (9) 
 
This is equivalent to going back along ( 1)o k x  and forward along ( )o kx . This gives a 

small control vector ( )o ku  derived from two successive dead reckoned poses. Equation (9) 
substracts out the common dead-reckoned gross error (Newman 2006). The plant model for 
a robot using a dead reckoned position as a control input is thus given by: 
 
 ( ) ( ( 1), ( ))r rk k k X f X u  (10) 

 
 ( ) ( 1) ( )r r ok k k  X X u  (11) 

 
 and  are composition transformations which allows us to express robot pose described 
in one coordinate frame, in another alternative coordinate frame. These composition 
transformations are given below: 
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2.2 Measurement Model 
This section describes a sensor model used together with the above process models for the 
implementation of EKF - SLAM. Assume that the robot is equipped with an external sensor 
capable of measuring the range and bearing to static features in the environment. The 
measurement model is thus given by: 
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),( ii yx  are the coordinates of the thi  feature in the environment. ( )r kX  is the ),( yx  

position of the robot at time k . ( )h k  is the sensor noise assumed to be temporally 
uncorrelated, zero mean and Gaussian with standard deviation  . )(kri  and )(ki  are the 

range and bearing respectively to the thi  feature in the environment relative to the vehicle 
pose. 
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The strength (covariance) of the observation noise is denoted R . 
 

  2 2
rdiag  R   (18) 

 
2.3 EKF SLAM Steps 
This section presents the three-stage recursive EKF-SLAM process comprising prediction, 
observation and update steps. Figure 1 below summarises the EKF - SLAM process 
described here. 

 
2.3.1 Map Initialisation  
The selection of a base reference B  to initialise the stochastic map at time step 0 is 
important. One way is to select as base reference the robot’s position at step 0. The 
advantage in choosing this base reference is that it permits initialising the map with perfect 
knowledge of the base location (Castellanos et al. 2006). 
 

 0 0B B
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This avoids future states of the vehicle’s uncertainty reaching values below its initial 
settings, since negative values make no sense. If at any time there is a need to compute the 
vehicle location or the map feature with respect to any other reference, the appropriate 
transformations can be applied. At any time, the map can also be transformed to use a 
feature as base reference, again using the appropriate transformations (Castellanos et al. 
2006).  
 

 
Fig. 1. Basic EKF-SLAM Flow chart 

 

 

2.3.2 Prediction 
(a) Prediction based on kinematic model 
The prediction stage is achieved by passing the last estimate through the non-linear model 
of motion of the robot to compute the pose at instant k  based on a control input ( )ku and 

using the information up to instant 1k  (Williams et al. 2001). The predicted robot state rX  
is thus given by: 
 
 ( | 1) ( ( 1| 1), ( ))r rk k k k k   X f X u  (21) 
  
Now we need to propagate the state error covariance. The covariance of the robot state, 

( \ 1)r k k P  is computed using the gradient, ( )x kF  of the state propagation equation (8) 

with respect to the robot pose, the control noise covariance, uQ  and, the Jacobian, uJ  of 

the state propagation equation (8) with respect to the control input ( )ku . 
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(b) Prediction using Dead-Reckoned Odometry Measurements as inputs 
The prediction stage is achieved by a composition transformation of the last estimate with a 
small control vector calculated from two successive dead reckoned poses.   
 
 ( | 1) ( 1| 1) ( )r r ok k k k k    X X u  (25) 
 
The state error covariance of the robot state, ( \ 1)r k k P  is computed as follows: 
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1( , )r oJ X u  is the Jacobian of equation (11) with respect to the robot pose, rX  and 

2 ( , )r oJ X u  is the Jacobian of equation (11) with respect to the control input, ou . 
Based on equations (12), the above Jacobians are calculated as follows: 
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2.3.3 Observation 
Assume that at a certain time k  an onboard sensor makes measurements (range and 
bearing) to m  features in the environment. This can be represented as: 

 
 1( ) [ . . ]m mk z z z  (31) 

 
2.3.4 Update 
The update step need not happen at every iteration of the filter. If at a given time step no 
observations are available then the best estimate at time k  is simply the 
prediction ( | 1)k k X . If an observation is made of an existing feature in the map, the 

state estimate can now be updated using the optimal gain matrix ( )kW . This gain matrix 
provides a weighted sum of the prediction and observation. It is computed using the 
innovation covariance ( )kS , the state error covariance ( | 1)k k P  and the gradient of the 

observation model (equation 14), ( )kH . 
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( )kR is the observation covariance.  
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)1|( kkXr  is the predicted pose of the robot and ),( ii yx  is the position of the observed 
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2.4 Incorporating new features 
Under SLAM the system detects new features at the beginning of the mission and when 
exploring new areas. Once these features become reliable and stable they are incorporated 
into the map becoming part of the state vector. A feature initialisation function y  is used 

for this purpose. It takes the old state vector, ( | )k kX  and the observation to the new 

feature, ( )kz  as arguments and returns a new, longer state vector with the new feature at 
its end (Newman 2006).  
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Where the coordinates of the new feature are given by the function g : 
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2.3.3 Observation 
Assume that at a certain time k  an onboard sensor makes measurements (range and 
bearing) to m  features in the environment. This can be represented as: 

 
 1( ) [ . . ]m mk z z z  (31) 

 
2.3.4 Update 
The update step need not happen at every iteration of the filter. If at a given time step no 
observations are available then the best estimate at time k  is simply the 
prediction ( | 1)k k X . If an observation is made of an existing feature in the map, the 

state estimate can now be updated using the optimal gain matrix ( )kW . This gain matrix 
provides a weighted sum of the prediction and observation. It is computed using the 
innovation covariance ( )kS , the state error covariance ( | 1)k k P  and the gradient of the 

observation model (equation 14), ( )kH . 
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( )kR is the observation covariance.  
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The innovation, ( )kv  is the discrepancy between the actual observation, ( )kz  and the 
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where ( | 1)k k z  is given as: 
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Where the coordinates of the new feature are given by the function g : 
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r  and   are the range and bearing to the new feature respectively. ),( rr yx  and r  are the 
estimated position and orientation of the robot at time k . 
The augmented state vector containing both the state of the vehicle and the state of all 
feature locations is denoted: 
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r f f Nk k kX X x x  (41) 

 
We also need to transform the covariance matrix P  when adding a new feature. The 
gradient for the new feature transformation is used for this purpose: 
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The complete augmented state covariance matrix is then given by:  
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where .x zY  is given by: 
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where nstates  and n  are the lengths of the state and robot state vectors respectively.  
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2.5 Structure of state covariance matrix 
The covariance matrix has some structure to it. It can be partitioned into map mmP  and the 

robot rrP  covariance blocks. 
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Off diagonals rmP  and mrP  blocks are the correlations between map and robot since they 
are interrelated. From the moment of initialisation, the feature position is a function of the 
robot position hence errors in the robot position will also appear as errors in the feature 
position. Every observation of a feature affects the estimate of every other feature in the map 
(Newman 2006). 

 
3. Consistency of EKF SLAM 
 

SLAM is a non-linear problem hence it is necessary to check if it is consistent or not.  This 
can be done by analysing the errors. The filter is said to be unbiased if the Expectation of the 

actual state estimation error, ( )kX  satisfies the following equation: 
 

 
~

( ) 0E k    
X  (50) 

 

   ( ) ( ) ( | 1)
T

E k k k k     
 X X P  (51) 

 
, where the actual state estimation error is given by: 
 

 ( ) ( ) ( | 1)k k k k  X X X   (52) 

( | 1)k k P  is the state error covariance. Equation (51) means that the actual mean square 
error matches the state covariances. When the ground truth solution for the state variables is 
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robot rrP  covariance blocks. 
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Off diagonals rmP  and mrP  blocks are the correlations between map and robot since they 
are interrelated. From the moment of initialisation, the feature position is a function of the 
robot position hence errors in the robot position will also appear as errors in the feature 
position. Every observation of a feature affects the estimate of every other feature in the map 
(Newman 2006). 

 
3. Consistency of EKF SLAM 
 

SLAM is a non-linear problem hence it is necessary to check if it is consistent or not.  This 
can be done by analysing the errors. The filter is said to be unbiased if the Expectation of the 

actual state estimation error, ( )kX  satisfies the following equation: 
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, where the actual state estimation error is given by: 
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( | 1)k k P  is the state error covariance. Equation (51) means that the actual mean square 
error matches the state covariances. When the ground truth solution for the state variables is 
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available, a chi-squared test can be applied on the normalised estimation error squared to 
check for filter consistency. 
 

      1( ) ( | 1) ( )
T

k k k k X P X 2
,1d    (53) 

 
 )(dim kxd   and 1  is the desired confidence level. In most cases ground truth is not 

available, and consistency of the estimation is checked using only measurements that satisfy 
the innovation test: 
 

 1 2
,1( ) ( )T

ij ij ij dk k 
v S v  (54) 

 
Since the innovation term depends on the data association hypothesis, this process becomes 
critical in maintaining a consistent estimation of the environment map (Castellanos et al 
2006). 

 
4. Feature Extraction and Environment modelling 
 

This is a process by which sensor data is processed to obtain well defined entities (features) 
which are recognisable and can be repeatedly detected. In feature based navigation 
methods, features must be different from the rest of the environment representation 
(discrimination). To be able to re-observe features, they must be invariant in scale, 
dimension or orientation, and they must also have a well defined uncertainty model. In 
structured domains such as indoor, features are usually modelled as geometric primitives 
such as points, lines and surfaces. Contrary to indoor domains, natural environments cannot 
be simply modelled as geometric primitives since they do not conform to any simple 
geometric model. A more general feature description is necessary in this regard. To aid  
feature recognition in these  environments, more general shapes or blobs can be used and 
characteristics such as size, centre of mass, area, perimeter, aspects such as colour, texture, 
intensity and other pertinent information descriptors like mean, and variance can be 
extracted (Ribas 2005). 

 
5. Data Association 
 

In practice, features have similar properties which make them good landmarks but often 
make them difficult to distinguish one from the other. When this happen the problem of 
data association has to be addressed. Assume that at time k , an onboard sensor obtains a set 
of measurements ( )i kz  of m  environment features ( 1,..., )i i mE . Data Association 
consists of determining the origin of each measurement, in terms of map features 

.,...,1, njFj   The results is a hypothesis: 

  1 2 3.....k mj j j jH  (55) 

 

 

, matching each measurement ( )i kz  with its corresponding map feature. )0( iji jF  

indicates that the measurement ( )i kz  does not come from any feature in the map 
(Castellanos et al. 2006). Figure 2 below summarises the data association process described 
here. Several techniques have been proposed to address this issue and more information on 
some these techniques can be found in (Castellanos et al 2006) and (Cooper 2005). 
Of interest in this chapter is the simple data association problem of finding the 
correspondence of each measurement to a map feature. Hence the Individual Compatibility 
Nearest Neighbour Method will be described.  

 
5.1 Individual Compatibility (IC) 
The IC considers individual compatibility between a measurement and map feature 
(Castellanos et al. 2006). This idea is based on a prediction of the measurement that we 
would expect each map feature to generate, and a measure of the discrepancy between a 
predicted measurement and an actual measurement made by the sensor. The predicted 
measurement is then given by: 
  
 ( | 1) ( ( | 1), , )j r j jk k k k x y  z h X  (56) 

 
The discrepancy between the observation ( )i kz  and the predicted measurement 

( | 1)j k k z  is given by the innovation term ( )ij kv : 

 ( ) ( ) ( | 1)ij i jk k k k   z z  (57) 

 
The covariance of the innovation term is then given as: 
 
 ( ) ( ) ( | 1) ( ) ( )T

ij k k k k k k  S H P H R  (58) 

 
( )kH  is made up of rH , which  is the Jacobian of the observation model with respect to 

the robot states and FjH , the gradient Jacobian of the observation model with respect to the 

observed map feature.  
 

 ( ) 00 00 00r Fjk    H H H  (59) 

 
Zeros in equation (59) above represents un-observed map features. 
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Fig. 2. Data Association Flow chart 
 
To deduce a correspondence between a measurement and a map feature, Mahalanobis 
distance is used to determine compatibility, and it is given by: 
 

 2 1( ) ( ) ( ) ( )T
ij ij ij ijD k k k k v S v  (60) 

 
The measurement and a map feature can be considered compatible if the Mahalanobis 
distance satisfies:  
 
 2

1,
2 )(   dij kD  (61) 

 
Where )dim( ijvd   and 1  is the desired level of confidence usually taken to be %95 . 
The result of this exercise is a subset of map features that are compatible with a particular 

 

measurement. This is the basis of a popular data association algorithm termed Individual 
Compatibility Nearest Neighbour. Of the map features that satisfies IC, ICNN chooses one 
with the smallest Mahalanobis distance (Castellanos et al 2006).  

 
6. Commonly used SLAM Sensors 

The most popular sensor choice in indoor and outdoor applications is a laser scanner even 
though it is costly. Its popularity stems from the fact that it provides high quality dense data 
with a good angular precision. Cameras are also commonly used to obtain visual 
information (e.g colour, shape or texture) from the environment. Acoustic sensors are 
considered to be the cheapest choice but less reliable to perform SLAM even in highly 
structured environments. This is because sonars produce measurements with poor angular 
resolution and the problem of specular reflections. If used, then one must somehow deal 
with these limitations. The situation is different in underwater domains. Due to the 
attenuation and dispersion of light in water, laser based sensors and cameras become 
impractical, though cameras can still be used in applications where the vehicle navigates in 
clear water or very near to the seafloor. Due to excellent propagation of sound in water, 
acoustic sensors remain the best choice in the underwater domain (Ribas 2008). 

 
7. Multi – Robot EKF – SLAM 

In order for a multi-robot team to coordinate while navigating autonomously within an 
area, all robots must be able to determine their positions as well as map the navigation map 
with respect to a base frame of reference. Ideally, each robot would have direct access to 
measurements of its absolute position such as using GPS, but this is not possible indoor or in 
the vicinity of tall structures. Therefore, utilising multi robot systems becomes attractive as 
robots can operate individually but use information from each other to correct their 
estimates (Mourikis, Roumeliotis 2005).  

 
7.1 Collaboration Vs Cooperation 
There are two types of multi robot systems: collaborative and cooperative multi robot 
system. Collaborative case is when robots working as a team in real-time, continuously 
update each others state estimates with the latest sensor information. While cooperative 
kind is when robots share information via an external computer to find the group solution 
based on available communicated information (Andersson, L. 2009). 
Of interest in this chapter is the Cooperative SLAM Scheme. Assuming we have two robots 
capable of individually performing SLAM and robot–robot relative measurements as shown 
in figure 3. In the picture, SLAM results and as well as possible robot-robot relative 
measurements results are fed into the Cooperative strategy module to calculate possible 
route for each member. The module utilises the current global map information to derive 
controls for the system. That is, determining the team manoeuvres providing optimal 
reward in terms of exploration gain. Figure 3 below shows a Cooperative SLAM Scheme 
which is an estimation and control closed loop problem similar to the structure discussed in 
(Andrade-Cetto,J. et al. 2005). 
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measurement. This is the basis of a popular data association algorithm termed Individual 
Compatibility Nearest Neighbour. Of the map features that satisfies IC, ICNN chooses one 
with the smallest Mahalanobis distance (Castellanos et al 2006).  

 
6. Commonly used SLAM Sensors 
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7. Multi – Robot EKF – SLAM 

In order for a multi-robot team to coordinate while navigating autonomously within an 
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measurements of its absolute position such as using GPS, but this is not possible indoor or in 
the vicinity of tall structures. Therefore, utilising multi robot systems becomes attractive as 
robots can operate individually but use information from each other to correct their 
estimates (Mourikis, Roumeliotis 2005).  

 
7.1 Collaboration Vs Cooperation 
There are two types of multi robot systems: collaborative and cooperative multi robot 
system. Collaborative case is when robots working as a team in real-time, continuously 
update each others state estimates with the latest sensor information. While cooperative 
kind is when robots share information via an external computer to find the group solution 
based on available communicated information (Andersson, L. 2009). 
Of interest in this chapter is the Cooperative SLAM Scheme. Assuming we have two robots 
capable of individually performing SLAM and robot–robot relative measurements as shown 
in figure 3. In the picture, SLAM results and as well as possible robot-robot relative 
measurements results are fed into the Cooperative strategy module to calculate possible 
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reward in terms of exploration gain. Figure 3 below shows a Cooperative SLAM Scheme 
which is an estimation and control closed loop problem similar to the structure discussed in 
(Andrade-Cetto,J. et al. 2005). 
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Fig. 3. Cooperative SLAM scheme 

 
7.2 Map Initialisation  
As in single robot SLAM, Multi robot SLAM system requires some common reference frame 
between the robots. We then make assumptions that, (1) initially the global map is empty, 
(2) robot one iR  starts at known pose. 
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While the second robot jR   is placed in front of the first and is detectable by iR . 

 
7.3 State Augmentation 
The first assumption states that the map is initially empty; therefore the known robots and 
objects need to be added to the map before updating. Using stochastic representation as 
discussed in (Smith, Self & Cheesman 1986), priori information can be inserted in the 
estimated state vector and corresponding covariance matrix as shown in equation (63 & 64) 
below. 
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Noting that all information inserted into the state vector ˆ Bx needs to be represented in the 
global reference frame B. From the second assumption, when a robot is observed by Ri for 
the first time, the system state vector needs to be augmented by the pose of the observed 
robot with respect to frame of the observing robot. The observed pose estimate is then 
transformed from the observer frame of reference to global frame through the following 
equations:  
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where  ˆijR z  is a nonlinear transform function giving the spatial perception by the 

observer robot. The corresponding observation covariance matrix R  is represented in the 
observer’s reference frame and also needs to be transformed into global frame as shown in 
equation (67), i.e. z zG RG . The aforementioned measurement covariance matrix R  differs 
with sensor type, but in this chapter, we model the laser range finder type of sensor, 

providing range and bearing. Where range and bearing are respectively given by r  and i
j  

from equation (66). And i  is the orientation of the observer robot. 
A correct stochastic map needs the independences and interdependences to be maintained 
through at the mapping process. Since no absolute object (robots or landmarks) locations are 
given prior, the estimations of objects positioning are correlated and strongly influenced by the 
uncertainty in the robot(s) locations. Equation (64) is a covariance matrix of the system, where 
the leading diagonal elements are the variances of the state variables for Ri and Rj 
respectively. These are evaluated similar to the derivation in (Martinelli, Pont & Siegwart 
2005), that is: 
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i k i k z z    P x f P x f G RG(k-1|k-1) (k-1|k-1) , (67) 

 

where 1
i

kf  is the Jacobian of equation (65) with respect to the observer robot state, 
derived as; 
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zG  is also the Jacobian of equation (65) with respect to the observation. And it is calculated 
as:  
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The off diagonal elements are computed as: 
  

 1 1( , ) ( , )j i T
j i k j i kx x x x   P f P f , (70) 

where 

 ( , ) ( , )Tj i j ix x x xP P  (71) 

 
The results of equations (67),(70) and (71) are then substituted back into equation (64) giving 
the stochastic map estimates at the initial poses. 
The discrete conditional subscript used in equation (67) and the reminder of the paper is for 
readability purposes therefore, 1| 1k k P implies ( 1| 1)k k P . 

 
7.4 Robot Re-observation 
If a robot already in the map is re-observed, the system state vector is not augmented but it 

is updated. Thus, if we assume that robot Ri located at pose B
ix  makes an observation i

jz  of 

another robot at pose B
jx  then observation function is given as: 
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 (72)  

Assuming 1kw  is zero mean and of Gaussian distribution form, with covariance R , 
calculated as: 
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Suppose the two robot are equipped with the same sensor, then i  and i  are the 

observation covariances for the corresponding robot. The term ( , )i jh x x  in equation (72) 

is a nonlinear function that relates the output of the sensor to the states. The function is 
made up of relative distance and relative bearing (Ri observes Rj), given as: 
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Its jacobian is calculated as follows:  
 

 2 2 2 2 2 2 2 2
2 1

2 2 2 2 2 2 2 2

0 0
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 0
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

j i j i j i j i

j i r r j i j i j i j i j i j i

j i j i j i j i

j i j i j i j i j i j i j i j i

x x y y x x y y
x x y y x x y y x x y y x x y y

y y x x y y x x
x x y y x x y y x x y y x x y y

    
                  
   

            

h 




 (75) 

  
 

Given prior and current measurement information we can update state estimate using 
Extended Kalman Filter (EKF). The filter update equation is evaluated as: 
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|ˆ k kx implies ˆ( 1| 1)x k k  . 

 
8. Conclusions 

EKF is a good way to learn about SLAM because of its simplicity whereas probabilistic 
methods are complex but they handle uncertainty better. This chapter presents some of the 
basics feature based EKF-SLAM technique used for generating robot pose estimates together 
with positions of features in the robot’s operating environment. It highlights some of the 
basics for successful EKF – SLAM implementation:, these include: Process and observation 
models, Basic EKF-SLAM Steps, Feature Extraction and Environment modelling, Data 
Association, and Multi – Robot – EKF – SLAM with more emphasis  on the Cooperative 
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SLAM Scheme. Some of the main open challenges in SLAM include: SLAM in large 
environments, Large Scale Visual SLAM, Active and Action based SLAM; development of 
intelligent guidance strategies to maximise performance of SLAM, Autonomous Navigation 
and Mapping in Dynamic Environments, and 3D Mapping techniques. 
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