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Abstract: We report on two resonator systems for producing Bessel–like 
beams with longitudinally dependent cone angles (LDBLBs). Such beams 
have extended propagation distances as compared to conventional Bessel–
Gauss beams, with a far field pattern that is also Bessel–like in structure 
(i.e. not an annular ring). The first resonator system is based on a lens 
doublet with spherical aberration, while the second resonator system makes 
use of intra–cavity axicons and lens. In both cases we show that the 
LDBLB is the lowest loss fundamental mode of the cavity, and show 
theoretically the extended propagation distance expected from such beams. 
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1. Introduction 

The zero–order Bessel beam (J0) as a mathematical construction was firstly introduced by 
Durnin [1]. Such beams have been produced by many different techniques, including 
illuminating an annular ring and transforming the field through a lens [2], a hologram [3], an 
axicon [4,5], and recently intra–cavity techniques [6–9] and the use of anisotropic crystals 
[10,11]. The use of a refractive axicon, or conical lens, provides the most efficient method for 
producing Bessel beams, due mainly to the higher transmittance compared to an annular slit, 
and because an axicon produces no higher–order diffracted beams as in the case of 
holographic elements. 

Much of the interest in Bessel beams is connected with the nondiffracting nature of these 
beams as well as with the effect of self–reconstruction of the transverse profile after 
shadowing (see for example [12,13]). While inside the nondiffracting region the Bessel beam 
does not change its profile, at the boundary of this region the beam abruptly transforms into a 
conical field with the characteristic ring–shaped intensity distribution; we shall refer to this 
change as the “double–face” effect. The significant difference between the near–field and the 
far–field intensity pattern can be considered a characteristic feature of such beams, in contrast 
to Gaussian beams which preserve their profile while propagating in free space. 

The double–face effect can be partially weakened by generating a Bessel beam with a 
very small cone angle γ, as the nondiffracting beam length is inversely proportional to γ. 

There is an elegant approach to eliminate the double–face effect for Bessel beams via the 
generation of Bessel beams with decreasing cone angle γ during beam propagation. In so 

doing, if at z→∞ the limiting value of the angle γ (z) is zero, then such beams will have the 
advantages of both Bessel and Gaussian beams. In what follows such beams will be referred 
to as longitudinal dependent Bessel–like beams (LDBLBs). 

The methods of producing such LDBLBs can be divided into two classes, namely extra– 
and intra–cavity beam shaping. Extra–cavity (external) beam shaping can be achieved by 
manipulating the output beam from a laser with suitably chosen amplitude and/or phase 
elements. LDBLBs have been generated external to the cavity by a variety of techniques, 
including a combination of axicons and lens systems with spherical aberration and 
anastigmatic lens axicons with reflecting spherical surfaces [13–18]. There are obvious 
disadvantages to reshaping outside the cavity in comparison to intra–cavity design, not the 
least of which is the introduction of additional external losses and adjustment problems. 

The second method of producing such beam intensity profiles, intra–cavity beam shaping, 
is based on generating a LDBLB directly as the cavity output mode. 

Unfortunately such laser beams are not solutions to the eigenmode equations of laser 
resonators with spherical curvature mirrors, and thus cannot be achieved (at least not as a 
single mode) from conventional resonator designs. The key problem is how to calculate the 
required non–spherical curvature mirrors of the resonator in order to obtain the desired output 
field. Our approach is based on a combination of the so–called “reverse propagation 
technique” proposed by Belanger and Pare [19–22] together with known extra–cavity designs 
of obtaining BLBs [23–25]. We apply this approach to two proposed resonator systems. The 
first resonator system is based on a combination of diverging and converging lenses, but with 
spherical aberration [23]. The second resonator system is based on an axicon–lens doublet 
together with a second axicon [25]. We will show that for both resonator systems the desired 
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LDBLB is the fundamental mode, yet the spectral properties of the LDBLBs differ in the two 
approaches. 

2. Resonator concept 1: intra–cavity aberrated lenses 

One method of producing (extra–cavity) Bessel beams with longitudinally dependent cone 
angles (γ = γ(z)) is shown in Fig. 1(a), and is based on a telescope arrangement where one of 
the lenses has significant spherical aberration [23]. 

 

Fig. 1. (a) An extra–cavity design for producing LDBLBs by passing a Gaussian beam through 
a Galilean telescope system where the lenses L2 has spherical aberration; (b) the intra–cavity 
resonator equivalent where M1 has spherical aberration. 

The equivalent intra–cavity design, shown in Fig. 1(b), requires two mirrors chosen such 
that mirror M2 mimics lens L2 and mirror M1 mimics lens L1, but with an additional phase 
term to produce the conjugate field after reflection. In this case the desired field of extra–
cavity system satisfies the criteria that its wavefront matches the phase of each mirror in the 
cavity and is the TEM00 mode of the given resonator system [19–22]. 

In the original telescope design the optical elements were large (~10 cm in diameter) [23]. 
The large aperture allows raising the amount of spherical aberration easily because of this 
type of aberration depends strongly on the radius of the incident beam width on the lens or 
mirror. Obviously, the resonator system with a similar aperture is difficult to design, and one 
of the key problems of such a resonator system is to increase the amount of spherical 
aberration of the wave front of the output beam. To solve this problem we propose using a 
converging mirror with spherical aberration instead of a diverging lens with spherical 
aberration (as was proposed by Aruga [23]) [see Fig. 1(a)] and, consequently, a diverging 
mirror with spherical aberration in the resonator scheme [see Fig. 1(b)]. We can see from Fig. 
(2 (a (red)) that the beam radius on the converging mirror M1 is almost twice the size than on 
the diverging one, M2. Therefore for the converging mirror we can use almost a 16 times 
weaker coefficient of the spherical aberration. Furthermore, in this case, we have to change 
the output mirror into a diverging mirror as well [see Fig. 1 (b)]. 

With these adjustments to the design, the problem is reduced to finding the shape of 
mirror M1, since the shape of mirror M2 (as well as the resonator length) can be taken directly 
from the extra–cavity design. The shape of mirror M1 must be such that after reflection the 
reverse propagating field should be equivalent to the phase conjugate of the field after 
propagation through the extra–cavity telescope system, taking into account the spherical 
aberration of lens L1. This problem can be solved analytically, as we now show. Consider the 
extra–cavity analogy of a Gaussian beam passing through the telescope, with the waist on L2 
with half–width w0. Lens L2 is a non–aberrated thin lens with focal length f1. Lens L1 is a 
converging lens of focal length f, together with some degree of spherical aberration (β). If the 
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two lenses are separated by a distance z1, then the curvature of the wavefront at a plane just in 
front of L1 may be found from the Fresnel diffraction integral: 
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where k0 = 2π/λ, λ is the wavelength of the light, and R0 is the radius of the mirror. It is useful 
to solve Eq. (1) by applying the method of stationary phase, to give: 
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At the plane just after L1 the field will be the product of a1 and the transmission function 
of lens L1 with spherical aberration, namely: 

 ( )2 4

2 1 0 2 0exp 2 .a a ik f ikρ βρ= − +   (3) 

The transfer function for mirror M1 is then found from [19–22]: 

 *

1 2 2
.

M
t a a=   (4) 

We simulate this resonator numerically using the well known Fox–Li approach in matrix 
approximation [22], with the following parameters: λ = 632 nm, z1 = 0.65 m, w0 = 0.5 mm, f1 
= 0.4 m, f2 = 0.7 m, and aberration coefficient β = 16 × 10

4
 m

–3
. The mirror radii were chosen 

as R0 = 5 mm, corresponding to a Fresnel number of Nf = 60. With these parameters the phase 
of mirror M1 was calculated directly from Eq. (4) and shown in Fig. 2 (a (blue)). 

 

Fig. 2. The phase of mirror M1 obtained by direct solution of Eq. (4) (a (blue)) and the 
intensity profiles on resonator mirror M1 and M2 after stabilization (a (red)). The fundamental 
mode stabilization as a function of the number of round trips (b). 

We note from Fig. 2(b) that the fundamental mode stabilizes after only a short number of 
round trips; despite the relatively large Fresnel number of the system. We can understand this 
behaviour by considering that without any spherical aberration on mirror M1 the resonator 
lies on the boundary between stable and unstable, and with the inclusion of spherical 
aberration the losses increase due to a shift into an unstable resonator configuration with the 
overall losses around 4 percent per trip. 

Figure 2(a (red)) shows the intensity profiles of the beam on mirrors M1 and M2 after 
stabilization of the Fox–Li algorithm. We can see the required fields are obtained 
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successfully, namely Gaussian transverse intensity profile on mirror M2 (see Eq. (1) and the 
field corresponding to Eq. (2) on mirror M1. 

 

Fig. 3. The propagation properties of the output beam. (a) – longitudinal dependence of on-
axial intensity, (b) – cross section of propagated beam on distance 0.7 m (1) and 1.3 m (2) 
correspondingly, (c) – spatial spectrum intensity view of obtained beam profiles, (d) – density 
plot of the propagated beam. 

Figure 3(a) illustrates the change in the on-axis intensity with propagation distance z. As 
is seen, it is a one-peaked curve typical for Bessel beams. When z increases up to several 
meters or more, there occurs a slow monotonic decrease in the peak on-axis intensity with 
propagation distance as is typical of Gaussian beams. We also note that the field widens 
during propagation [see Fig. 3(b) and 3(d)], as well as picks up the ring structure of Bessel 
beams. Thus the output beam from the resonator has the characteristics of a Bessel–like beam 
outlined by others [23]. The nondiffracting properties of this beam can be noted from the 
spatial spectrum Fig. 3(c) which consists of two main peaks (see Fig. 3(c

1
) red dashed 

graphs), the first central peak due to the Gaussian nature of the beam, and the second off-
center peak (with some oscillations) a characteristic of the annular ring spectrum of Bessel–
Gauss beams [12]. The oscillations on this annular ring are due to the composite nature of the 
Bessel spectrum from such Bessel–like beams, namely that the spectrum is a summation over 
several Bessel spectrums with close cone angles. These results are consistent with those found 
by the generation of such beams external to the cavity [23]. In particular, such beams have the 
advantages of both Gaussian and Bessel beams: long propagation distances over which the 
shape of the intensity does not change (Gaussian-like characteristics) and nondiffracting 
properties similar to Bessel beams. 

3. Resonator concept 2: intra–cavity axicons 

It has recently been shown that it is possible to create Bessel–like beams with longitudinally 
dependent cone angles, γ = γ(z), by the use of axicons and lenses sans any spherical 
aberration [25]. This method, depicted in Fig. 4(a), consists of two axicons, A1 and A2, and a 
thin lens L with focal length F. The Bessel beams generated by these axicons are 
characterized by cone angles of γ1 and γ2 respectively. 
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Fig. 4. (a) An extra–cavity design for producing LDBLBs by passing a doublet of axicon-lens 
and axicon; (b) the intra–cavity resonator equivalent. 

Following the same approach as outlined in the previous section, one can construct an 
equivalent resonator version of this set–up, as shown in Fig. 4(b). However modelling such a 
system is problematic due to the fact that the apexes of the axicons are aligned with the 
maximum intensity of the laser beam. To solve this problem we propose using instead of a 
zero order Laguerre–Gaussian beam the Laguerre–Gaussian beam of first azimuthal order (m 
= 1, p = 0) but with a flat phase (the beam waist fits the output plane) as the initial beam to 
avoid maximum intensity on apexes of axicons [see Fig. 5 (a (red))]. 

Similarly to the first scheme, the curvature of the wave front at the output plate of the 
“axicons” scheme may be found from the Fresnel diffraction integral: 
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Following the approach of the stationary phase approximation as before, we find the field 

at M1 to be given by: 
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At the plane just after M1 the field will be the product of a1 and the transmission function 
of the axicon A1, namely: 

 ( )2 1 0 1
exp .a a ik γ ρ= −   (7) 

We simulate this resonator numerically using the well known Fox–Li approach in matrix 
approximation [22], with the following parameters:λ = 632 nm, z1 = 0.65 m, w0 = 1.5 mm, γ1 
= 0.3 degree, γ2 = 0.1 degree, F = 0.65 z1. The mirror radii were chosen as Ra1,2 = 5 mm, 
corresponding to a Fresnel number of Nf = 60. With these parameters the phase of mirror M2 
was calculated directly from Eq. (7) and shown in Fig. 5 (a (blue)). 
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Fig. 5. The phase of mirror M2 obtained by the direct solution of Eq. (7) (a (blue)) and the 
intensity profiles on resonator mirror M2 and M1 after stabilization (a (red)). The fundamental 
mode stabilization as a function of the number of round trips (b). 

The stabilization process for this resonator system [Fig. 5(b)] behaves differently to that 
shown earlier. Firstly, the stabilization process requires more round trips for similar Fresnel 
numbers, and secondly, we note an oscillation in the process which may be explained by the 
interference of the low order modes during stabilization. 

The resulting fields on both the mirrors after stabilization are shown in Fig. 5 (a (red)). 
The obtained transverse field distributions on both mirrors fits the required transverse field 
distributions of Eqs. (5), 6). The change in the on-axis intensity with propagation distance z 
can be seen in Fig. 6(a). It is a one-peaked curve typical for Bessel beams and with z 
increasing there occurs a slow monotonic decrease in the peak on-axis intensity with a 
propagation distance as is typical of Gaussian beams. The obtained behavior is similar to the 
telescope scheme [see Fig. 3(a)]. 

During propagation the intensity profile of the obtained beam is getting wider and the 
transverse intensity profile becomes close to a Bessel beam profile with a longitudinal change 
of the cone angle as we can see in Fig. 6(b), 6(d). 

One of the major features of these beams is the dramatically increased propagation 
distance over which the beam intensity remains enveloped by a Bessel function. In fact, the 
Bessel character remains to the far field (infinity), and have been tested in the laboratory up to 
several tens of meters [25]. By contrast, one of the popular methods for Bessel–Gauss beam 
generation is employment of an axicon and a Gaussian beam [4,5]; using the same values for 
the Gaussian beam width, w0, and axicon cone angle, γ1, we find that such a Bessel–Gauss 
beam would have a nondiffracting length of approximately 0.3 m. Thus while the LDBLBs 
slowly diverge during propagation, the enveloping function remains Bessel-like. Clearly there 
are applications where this shape invariance during propagation would be desirable. 

From the view of the spatial spectra of the obtained beam and because of the spatial 
spectra profile of the Bessel–Gauss beam has displacement Gauss view we can suppose that 
the obtained beam can be described as the sum of Bessel–Gauss beams with different and 
discrete differences in the cone angles [see Fig. 6 (c)]. This representation can be used for an 
easy explanation of the self–reconstruction properties of this class of longitudinal dependant 
Bessel like beams [12]. 

However, if the cone angle of the obtained beam changes with distance, namely the 
decrease of the cone angle is observed, we anticipate a decrease of the annular ring radius of 
the spatial spectra. Nevertheless the absolute value of the spatial spectra must be conserved 
[see Fig. 3(c) and 6(c)] To avoid the mismatch of the spatial spectra and the propagation 
properties of the obtained beam we propose the following explanation. We can describe the 
spatial spectrum of the obtained beam as a sum of Bessel–Gauss beams with different and 
discrete differences in cone angles [see Fig. 6 (c)] and the initial field has an intensity which 
is similar to the displaced Gaussian [see Fig. 5 (a)]. Therefore we can expect that the rays, 
radiating from the displaced Gauss peak and the associating with the different Bessel–Gauss 
beams, will intersect the central part of the beam on different distances [see the output rays on 
Fig. 4 (a), 4(b)]. The distance will be longer for Bessel–Gauss beams with a smaller cone 
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angle and vice versa which is why the central part of the beam must be described by a Bessel 
function with a decreasing cone angle during the propagation [see Fig. 6 (c)]. Consequently 
we must expect the self–reconstruction distance to increase in distance corresponding to the 
cone angle of the central part of the beam [12]. 

 

Fig. 6. The propagation properties of the output beam of the intra–cavity axicons scheme. (a) – 
longitudinal dependence of the central peak, (b) – cross section of the propagated beam on 
distance 0.7 m (1) and 1.3 m (2) correspondingly, red dotes on (b1) – the Bessel function of 0 

order with radial wave number equal to 2.05 × 104 m−1 (c) – spatial spectrum intensity view of 
the obtained beam profiles, (d) – density plot of the propagated beam. 

4. Conclusion 

We have outlined two resonator systems for producing longitudinally dependent Bessel–like 
beams as the output TEM00 mode. The first resonator system is based on a doublet of the 
diverging and converging lenses with spherical aberration [23]. The second resonator system 
is composed of lens-axicon doublet and a second axicon [25]. The difference in the spectrums 
and intensity profiles of the obtained beams leads to differences in both the propagation 
properties and the nondiffracting property of the resulting beams that we can see in Fig. 3 and 
Fig. 6. The different stabilization behavior of these systems was observed and results from the 
difference in the stability parameter of given cavities [see Fig. 2(b) and Fig. 5(b)]. Because of 
the field on one of the mirrors of both the resonator systems has the Laguerre–Gaussian view, 
we can employ the widely applicable methods for selection of required mode and depressing 
undesired ones, which are extensively used in the conventional resonators, for example the 
inclusion of suitable apertures. We can conclude that both resonator systems can be used for 
producing longitudinally dependant Bessel–like beams and obtained beams have close but 
different nondifraction and propagation properties (see Fig. 3, 6). The shape invariance of 
such beams over extended distances as compared to regular Bessel-Gauss beams may be 
desirable for many applications. 
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