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Abstract

Improving the quality of an image increases the probability, speed
and accuracy with which possible objects of interest can be lo-
cated and identified. Image sharpening, in particular, can correct
for soft focus and strengthen the outlines of objects thus improving
the identification and segmentation both by automatic means and by
man in the loop systems. Output pixel independence is ensured so
that a GPU can be used to sharpen the pixels in parallel, achieving
processing performance increases of 20-360 fold. This work pro-
vides a metric which can quantify the sharpness of an image and
shows that the sharpness of live video can easily be doubled in real-
time on commercial desktop computers without inducing excessive
noise.

CR Categories: 1.4.0 [Image Processing and Computer Vision]:
General—Image Processing Software; 1.4.3 [Image Processing and
Computer Vision]: Enhancement—Grey-scale Manipulation;
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1 Introduction

Sharpness is a measure of how in focus an image appears. Sharper
images show more fine detail allowing for better object detection,
recognition and classification [Bachoo and de Villiers 2009]. Im-
age sharpening methods are broadly classifiable as either spatial or
frequency domain algorithms, with the former being further broken
down into first or second derivative based techniques [Gonzalez and
‘Woods 2002]. This work focuses primarily on the frequency and
first derivative spatial domain techniques. In the image spatial do-
main, sharpness is associated with the rate of change from one gray
level to another [Gonzalez and Woods 2002], the fewer pixels this
takes, the more distinct the edge appears. This also means it is eas-
ier to determine which pixels belong to which object, thus aiding
segmentation. In the frequency domain, it is the higher frequencies
that increase sharpness [|[Gonzalez and Woods 2002].

As with most problems in image processing, it is difficult to sepa-
rate the sharpness of the image from the sharpness of a scene. If a
scene has no distinct edges, and smooth blending between colour
levels then the enhancement of it will not be sharp no matter the
amount of image processing applied. Thus sharpness is best evalu-
ated as a relative improvement over the original image, and not in
trying to adjust the image to some fixed sharpness value.

With the advent of the increased progammability of Graphics Pro-
cessing Units (GPU) and their seemingly ever increasing number
of processor cores (the dual-GPU NVidia GTX295 has 480 cores),
they are being increasingly applied to non-graphics applications. It
is not uncommon to see processing performance increased 100 fold
or more [Owens et al. 2008|] when compared to a modern Central
Processor Unit (CPU) implementation. There are still certain con-
straints as to what type of algorithms may be run on GPUs, [Owens
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et al. 2008| provide a thorough discussion of these. The most im-
portant is that each output pixel, while dependant on any number of
(hopefully clustered) input pixels, is independent of other outputs.
Table [I] provides the specifications of the GPU’s used in this work.
Low, mainstream and high-end are represented.

Table 1: GPU Comparison

Num GPU Memory Bus
Shaders | Clock | Width | Speed
(MHz) | (bits) | (MHz)

Quadro MDS 140M 16 400 64 700
ATI HD 2400XT 40 800 64 700
NVidia 9600GT 64 650 256 900
NVidia GTX280 240 602 512 1107

2 Metric descriptions

Three metrics are used to evaluate images for sharpness. The first
two are a measure of how much information is present in the im-
age. Sharper images will use a greater palette than blurred images
(which will eventually tend to the average intensity of the image
as the blurring is increased). The third is a measure of the average
edge strength, since images with strong edges visually appear more
crisp (see Section|[3).

2.1 First Order Entropy

In information theory, the Shannon Entropy (Eq (1)) provides a
measure of the average information contained in the image, ex-
pressed as the number of bits (hence the base of 2 for the logarithm)
required to represent each pixel - assuming that they’re indepen-
dent. The theoretical maximum entropy is the same as the bit depth
of the image, which is 8 for the data used in this paper.

Entropyy = Y —p(i) x loga (p(i)) M

where:
p(i) = the probability of a pixel having intensity ¢ and is
determined from the normalized 8-bit histogram.

2.2 Second Order Entropy

Eq. (2) provides a measure of the information when pairs of pixels
in the image are considered. The number of possible pairs to use
for calculating the histogram is S°7"," [i] where n is the number
of pixels in an image. Note that since pairs of pixels (assumed

to be 8 bit grey-scale in this paper) are being considered there are



2818 — 65536 entries in the histogram.
1 63535
Entropys = ZO —p(i) x logz (p(i)) @)
im
where:

p(i) = the probability of the 1st pixel having an intensity
of 4 >> 8 and the 2nd having an intensity of
&0z F'F as per the normalized 16-bit histogram.

Since pixels in different regions of the image are unlikely to be
interdependent, a more realistic scenario in terms of processing re-
quirements can be used. This is to calculate the entropy over each
horizontally adjacent pair of pixels (there are ~ n such pairs) and
then repeat this for vertically adjacent pixel pairs. The geometric
mean of these two values (as expressed by Eq. (3)) provides a mea-
sure of the information of each pixel given its four neighbouring
pixels.

Entropysea; = \/Entropy% * Entropys, 3)
where:
Entropyar, = Eq. @) considering only horizontally adjacent
pixel pairs, and
Entropyz, = Eq. @) considering only vertically adjacent
pixel pairs.

2.3 Least Squares Error Surface Gradient Magnitude

The idea here is to approximate the local area in an image with a
tractable function, such as the second order two dimensional poly-
nomial of Eq. (@). Thereafter the partial derivatives with respect
to the horizontal and vertical axes can be explicitly calculated, and
the magnitude of the gradient vector determined, as shown by Eq.
(B). This is similar to the method proposed by [Lucchese and Mira
2002]] of fitting a second order surface in the vicinity of a checker
intersection and solving for the saddle point to find is sub-pixel po-
sition.

f(z,y) = Co+ Ciaz + Coy + Csa® + Cazy + Csy°  (4)
where:

f(z,y) = approximate intensity at (x, y) in the image.

|9 S = \/(‘”f;;y))+ (M)’ ®

where:
| v f(z,y)| = magnitude of image intensity gradient at (x, y),

w = C1 +2Csz + Cyy, and
%’Ty’y) = C2 4 2Csy + Cyx.

In this work a 7 by 7 window centered on each pixel was used and
therefore this is an over determined system of the type given by Eq.
(6) where row-major multiplication is used. Unless the points in the
window happen to lie on a second order two dimensional polyno-

mial surface then there will be no solution for C' which satisfies Eq.

(6) perfectly, and so a best fit compromise for C must be found.

AC =B (6)

where:

constant term
x coefficient
y coefficient
22 coefficient
zy coefficient
y? coefficient

A = matrix of pixel coordinate powers as per Eq (7)), and

B = vector of pixel intensities per Eq (8),

The (49 by 6) matrix A, given by Eq. (), is simply a list of the
various combinations and powers of = and y as defined by Eq. (@)
and in the same order as the definition of the column vector 5,
calculated for every pixel in the window.

1.0 a0 Yo 338 ZoYo yg
1.0 x Y1 xf T1Y1 yf
A= 1.0 X9 Y2 x% Tay2 yg

1.0 =1 yi—a CC?_1 Ti—1Yi—1 yiz—l
N
where:
¢ = the number of pixels to fit the surface over, and

(zn,yn) = the position of the nth pixel.

The column vector B (Eq. (®)) is a list of the intensities of the
pixels who’s coordinates were used to generate matrix A.

I(UCO, yo)
I(z1,y1)
B = I(z2,y2) )

I(xi—1,yi-1)
where:
¢ = the number of pixels to fit the surface over,
(zn,yn) = the position of the nth pixel, and
I(z,y)) = the intensity of the pixel at (x, y).

In addition to simplifying the maths, fitting the surface of Eq. (@)
in the least squares error sense will also smooth out any erroneous
noise in the area. Eq. (@) shows how the coefficients can be deter-
mined analytically.

— _1 —

C = (ATA) ATB )
where:

A = as defined in Eq. (7),

B = as defined in Eq. (§), and
C = as defined in Eq. (6).

It is more optimal to use relative coordinates (i.e. z,y € [—3, 3]
for the 7 by 7 window used) in Eq. (7) instead of global im-
age coordinates. This allows A, A”, and (AT A)™!, to be calcu-
lated once. Additionally, the partial derivatives at the center pixel
(i.e. (0,0)), simplify to C; for the x derivative and C> for the

y derivative. Therefore the other four elements of C' need not be



calculated and so only 12 of the 36 multiplications required by
((ATA)~") x (A B) need be performed.

The final metric used (Eq. (I0)) is the average of Eq. (3) over all
pixels in the image whose 7 by 7 window lies entirely within the
image.

h—4 w—4
AveGrad = ; Z Z | V7 f(@m, yn)|
(u%_6) n=3 m=3
(10)
where:

|V f(Zm,yn)| = as defined in Eq. (), and
(w, h) = resolution of the image

3 Algorithm Descriptions

Image processing algorithms can be divided into two groups: spa-
tial domain and frequency domain algorithms. Spatial domain algo-
rithms operate directly on the pixels. Frequency domain algorithms
are the extension to two dimensions of the algorithms used in signal
processing theory. Low frequencies contain information about the
general shape and colour of objects in the scene. Higher frequen-
cies define the edges.

3.1 Spatial Domain Algorithms

For image sharpening in the spatial domain, the general idea is to
increase the rate of change of pixel intensity in the vicinity of edges.
Three algorithms are discussed below that do this.

3.1.1 Unsharp Masking

Details regarding unsharp masking (UM), originally developed in
dark rooms to improve the contrast of photos captured on film, can
be found in any good book on image processing (e.g. [Gonzalez
and Woods 2002]]). The image is compared to a slightly blurred
version of itself. This blurred version by definition has both noise
and edges made less distinct, whereas uniform areas of the image
will be largely unaffected. The difference between the original im-
age and the blurred image is then added back to the original image
thus emphasizing the edges. In the dark room this was done by
developing the original film stacked on top of the negative of the
blurred version. Unsharp masking is expressed mathematically as:

I'(z,y) :I(x y)+G(I(m v)- (1D
G 3 3t i)
i=—nj=-n
where :
I'(z,y) = the new intensity at (z, y) in the sharpened image

I(z,y) =
G = the specified, constant gain used to sharpen the image

the intensity of the input image at (x, y)

n = the window size used for the sharpening

This algorithm does not actively look for edges and enhance only
in their vicinity. Instead, pixels near the edge of a uniformly shaded
region are compared to an average which includes pixels that are
not part of the region, and thus its intensity will be modified more
than pixels in a uniform region. This algorithm also causes noise
to be amplified in regions that should be uniform but are not. The
selected gain is then a compromise between enhancing the edges
and making the image look grainy. Small window sizes highlight
fine detail, whereas large window sizes enhance the main regions,
but may suppress detail near the edges of region boundaries.

3.1.2 Standard Deviation Gain

Standard Deviation Gain (SDG) is similar to the previous algo-
rithm, except its gain is not constant. It aims to have a high gain
in the vicinity of a region boundary and a low gain in uniform areas
of the image, as shown in Eq (12):

I'(z,y) = I(m,y) +f(:c y)(I(w)— (12)
where :

I(x,y) = the intensity of the input image at (z, y)

I'(x,7) = the new intensity at (x, y) in the sharpened image

f(z,y) = variable gain dependant on the local image content
n = the window size used for the sharpening

The particular gain considered here is a damped version of the stan-
dard deviation (Eq. @]}). This is similar to the method of Kwon
and Liang [Kwong and Liang 1992], although they use the variance
for unsharp masking and not as a differential gain. In constant re-
gions the standard deviation will be low, near edges it will be high.
However it can be extremely high near edges and hence the damp-
ing, which was empirically determined and may need to be scaled
if the intensities are not represented by 8 bit unsigned integers.

0 =in (V/ate.n) = () (3
where :
y+n  x+n
g(z,y) = 2n+ DD IRY

i=y—nj=r—n

y+tn  z+n

2n+ Z Z

i=y—nj=r—mn

h(z,y) =

f(x,y) = variable gain dependant on the local image content

I(z,y)
n = the window size used for the sharpening

= the intensity of the input image at (z, y)

3.1.3 Sobel Gain

This algorithm is also based on Eq. (12), however it uses the mag-
nitude of the local intensity gradient vector (as estimated using the
Sobel operator [Sobel 1970]) as its variable gain function. This
value too is scaled, so as to prevent excessive gain from binarizing
the image near edges. This damping was empirically determined
and may need to be scaled if the intensities are not represented by
8 bit unsigned integers.

fy) =140 \/ (Zrwn) + (L)

(14)
where :
I(x,y) = the intensity of the input image at (z, y)
f(x,y) = variable gain dependant on the local image content

n = the window size used for the sharpening

3.2 Frequency Domain Algorithms

Frequency domain algorithms work by manipulating the power
spectral density of the image, the phase is left unchanged. In magni-



tude and phase representation, the distance of a point in the spectral
domain from the centre of the image corresponds to its frequency,
and its polar angle corresponds to the angle of the sine wave in the
image.

3.2.1 Converting To and From the Frequency Domain

To convert from the time domain to the frequency domain, the
Fourier transform is used. In 1807 Jean Baptiste Joseph Fourier
showed that any repetitive signal could be represented as an infinite
series of harmonic sine waves. The specific magnitudes and phases
of the sine waves are what made each signal unique.

The details of the Discrete Fourier Transform (DFT) and its more
efficient counterpart, the Fast Fourier Transform (FFT), can be
found in any handbook on signal processing [Carlson 199§| or
image processing [|Gonzalez and Woods 2002]. Suffice it to say
that the FFT requires O(Nlog2 N ) operations whereas the DFT re-
quires O(N?) operations. This results in a speed up from less than
0.03 Frames Per Second (FPS) to 2.75FPS when converting a 640
by 480 pixel image on the CPU. The GPU implementation of the
FFT [Moreland and Angel 2003]] provided a further increase from
2.75FPS to 5S7FPS.

3.2.2 Mid Frequency Boost

In an image, the zero frequency is the average intensity, the highest
frequencies tend to be noise, and the low frequencies contain the
basic shape information. The fine details and crisp edge informa-
tion is contained in the high frequencies. So this algorithm merely
multiplies all the frequencies in a chosen band by a specified gain,
and hence its name the Mid-Frequency Boost (MFB). As is always
the case in the frequency domain, the band edges must be smooth
and continuous so as to minimize ringing and echo ripple effects in
the image. The band used in this evaluation is the 0.2 to 0.8 band
(normalized to maximum image frequency). The bandpass filter
was created from 6th order low and high pass Butterworth filters
with-3dB cut off frequencies of 0.8 and 0.2 respectively

4 Results

This section provides all the results of the comparisons of the sharp-
ening algorithms considered in this study. Two 640 by 480 8-bit
grey-scale images were used, one with relatively little detail/edges
(Figure and [3(a)) and one with a large amount of detail/edges
(Figure and.The sharpened images, the quantified im-
provement in sharpness, and comparative processing rates are pro-
vided. Table [2]indicates, for relative comparison purposes, the av-
erage amount of time taken for 100 iterations of each metric on an
Intel Atom N270 1.6GHz CPU. Table [3] summarizes the results of
the different sharpening algorithms. The results are as per the out-
put of Eqgs (I), () and (T0), the first two have units of bits per pixel,
and the last shades per pixel.

Table 2: Metric execution time

[ Metric | Execution Time (ms) |
Entropy: 4.58
Entropyzad; 18.55
Intensity Gradient 5780605.0

Table 4] provides the comparative rates of the different algorithms
on the different hardware platforms, as well as the speed up factor
of the NVidia GTX280 over the CPU. The CPU used was a (sin-
gle core of) an Intel Core2 Quad 2.83GHz, the system had 4GB

of RAM although the 32 bit operating system only allowed access
to 3.2GB. OpenSceneGraph was used to handle the loading of the
GPU programs (shaders), and its built in statistics collector was
used to obtain the rates. The shaders were written in the OpenGL
Shading Language allowing them to run on both NVidia and ATI
GPUs. The rates quoted for MFB include conversion to and from
the frequency domain, which may already be part of the specific
image processing chain.

Figures [T] and [2] show the results for the different spatial domain
sharpening techniques, omitting window size n = 7 for the unsharp
mask and SDG algorithms due to space constraints. Figure [3]shows
the results of two different gains for the MFB algorithm for both
the high and low detail image.

5 Discussion of results

A visual inspection of Figures [I] 2] and 3] indicates that MFB and
SDG induce the least amount of noise in the image, while still en-
hancing the images. This correlates well with both entropy metrics
for both the high and low detail images in Table |3} Similarly, the
image gradient metric corresponds well to the edge strength as ex-
pected, but does not indicate any degradation in the image. It is seen
from Table[2]that the two entropy metrics are much quicker gradient
intensity metric. It can be concluded that the average image gradi-
ent is not a suitable metric for sharpness, regardless of the method
used to generate it (e.g. sum of the Sobel gradient intensities), since
few methods are as accurate as that in[2.3]

The range of results for Entropy: is the lowest having a -0% to
+4% range for the low detail image, compared to -0% to +12%
and -0% to +125% for the Entropy..q; and intensity gradient
metrics respectively. For the high detail image these ranges are -
23% to +1%, -21% to +7% and -0% to +129% for the Entropyi,
Entropyaa.q; and intensity gradients respectively. It is perhaps sur-
prising that the two entropy metrics rate algorithms in very similar
orders if they are ranked by entropy, especially since the adjacency
inherent in entropyaaq; intuitively feels like it should be more sen-
sitive to edges and thus perceived sharpness.

As can be seen from Figures [I(b)} E®)} and increased

window sizes causes unsharp masking to make the edges more dis-
tinct, however image detail in the vicinity of the edges is lost. Ad-
ditionally, induced graininess is visible in the smooth regions of
the low detail image. This is reflected in Table [3] where the Inten-
sity Gradient increases with window size, yet the overall entropy
decreases, indicating a loss of information.

Figures[I(d)] [I(e)} 2(d)] and 2(e)] show differing results for the low

and high detail images using the SDG algorithm. For the low detail
image, sharpening it with a window size of 3, produces a very crisp
image, a fact not reflected by any of the three metrics. In addition it
causes an unwanted halo-ing around the edges with large window
sizes. This last is true for the high detail image too, although even
the small window sizes provide too much amplification. However,
in the constant intensity regions of the images it does not magnify
the minor differences and cause additional graininess, and has su-
perior performance to unsharp masking in this regard.

Figures and show the results for the Sobel-gain algorithm.
This algorithm was consistently the quickest algorithm and pro-
vided the second highest improvements in entropy, with compara-
tively little degradation compared to the large window size unsharp
masking and SDG algorithms.

Subjectively, MFB (Fig[3) adds very little noise to the images, yet
provides the highest increase in entropy (see Table [3), implying
that the gain could be further increased safely. However, these al-
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(a) Original Image (b) Fixed, win size 3, gain 2

(e) StDev, win size 15, gain 2 (f) Sobel Gain

Figure 1: Low detail image, spatial sharpenings
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(d) StDev, win size 3, gain 2

(e) StDeyv, win size 15, gain 2

Figure 2: High detail image, spatial sharpenings

(f) Sobel Gain
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(c) MFB, gain 2 (d) MFB, gain 2

(e) MFB, gain 3 (f) MFB, gain 3

Figure 3: Frequency domain sharpenings



Table 3: Sharpness metrics

Algorithm Info Low Detail Image High Detail Image
Name | Win | Gain | Entropy: | Entropysaq; | Intensity Gradient | Entropy: | Entropyz.q; | Intensity Gradient
Size (bits/pixel) (bits/pixel) (shades/pixel) (bits/pixel) (bits/pixel) (shades/pixel)
Orig 6.54 4.74 1.74 7.64 6.47 6.73
MFB 1 6.78 5.17 1.78 7.68 6.74 6.86
MFB 2 6.81 5.34 1.83 7.72 6.92 7.02
Sobel 6.65 5.20 1.95 7.48 6.75 8.53
UM 3 2 6.58 5.04 2.05 7.62 6.77 9.51
UM 7 2 6.59 5.04 2.58 7.43 6.55 11.79
UM 15 2 6.54 4.97 2.98 7.16 6.27 11.97
SDG 3 6.56 4.87 2.21 7.12 6.30 11.88
SDG 7 6.67 4.94 3.24 6.44 5.63 15.34
SDG 15 6.52 4.94 391 5.85 5.10 15.40
Table 4: CPU vs GPU Processing Rate Comparison
Model | Window Quadro ATI HD | NVidia NVidia GPU
Name Size Gain | CPU | MDS 140M | 2400XT | 9600GT | GTX280 | Improvement
(FPS) (FPS) (FPS) (FPS) (FPS) (factor)
Sobel 25.6 69.2 309.6 730.0 3100 121.1
MFB 2.75 3.75 33.6 57 20.7
UM 3 2 9.4 44.9 70.4 434.0 1140 121.3
UM 7 2 2.5 17.1 25.6 142.9 537 214.8
UM 15 2 0.6 2.6 6.3 24.5 154 256.7
SDG 3 5.5 43.8 70.2 450.1 1130 205.5
SDG 7 1.6 14.5 20.6 141.7 559 349.4
SDG 15 0.4 2.33 6.2 214 147 245.0
gorithms are comparatively slow, if the transformation to and from References

the frequency domain is considered.

Porting the algorithms to the GPU, considerably increased the per-
formance of the algorithms with gains proportional to the specifi-
cations of the GPU’s provided in|l} The two best sharpening al-
gorithms, SDG and MFB, achieved processing gains of 120 and 20
fold respectively, with the former running at several thousand FPS.

6 Conclusions

The entropy: metric is both the quickest to calculate (especially if
the histogram is already calculated for use elsewhere in the image
processing pipeline), accurately reflects the improvement in image
quality due to sharpening, and indicates when too much sharpen-
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ing is being applied. The Sobel gradient based variable gain algo-

rithm is the optimal choice in the spatial domain, providing results
only slightly inferior to the mid-frequency boost. If the specific ap-
plication already does processing in the frequency domain then a
high-gain mid-frequency boost would be the optimal choice. High
frame rates are easily achieved using even low-end GPUs, which
can comfortably sharpen a video frame before the next arrives.

A suitable metric to measure image quality in a real-time manner
has been found, and was used to evaluate several different sharpen-
ing algorithms. Furthermore, these algorithms have been ported to
the GPU, yielding considerably quicker frame rates such that real-
time processing of video is possible on even fairly low-end modern

personal computers.
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