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a b s t r a c t

A novel operational policy, the Process Intermediate Storage operational policy, is introduced and used
to synthesize, schedule and design multipurpose batch plants. The model is based on the State Sequence
Network and non-uniform discretization of the time horizon of interest model developed by Majozi and
Zhu [Majozi, T., Zhu, X. (2001). A novel continuous-time MILP formulation for multipurpose batch plants.
1. Short-term scheduling. Industrial and Engineering Chemistry Research, 40(23), 5935–5949]. Two cases
eywords:
atch process
cheduling
IS policy
esign

are studied to determine the effectiveness of this operational policy. In the first case, which excludes
any dedicated storage, the use of this operational policy results in 50% improvement in throughput. The
second case is used to determine the minimum amount of intermediate storage while maintaining the
throughput achieved with infinite intermediate storage. This results in 20% reduction in the amount of
dedicated intermediate storage. The models developed for both cases are MILP models. An MINLP design

to ex
atent storage
ILP

model is then developed

. Introduction

.1. The development of batch scheduling

The production of low-volume high-value-added products such
s pharmaceuticals and agrochemicals is the premise of batch
lants. This is mainly due to their inherent ability to adjust to steep
hanges in production and product type demands. Based on this
nherent flexibility, batch plants can be divided into two classes,
.e. multiproduct and multipurpose batch plants. In multiproduct
lants all products use essentially the same equipment and follow
he same path through the plant. Whereas in multipurpose plants,
here is no common path through the plant and in some cases suc-
essive batches of the same product can follow completely different
aths and finish simultaneously. Therefore, multipurpose plants are
ot only more complex than multiproduct plants, but are also the
uperset of multiproduct plants. Accompanying the flexibility of
atch plants is inherent complexity that derives from the nature of
Please cite this article in press as: Pattinson, T., & Majozi, T. Introducing a
Chemical Engineering (2009), doi:10.1016/j.compchemeng.2009.07.008

he products.
There are six operational policies currently used in literature and

n practice:
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• Zero Wait (ZW),
• No Intermediate Storage (NIS),
• Finite Intermediate Storage (FIS),
• Unlimited Intermediate Storage (UIS),
• Mixed Intermediate Storage (MIS) (Weide & Reklaitis, 1987) and,
• Central Intermediate Storage (CIS) (Jung, Lee, & Lee, 1996; Ku &

Karimi, 1990).

In the ZW policy intermediate products cannot wait after they
have been processed; so as soon as a batch has been processed in a
unit it must be moved to the next step in its recipe. In general the
resulting schedules have a stair-step appearance, as shown in Fig. 1.
The ZW policy is generally used for unstable products, where delays
may have a detrimental effect on the product. The remaining opera-
tional policies are related to the nature of the intermediate storage.
The NIS policy is used when there is no intermediate storage avail-
able, however, this does not imply that products cannot be stored
in the process unit before processing or before moving to the next
available processing unit. The FIS policy is more practical in nature,
where there is an existing storage vessel of known capacity. How-
ever, this operational policy often assumes that there is a dedicated
storage vessel for each intermediate product. The UIS policy is more
of a theoretical operational policy, because the plant would have to
new operational policy: The PIS operational policy. Computers and

be of infinite size to handle the unlimited capacity, however, this
operational philosophy can be used at a design phase because it
offers the highest degree of freedom of the previously mentioned
policies. In practice it is more common to find these operational
policies being used together in sections of the plant. To this end

dx.doi.org/10.1016/j.compchemeng.2009.07.008
http://www.sciencedirect.com/science/journal/00981354
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Fig. 1. Stair-step nature of schedules with the ZW operational policy.

Fig. 2. A serial process with the MIS and CIS operational policies.

W
s
a
p
u
C
p

t
d
t
p
c
o
i
c
t
W
o

d
r
b
i
p
i
m
o
i
e

The beginning and end of time slots coincided with the beginning
and end of a task, as shown in Fig. 5. The formulation was derived
from the Resource Task Network (RTN) representation. In this rep-
resentation, the plant is modelled as resources and tasks. Resources

Fig. 4. Uniform discretization of the time horizon.
Fig. 3. Batch vs. continuous processing.

eide and Reklaitis (1987) defined the MIS operational policy. In a
ituation where various intermediates are compatible, a CIS oper-
tional policy is recommended. When using the CIS operational
olicy there is a centralised intermediate storage unit which can be
sed by all products. The flowsheet in Fig. 2 illustrates the MIS and
IS policies, where sections of a plant have different operational
olicies including the concept of shared storage.

Although these operational philosophies help with the opera-
ion of a batch plant, one must understand that there is a major
ifference between continuous and batch plants which pertains to
ime. In continuous plants time is not a factor, however, in batch
lants time is one of the most important variables. Due to the dis-
rete nature of batch plants, scheduling of tasks is essential for their
peration. The differences between batch and continuous process-

ng are clearly shown in Fig. 3. The discrete nature of batch processes
an be clearly seen in Fig. 3a, where a task is processed in a unit and
hen once completed is transferred to the next unit for processing.

hereas, in a similar continuous process the discrete nature is only
bserved at startup and shutdown, as shown in Fig. 3b.

In its general form, the general scheduling problem entails
etermination of the optimal sequence of events using available
esources. Formulation of this problem was initially proposed
y Sparrow, Forder, and Rippin (1975). They developed a mixed

nteger non-linear program (MINLP) formulation for multiproduct
lants and introduced two solution strategies to solve the schedul-

ng problem. The first strategy introduced the heuristic solution
Please cite this article in press as: Pattinson, T., & Majozi, T. Introducing a
Chemical Engineering (2009), doi:10.1016/j.compchemeng.2009.07.008

ethod, which is divided into three parts. Firstly, the calculation
f the exact equipment sizes, given the number of units in parallel

s performed. Secondly, the exact sizes are converted to standard
quipment sizes, and thirdly, the number of units which are in par-
 PRESS
ical Engineering xxx (2009) xxx–xxx

allel at a given stage is chosen. The second solution strategy involved
a deterministic branch and bound method.

It was concluded that the heuristic method was faster but might
not lead to the optimal solution, whereas the branch and bound
technique finds an optimum solution and is more flexible in that
it allows constraints to be set, thus lowering computational time.
As the problem was an MINLP and there were no solution proce-
dures to guarantee the global optimality, Grossmann and Sargent
(1979), posed this problem as a geometric program and proved
that the solution is global using the Karush–Kuhn–Tucker con-
ditions. They also proved that the problem could be solved as a
relaxed subprogram by disregarding the discreteness of equipment
sizes. Ravemark and Rippin (1998) applied the same formulation
as Sparrow et al. (1975) but used logarithmic transformations to
ensure convexity of the MINLP.

Heuristic methods proposed by Sparrow et al. (1975) were used
by Suhami and Mah (1982) to solve a multipurpose batch plant
formulation. The drawback of heuristic methods is that they cannot
guarantee global optimality. This is due to the fact that they are
based on “rules of thumb”, which are derived from experience.

The above formulations were all based on recipe networks.
These networks are derived for continuous plants (i.e. flowsheets),
but in batch plants this can lead to ambiguity. This led Kondili,
Pantelides, and Sargent (1993) to develop the State Task Network
(STN) representation. The STN has two types of nodes; namely,
state nodes, which represent feeds, intermediate and final products
and task nodes, representing processing operations that transform
material from input states to output states. Rectangular blocks
and circles represent task and state nodes, respectively. Based
on the STN a discrete time mixed integer linear program (MILP)
formulation was developed. The resulting time intervals coin-
cided with the beginning and end of a specific event, as shown
in Fig. 4. The problem with this formulation, however, is that
the discretization of time with the attendant accuracy concerns,
results in the creation of a large number of binary variables. In
general the more binary variables a problem has, the more the
computational effort required to find a solution. These computa-
tional issues were tackled in the second paper of the series (Shah,
Pantelides, & Sargent, 1993), where they developed methods to
reduce the number of binary variables. However, due to the inher-
ent large number of binary variables required, suboptimal results
were still achieved. The large number of binary variables was in
part due to the restriction placed on the time horizon. In order
to alleviate this restriction the continuous-time formulation was
developed.

Schilling and Pantelides (1996) developed a continuous-time
MINLP formulation where time slots of unknown length were used.
new operational policy: The PIS operational policy. Computers and

Fig. 5. Time points and slots used by Schilling and Pantelides (1996).

dx.doi.org/10.1016/j.compchemeng.2009.07.008
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Fig. 6. Simple unit operation.
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The above techniques have been developed to take many differ-
ent operational policies into account. The reason for this is so that
the practical environment can be more easily modelled. However,
none of these operational policies exploit the latent storage found in

Fig. 8. Unit operation where states split.
Fig. 7. Unit operation where states mix.

ot only include raw materials, intermediates and products like
he STN, but also include processing, storage, transportation and

anpower. A task is an operation that converts a set of resources
o another set. The tasks do not only include processing steps,
ut also include transportation and cleaning. In RTN, resources
re produced and consumed. Some of the detailed reviews on the
tate-of-the-art techniques in short-term scheduling have been
resented by Mendez, Cerdá, Grossmann, Harjunkoski, and Fahl
2006) and Barbosa-Póvoa (2007).

Although continuous-time formulations reduced the number of
inary variables, problems still occurred in solving schedules for

arge-scale industrial plants. The assignment of a single binary vari-
ble to units (i) and tasks (j) at any time (n), is common to all
reviously discussed formulations, and leads to i × j × n number
f binary variables. This observation led Ierapetritou and Floudas
1998) to develop an MILP continuous-time formulation, based on
he STN to address this problem. The main contribution of their for-

ulation is the decoupling of task events from unit events. This is
one by the introduction of binary variables for tasks wv(j, n) and
nits yv(i, n), which represent the common binary variable y(i,j,n).
s a result, instead of i × j × n binary variables, their formulation

eads to (i + j) × n binary variables. In this formulation a further
eduction in binary variables is possible if there exists a one-to-one
orrespondence between tasks and units. However, this reduction
an become tedious in large-scale industrial plants. Following this
bservation Majozi and Zhu (2001) developed a scheduling rep-
esentation and a continuous-time formulation, which gives the
east number of binary variables and does not require simplifica-
ion.

.2. The State Sequence Network

Majozi and Zhu (2001) introduced the State Sequence Network
SSN) representation consisting of states only. The SSN is a graph-
cal representation of all the states that occur on the particular
atch plant and is derived from the recipe. A state changes when

t undergoes some process, such as mixing, separating or reacting.
his is represented by an arc connecting two consecutive nodes.
he building blocks of the SSN are shown in Figs. 6–8. From these
uilding blocks its is easy to construct an SSN for any situation. The
ifference between the SSN and the STN is that in the SSN only
tates are considered while tasks are implicitly incorporated. The
Please cite this article in press as: Pattinson, T., & Majozi, T. Introducing a
Chemical Engineering (2009), doi:10.1016/j.compchemeng.2009.07.008

ormulation makes use of time points proposed by Schilling and
antelides (1996) and also used by Ierapetritou and Floudas (1998).
he main difference between this model and the model proposed
y Ierapetritou and Floudas (1998) is that a binary variable is not
ssigned to the task, so if a one-to-one correspondence between a
 PRESS
ical Engineering xxx (2009) xxx–xxx 3

state and a task does not exist, fewer binary variables will result
when using the SSN.

The defining of effective states is an integral part when using the
SSN because this reduces the number of binary variables. Effective
states are a subset of all the input states so only input states are
considered. If a process requires multiple raw materials to make a
particular product, then it is a fact that if one of the raw materials is
fed then all of the other required feeds must also exist to make the
product. By noting this, it is simple to see that only one of the states
need to be defined as an effective state to ensure that all the states
are fed to the particular process. For instance in the example in
Fig. 9, the second reactor requires two feeds, S2 and S3. This leads
to two choices of effective state, either S2 or S3, the reason that
only one of these states need contribute to the number of binary
variables is that if S2 is fed to the reactor then S3 must also be fed
to the reactor at the same time so there is no need for both to be
effective states.

Once again using the example in Fig. 9, where the SSN and STN
are constructed from the given flowsheet, the attractiveness of the
model proposed by Majozi and Zhu (2001) is illustrated. Applying
the formulation of Ierapetritou and Floudas (1998) to the example
in Fig. 9, n × (3 + 3) binary variables (where n is the number of time
points) would be required, but using the one-to-one correspon-
dence between tasks and units, this would reduce to 3 × n binary
variables. However, using the SSN and defining the effective states
as S1, S3 and S4, 3 × n binary variables would be required. Both for-
mulations result in the same number of binary variables but using
the SSN no simplification was required.
new operational policy: The PIS operational policy. Computers and

Fig. 9. (a) Flowsheet, (b) the STN and (c) SSN representation of (a).

dx.doi.org/10.1016/j.compchemeng.2009.07.008
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Fig. 10. General schedule.
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Table 1
Data for simple illustrative example.

Unit Capacity (ton) Processing time

i1 100 2

In order to test the applicability of the PIS operational policy the
problem has to be clearly defined.

Fig. 12. Schedule of the simple example without using PIS.
Fig. 11. Flowsheet for the simple example.

ost batch chemical facilities. As such the use of this latent storage
equires the introduction of a new operational policy, the Process
ntermediate Storage (PIS) operational policy.

. The PIS operational policy

The models developed to take the PIS operational policy into
ccount are detailed in this section. The models are based on the SSN
nd continuous-time model developed by Majozi and Zhu (2001),
s such their model is presented in full. Following this the additional
onstraints required to take the PIS operational policy into account
re presented, after which, the necessary changes to constraints
eveloped by Majozi and Zhu (2001) are presented. In order to test
he scheduling implications of the developed model, two solution
lgorithms are developed and applied to an illustrative example.
he final subsection of the paper details the use of the PIS opera-
ional policy as the basis of operation to design batch facilities. This

odel is then applied to an illustrative example. All models were
olved on an Intel Core 2 CPU, T7200 2 GHz processor with 1 GB of
AM, unless specifically stated. Worthy of mention, however, is the

act that the formulations based on other recipe representations
ike STN, RTN and mSTN would require modifications in order to be
dapted to the PIS policy.

The PIS operational policy is novel and thus requires further
xplanation. When a batch operation is scheduled a Gantt chart
s usually generated, such as in Fig. 10. From this figure it is simple
o identify the latent storage potential of the units. For example,
nits 1, 3, 4 and 6 are idle and empty for most of the time hori-
on of interest. This provides the opportunity of using these units
s storage, instead of, or in conjunction with dedicated intermedi-
te storage. This leads to a number of benefits, such as increased
apital utilization of the equipment, possible reduction in the size
equired for the plant and a reduced capital cost associated with the
onstruction of new batch facilities. In order to illustrate the idea
ven further, the following example was developed.
Please cite this article in press as: Pattinson, T., & Majozi, T. Introducing a
Chemical Engineering (2009), doi:10.1016/j.compchemeng.2009.07.008

Fig. 11 shows the flowsheet for the illustrative example. The data
or the example are given in Table 1, where i1, i2, and i3 are con-
ecutive processing units, while d2,3 is a dedicated intermediate
torage vessel between processing units i2 and i3. The time horizon
f interest in this example is 9 h.
i2 100 3
i3 50 2
d2,3 100 –

When the PIS operational policy is not used, as in Fig. 12, 50 ton of
dedicated intermediate storage unit, d2,3, was required. The reason
for this is that the capacity of the final unit is only 50 ton, due to this,
the 100-ton batch produced from unit i2 must be split into half. Half
of the batch is stored in dedicated intermediate storage while the
remaining batch is processed, after which, the stored mass is then
processed thus achieving the optimal throughput of 100 ton. How-
ever, when compared to the schedule in Fig. 13, the 100-ton storage
vessel is not needed. The reason for this is that 50 ton of the inter-
mediate product produced from unit i2 is moved to i1 for storage,
while the remaining 50 ton is processed in unit i3. This increases
the capital utilization of unit i1, while reducing the size required
for the plant which achieves the same throughput. This also avails
unit i2 for further processing. Furthermore, if this possibility had
been identified at the design phase, the cost of the 100-ton storage
vessel could have been saved.

In order to illustrate the uses of this novel operational policy, i.e.
PIS operational policy, this paper has been divided into two parts.
Firstly, the applicability of the operational policy will be proven and
used to determine the minimum amount of intermediate storage
required while maintaining the throughput achievable with infinite
intermediate storage. Secondly, the PIS operational policy will be
used to design storageless batch plants.

2.1. Scheduling implications
new operational policy: The PIS operational policy. Computers and

Fig. 13. Schedule of the simple example using PIS.

dx.doi.org/10.1016/j.compchemeng.2009.07.008


 ING

C

d Chem

2

(
(

(

2

a

S
P
J
S
S
S
S

B
y

y

e

C
m

m

m

m
m

m

c
t

t
t

t
w

q
d
Z

P
V

V

Q

ARTICLEModel

ACE-3875; No. of Pages 14

T. Pattinson, T. Majozi / Computers an

.1.1. Problem statement
The problem can be formally stated as follows,
Given:

(i) the production recipe for each product, including processing
times in each unit operation,

(ii) the available units and their capacities,
iii) the maximum storage capacity for each material, and
iv) the time horizon of interest,

determine,

(i) the maximum throughput with zero intermediate storage with
and without using the PIS operational policy,

ii) the minimum amount of intermediate storage, while maintain-
ing the optimal throughput.

.1.2. Mathematical model
A mathematical model based on the model developed by Majozi

nd Zhu (2001) was developed to solve the stated problem.

ets
{p|p = time point}
{j|j = unit}
{s|s = is any state}

in {Sin|Sin = is any input state}
out {Sout|Sout = is any output state}
∗
in

{s∗
in

|s∗
in

= effective state into unit} ⊆ Sin

inary variables

in(s, j, p) decision variable describing the processing of states in
unit j at time point p

lt(s, j, p) decision variable describing the latent storage of state s
in unit j at time point p

(j) decision variable based on whether unit j exists or not

ontinuous variables

in(s, j, p) amount of state s consumed for processing in unit j at
time point p

s
in

(s, j, p) amount of state s fed into storage from unit j at time
point p

lt
in

(s, j, j′, p) amount of state s fed into latent store j′ from unit j at
time point p

out(s, j, p) amount of state s produced from unit j at time point p
s
out(s, j, p) amount of state s fed from storage to unit j at time

point p
lt
out(s, j′, j, p) amount of state s from latent store in j′ fed to unit j

at time point p
(j) capacity of unit j
out(s, j, p) time at which state s is produced from unit j at time

point p

in(s, j, p) time at which state s is used in unit j at time point p
lt
in

(s, j, p) beginning of latent storage for state s in unit j at time
point p

lt
out(s, j, p) end of latent storage for state s in unit j at time point p
(s, j, p) storage time for state s in unit j during latent store at time

point p
(s, p) amount of state s stored at time point p
(s, p) amount of state s delivered to customers at time point p

objective function to be evaluated
Please cite this article in press as: Pattinson, T., & Majozi, T. Introducing a
Chemical Engineering (2009), doi:10.1016/j.compchemeng.2009.07.008

arameters
min
j

minimum capacity of unit j
max
j

maximum capacity of unit j
0
s (s) amount of state initially stored
 PRESS
ical Engineering xxx (2009) xxx–xxx 5

T(s) processing time of state s
WU(s, j) upper limit of the duration of the latent storage of states

in unit j
WL(s, j) lower limit of the duration of the latent storage of states

in unit j
H time horizon of interest
A, B unit-specific capital cost terms
˛ power function for capital cost objective function
Q max

s (s) maximum amount of state s stored within the time hori-
zon of interest

2.1.3. Basic scheduling model
In the first section, the constraints developed by Majozi and Zhu

(2001) are repeated for completeness of the model.

2.1.3.1. Capacity constraints.

Vmin
j y(s∗

in, j, p) ≤
∑

s ∈ Sin

min(s, j, p) ≤ Vmax
j y(s∗

in, j, p)

∀ s ∈ sin,j, j ∈ J, p ∈ P (1)

Constraint (1) states that the mass entering a unit for processing
must be between the minimum and maximum capacities of the
unit. Furthermore, it ensures that if mass enters a unit, that unit
becomes active.

2.1.3.2. Material balances.
∑

s ∈ Sin,j

min(s, j, p − 1) =
∑

s ∈ Sout,j

mout(s, j, p) ∀ j ∈ J, p ∈ P, p > 1 (2)

q(s, p) = q(s, p − 1) +
∑

j ∈ Jout
s

mout(s, j, p) −
∑

j ∈ Jin
s

min(s, j, p)

∀s ∈ S, S = intermediate, j ∈ J, p ∈ P, p > 1 (3)

q(s, p) = q(s, p − 1) +
∑

j ∈ Jin
s

min(s, j, p)

∀ s ∈ S, S = feed, j ∈ J, p ∈ P, p > 1 (4)

q(s, p) = q(s, p − 1) +
∑

j ∈ Jout
s

mout(s, j, p) − d(s, p)

∀s ∈ S, S = product, j ∈ J, p ∈ P, p > 1 (5)

q(s, p1) = Q o
s (s) −

∑

j ∈ Jin
s

min(s, j, p1) ∀s ∈ S, j ∈ J, p1 ∈ P (6)

The material balances are shown by constraints (2)–(6). Constraint
(2) is a mass balance over a processing unit. It simply states that
the mass that enters unit j at time point p − 1 must exit that unit
at the next time point. Constraint (3) is a balance over a dedicated
intermediate storage unit and only applies to intermediate prod-
ucts. This constraint states that the amount of state s that is stored
in the dedicated intermediate storage unit is the difference between
that which enters and exits for processing and the amount of state
s that was already present at the previous time point. Constraint
new operational policy: The PIS operational policy. Computers and

(4) applies where mass is only used, such as with feed states. The
amount of state delivered to the customer is determined by con-
straint (5), where a state is only produced not used. Constraint (6) is
similar to constraint (3), however, it applies at the beginning of the
time horizon of interest. This constraint takes care of the possibility

dx.doi.org/10.1016/j.compchemeng.2009.07.008
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hat there is state stored in a unit prior to the start of scheduling,
uch as feeds or in the case where rescheduling is required.

.1.3.3. Duration constraint.

out(sout, j, p) = tin(s∗
in, j, p − 1) + �(s)y(s∗

in, j, p − 1)

j ∈ J, p ∈ P, p > 1, sout ∈ Sout, sin ∈ Sin (7)

he model is based on a fixed duration of tasks as shown in con-
traint (7). This constraint states that the time at which the output
tate from unit j exits is the time at which the input state entered
he unit at the previous time point plus the duration of the task.
he binary variable ensures that the constraint holds whenever the
nit is used at the precise time, i.e. p − 1.

.1.3.4. Sequence constraints.

in(s∗
in, j, p) ≥

∑

sin

∑

sout

∑

j ∈ J

∑

p′ ∈ P

(tout(sout, j, p′) − tin(sin, j, p − 1))

j ∈ J, p ∈ P, p > 1, sout ∈ Sout, sin ∈ Sin (8)

in(s∗
in, j, p) ≥ tout(sout, j, p) ∀ j ∈ J, p ∈ P, sout ∈ Sout, sin ∈ Sin (9)

in(sin, j, p) ≥ tout(sout, j′, p)

j, j′ ∈ J, p ∈ P, sout = sin, sout ∈ Sout, sin ∈ Sin (10)

onstraint (8) reduces the search space by ensuring that the time
t which a state s can be processed in unit j at time point p is at
east after the sum of the durations of all previous tasks that have
aken place in the unit. Constraint (9) ensures that the processing of
tate sin into unit j can only take place after the previous batch has
een processed. Constraint (10) stipulates that state sin can only be
rocessed in unit j after it has been produced from unit j′, where
nits j and j′ are consecutive stages in the recipe.

.1.3.5. Feasibility constraints.
∑

∈ S∗
in,j

y(s, j, p) ≤ 1 ∀j ∈ J, p ∈ P (11)

his constraint ensures that only one task can take place in a unit
t a particular time point.

.1.3.6. Time horizon constraints.

in(s, j, p) ≤ H ∀j ∈ J, p ∈ P, s ∈ Sin,j (12)

out(s, j, p) ≤ H ∀j ∈ J, p ∈ P, s ∈ Sout,j (13)

onstraints (12) and (13) ensure that all the tasks take place within
he time horizon of interest.

.1.3.7. Storage constraints.

(s, p) ≤ Q max
s (s) ∀s ∈ S, p ∈ P (14)

his constraint ensures that the maximum capacity of the interme-
iate storage units is not exceeded.
Please cite this article in press as: Pattinson, T., & Majozi, T. Introducing a
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.1.4. Extension to PIS policy
The model in the above form does not take into account the

ossibility of using latent storage, i.e. PIS operational policy. There
re a number of additional constraints needed to fully capture this
perational policy.
 PRESS
ical Engineering xxx (2009) xxx–xxx

2.1.4.1. Capacity constraints.

Vmin
j ylt(s, j, p) ≤

∑

j′ ∈ J

mlt
in(s, j′, j, p) ≤ Vmax

j ylt(s, j, p)

∀s ∈ S, j ∈ J, p ∈ P (15)

Constraint (15) states that the mass entering a process unit for latent
storage must be between the minimum and maximum capacities
of the unit. Furthermore, it ensures that mass can only enter the
unit if the binary variable associated with latent storage is active
for unit j at time point p.

2.1.4.2. Material balances.
∑

j′ ∈ J

mlt
in(s, j′, j, p − 1) =

∑

j′ ∈ J

mlt
out(s, j, j′, p) ∀s ∈ S, j ∈ J, p ∈ P, p > 1

(16)

min(s, j, p) =
∑

j′ ∈ J

mlt
out(s, j′, j, p) + ms

out(s, j, p) ∀s ∈ S, j ∈ J, p ∈ P

(17)

mout(s, j, p) =
∑

j′ ∈ J

mlt
in(s, j′, j, p) + ms

in(s, j, p) ∀s ∈ S, j ∈ J, p ∈ P

(18)

The mass balance over a process unit which is being used as latent
storage is given by constraint (16). It should be noted that the input
and output states remain the same. Constraints (17) and (18) are
the inlet and outlet mass balances for mass which is to be used
for, or produced from processing, respectively. Mass which enters
a unit for processing comes from dedicated storage and/or latent
storage as stated in constraint (17). Similarly, mass which exits a
unit is either moved to dedicated storage or latent storage as stated
in constraint (18).

2.1.4.3. Duration constraints.

tlt
out(s, j, p) = tlt

in(s, j, p − 1) + w(s, j, p) ∀s ∈ S, j ∈ J, p ∈ P (19)

WL(s, j)ylt(s, j, p) ≤ ω(s, j, p) ≤ WU(s, j)ylt(s, j, p) ∀s ∈ S, j ∈ J, p ∈ P

(20)

The duration constraint for a latent storage, constraint (19), is sim-
ilar to constraint (7) except that the residence time is a variable in
the latter case. In the case of latent storage the actual duration is a
variable that can vary between the lower and upper limits specified
for state s in unit j, as shown in constraint (20).

2.1.4.4. Sequence constraints.

tlt
in(s, j, p) ≥ tlt

out(s′, j, p) ∀s, s′ ∈ S, j ∈ J, p ∈ P (21)

tlt
in(s, j, p) ≥ tout(s′, j, p) ∀s, s′ ∈ S, j ∈ J, p ∈ P (22)

tin(s, j, p) ≥ tlt
out(s′, j, p) ∀s, s′ ∈ S, j ∈ J, p ∈ P (23)

tlt
out(s, j, p) ≤ tin(s, j′, p) + H(2 − ylt(s, j, p − 1) − y(s, j, p))

∀s ∈ Sin,j′ , j, j′ ∈ J, p ∈ P, p > 1 (24)
new operational policy: The PIS operational policy. Computers and

tlt
out(s, j, p) ≥ tin(s, j′, p) − H(2 − ylt(s, j, p − 1) − y(s, j, p))

∀s ∈ Sin,j′ , j, j′ ∈ J, p ∈ P, p > 1 (25)

dx.doi.org/10.1016/j.compchemeng.2009.07.008
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lt
in(s, j, p) ≤ tout(s, j′, p) + H(2 − ylt(s, j, p) − y(s′, j′, p − 1))

s ∈ Sout,j′ , s′ ∈ Sin,j′ , j, j′ ∈ J, p ∈ P, p > 1 (26)

lt
in(s, j, p) ≥ tout(s, j′, p) − H(2 − ylt(s, j, p) − y(s′, j′, p − 1))

s ∈ Sout,j′ , s′ ∈ Sin,j′ , s ∈ S, j, j′ ∈ J, p ∈ P, p > 1 (27)

in(s, j′, p) ≥ tout(s, j, p) − H(2 − y(s, j′, p) − y(s′, j′, p − 1))

s ∈ S, j, j′ ∈ J, p ∈ P, p > 1 (28)

in(s, j′, p) ≤ tout(s, j, p) + H(2 − y(s, j′, p) − y(s′, j′, p − 1))

s ∈ S, j, j′ ∈ J, p ∈ P, p > 1 (29)

onstraints (21)–(23) ensure that a state can only be processed or
tored in unit j when the unit is available. It is assumed that after
batch has been stored in a process unit then it must follow the
ext processing step in its recipe. Constraints (24) and (25) ensure
hat the time at which a state leaves a unit after latent storage coin-
ides with the time that the state enters a unit which is capable of
rocessing that state. Constraints (26) and (27) are similar to con-
traints (24) and (25), however these apply to a state moving from
rocessing to latent storage. If mass is moved from processing in
nit j to processing in unit j′, the time at which the mass is pro-
uced must coincide with the time at which it is used, as shown by
onstraints (28) and (29).

.1.4.5. Time horizon constraints.

lt
in(s, j, p) ≤ H ∀j ∈ J, p ∈ P, s ∈ S (30)

lt
out(s, j, p) ≤ H ∀j ∈ J, p ∈ P, s ∈ S (31)

hese constraints ensure that all storage activities take place within
he time horizon of interest.

.1.4.6. Feasibility constraints.
∑

∈ Sin

ylt(s, j, p) +
∑

s′ ∈ Sin

y(s′, j, p) ≤ 1 ∀j ∈ J, p ∈ P (32)

j ∈ J

ylt(s, j, p) ≤ 1 ∀s ∈ S, p ∈ P (33)

o ensure that a unit is only used for either processing or storage at
particular time point, constraint (32) is required. Constraint (33)

nsures that a batch cannot be split. Constraint (11) is redundant in
he presence of constraint (32).

.1.5. Necessary modifications to the basic scheduling model
In order to ensure the completeness of the model that takes

he PIS operational policy into account, the basic scheduling model
eveloped by Majozi and Zhu (2001) has to be modified as follows.

(s, p) = q(s, p − 1) +
∑

j ∈ Jout
s

ms
in(s, j, p) −

∑

j′ ∈ Jin
s

ms
out(s, j′, p)

s ∈ S, j ∈ J, p ∈ P (34)
Please cite this article in press as: Pattinson, T., & Majozi, T. Introducing a
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(s, p) = q(s, p − 1) −
∑

j′ ∈ Jin
s

ms
out(s, j′, p)

s ∈ S, S = feed, j ∈ J, p ∈ P, p > 1 (35)
 PRESS
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q(s, p) = q(s, p − 1) +
∑

j ∈ Jout
s

ms
in(s, j, p) − d(s, p)

∀s ∈ S, S = product, j ∈ J, p ∈ P, p > 1 (36)

q(s, p1) = Q o
s (s) −

∑

j′ ∈ Jin
s

ms
out(s, j, p1) ∀s ∈ S, j ∈ J, p1 ∈ P (37)

The balance over a dedicated intermediate storage unit has to be
modified because of the possibility of latent storage. Constraint (34)
provides the link for the inlet and outlet mass balance between
units, as shown in constraints (17) and (18). Constraints (35)–(37)
are similar to constraints (4)–(6), however they apply to the case
where the PIS operational policy is taken into account.

tin(sin, j, p) ≥
∑

s

∑

j

∑

p′≤P

[tout(sout, j, p′)

−tin(sin, j, p′ − 1) + tlt
out(s′, j, p′) − tlt

in(s′, p′ − 1)]

∀j ∈ J, p ∈ P, p > 1, p′ > 1, sout,j ∈ Sout,j, sin,j ∈ Sin,j, s′ ∈ S (38)

Constraint (8) has to be modified to include the possibility of
using a unit as latent storage, as shown by constraint (38).

2.1.6. Objective functions
The main goal of the project is the minimization of plant size

via the exploitation of latent storage. In order to achieve this goal
two cases are considered. The goal of the first case is to check the
advantages gained in terms of throughput (constraint (39)) when
there is zero intermediate storage (constraint (40)), while in the
second case the goal is the minimization of intermediate storage
(constraint (43)) while maintaining the optimal throughput (con-
straint (44)). In this case the optimal throughput is defined as that
which is achieved when the model is solved with infinite inter-
mediate storage. Both cases investigate the effect of using latent
storage.

2.1.6.1. Case 1.

Z = max
∑

s ∈ S

∑

p ∈ P

d(s, p) (39)

while q(s, p) = 0 ∀s ∈ S, p ∈ P (40)

2.1.6.2. Case 2. Step 1:

Z = max
∑

s ∈ S

∑

p ∈ P

d(s, p) (41)

while q(s, p) > 0 ∀s ∈ S, p ∈ P (42)

Step 2:

Z = min
∑

s ∈ S

∑

p ∈ P

d(s, p) (43)

while d(s, p) = production goal ∀s ∈ S, p ∈ P (44)

with the SSN representation shown in Fig. 15

2.2. Illustrative example
new operational policy: The PIS operational policy. Computers and

In order to illustrate these cases an example taken from the
papers of Ierapetritou and Floudas (1998) and Majozi and Zhu
(2001) will be used. The flowsheet for the example is given in Fig. 14.
The data for the example are shown in Table 2, the time horizon of
interest for this example has been altered from 12 h presented in

dx.doi.org/10.1016/j.compchemeng.2009.07.008
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Table 2
Data for illustrative example.

Unit Capacity Suitability Processing time (h)

1 100 Mixing 4.5
2 75 Reaction 3
3 50 Purification 1.5

State Storage capacity Initial amount Price

1 Unlimited Unlimited 0.0
2 100 0.0 0.0
3 100 0.0 0.0
4 Unlimited 0.0 1.0

Fig. 14. Flowsheet for the literature example.

Fig. 15. SSN for the literature example.

Table 3
Results from the first case.

Without PIS policy With PIS policy

Number of time point 7 10
Objective function value 200 300
Number of binary variables 18 87
Solution time (CPU, s) 0.062 1.718

Fig. 16. Literature example without u

Fig. 17. Literature example using
Number of variables 561 921
Number of constraints 1619 2592

Ierapetritou and Floudas (1998) and Majozi and Zhu (2001) to 24 h
for illustrative purposes.

2.2.1. Case 1
Case 1 involves solving the model using the first case where

the objective is to find the maximum throughput with zero inter-
mediate storage without using the PIS operational policy and then
resolving the model with the use of the PIS operational policy to
compare the results. The optimal throughput achieved without
using the PIS operational policy is 200. The schedule is shown in
Fig. 16. The stair-step nature of the schedule is expected due to the
NIS operational policy. When the PIS operational policy is intro-
duced, i.e. addition of constraints (15)–(38) to constraints (1)–(14),
the optimal throughput increases from 200 to 300 units as shown
in Fig. 17.

The way this improvement is achieved is clearly seen in Fig. 17.
A portion of a batch is stored in a unit while the remaining batch
is sent to processing. In this case half of the batch processed in the
mixer is taken for storage in the purificator while the remaining
mass is processed in the reactor. Once the reaction has proceeded
to completion the mass that was stored in the purificator is moved
to the reactor for processing. Further latent storage is required at
13.5 and 18 h, in this case the mass is stored in the reactor after pro-
cessing and then moved to the purificator for processing. It should
new operational policy: The PIS operational policy. Computers and

be noted that there is a cycle in this schedule. A cycle occurs when
a unit fills and empties at the same time.

The model was solved using GAMS and the CPLEX solver version
9.1.2. The computational results for case 1 are shown in Table 3.

sing the PIS operational policy.

the PIS operational policy.

dx.doi.org/10.1016/j.compchemeng.2009.07.008
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Fig. 18. Literature example with infinite intermediate storage.

Fig. 19. Literature example without using the PIS operational policy.

using

F
t

2

o
t
i

T
R

N
O
N
S
N
N

Fig. 20. Literature example

rom these results it is clear to see the potential benefits for using
he PIS operational policy, with a 50% increase in throughput.

.2.2. Case 2
Please cite this article in press as: Pattinson, T., & Majozi, T. Introducing a
Chemical Engineering (2009), doi:10.1016/j.compchemeng.2009.07.008

The purpose of this case is to determine the minimum amount
f intermediate storage available while maintaining the optimal
hroughput, where the optimal throughput is defined as that which
s achieved when the model is solved with infinite intermediate

able 4
esults from the second case.

Infinite storage Without PIS With PIS

umber of time point 10 13 11
bjective function value 350a 250b 200c

umber of binary variables 27 36 96
olution time (CPU, s) 0.156 5.734 10.125
umber of variables 801 605 1014
umber of constraints 2432 2605 2893

a Maximum throughput.
b Minimum storage without PIS.
c Minimum storage with PIS.
the PIS operational policy.

storage. In this example the optimal throughput was 350 units. The
schedule for this case is shown in Fig. 18. Without using the PIS
operational policy the minimum amount of intermediate storage
required was 250 units. The schedule for this case is shown in Fig. 19.
In the case where the PIS operational policy was used a minimum
of 200 units of dedicated intermediate storage was required. The
schedule for this example is shown in Fig. 20.

The model was solved on an Intel Core 2 CPU, T7200 2 GHz pro-
cessor with 1 GB of RAM, using GAMS and the CPLEX solver version
9.1.2. The computational results for the second case are shown in
Table 4.

2.3. Design implications

This section furthers the model developed in the previous sec-
tion to include the possibility of design.
new operational policy: The PIS operational policy. Computers and

2.3.1. Problem statement
The problem considered in this subsection can be stated as fol-

lows,
Given:

dx.doi.org/10.1016/j.compchemeng.2009.07.008


ARTICLE IN PRESSG Model

CACE-3875; No. of Pages 14

10 T. Pattinson, T. Majozi / Computers and Chemical Engineering xxx (2009) xxx–xxx

Table 5
Design data for illustrative example.

Unit Capacity range Suitability Processing time Capital cost
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Fig. 21. Flowsheet for the literature example.

Fig. 22. SSN for the literature example.

Table 6
Storage data for illustrative example.

State Storage capacity Initial amount Price

1 Unlimited Unlimited 0.0
2 0.0 0.0 0.0

represent the storage of a state in a process unit.

Table 7
Computational results of the design literature example.

Results

Number of time points 11
Number of constraints 3864
Number of variables 1616
Number of binary variables 132
MINLP solution 44.82
CPU time (s) 35.858
Number of major iterations 3
25–100 Mixing 4.5 V0.68

, 3 25–75 Reaction 3 V0.6

25–50 Purification 1.5 V0.7

(i) the production recipes, i.e. processing times for each task in a
suitable unit as well as their sequence,

ii) the availability and suitability of process vessels,
ii) the potential number of process units in a stage, and range of

capacity of potential process vessels,
iv) production requirement, and
v) the time horizon of interest,

determine,
the optimal number of units in a particular stage so as to min-

mise the capital cost.

.3.2. Necessary modifications to case 1
Constraints (1), (2), (7), (9), (10), (12), (13) and (15)–(31) and

34)–(38) still apply to the model, however, further modifications
f the model in Section 2.1 are required to take into account the
ossibility of design.

.3.2.1. Capacity constraints.

min
j e(j) ≤ c(j) ≤ Vmax

j e(j) ∀j ∈ J, p ∈ P (45)

lt
in(s, j, j′, p) ≤ c(j′) ∀s ∈ S, j, j′ ∈ J, p ∈ P (46)

in(s, j, p) ≤ c(j) ∀s ∈ S, j ∈ J, p ∈ P (47)

(j) ≤ c(j′) + Vmax
j (2 − e(j) − e(j′)) ∀j, j′ ∈ J (48)

(j) ≥ c(j′) − Vmax
j (2 − e(j) − e(j′)) ∀j, j′ ∈ J (49)

onstraint (45) ensures that the capacity of unit j is between
he minimum and maximum permissible range, furthermore, it
nsures that for a unit to have a capacity it must exist. Constraint
46) ensures that the mass entering unit j′ for latent storage does
ot exceed the capacity of the unit. Constraint (47) is similar to con-
traint (46), however, it applies to unit j which is processing state
at time point p. It is further assumed that units in the same stage
ll have the same capacity, as shown by constraints (48) and (49),
here units j and j′ are units in the same stage.

.3.2.2. Feasibility constraint.

s ∈ S

y(s, j, p) +
∑

s′ ∈ S

ylt(s′, j, p) ≤ e(j) ∀j ∈ J, p ∈ P (50)

onstraint (50) is similar to constraint (32), however, it ensures that
unit can only be used for either processing or latent storage if that
nit exists.

The objective function, which in this case is the minimization of
apital cost, is shown in constraint (51). Due to the non-linearity of
his constraint the model becomes an MINLP model.

j ∈ J

(Ae(j) + B[c(j)]˛) (51)

.4. Illustrative example
Please cite this article in press as: Pattinson, T., & Majozi, T. Introducing a
Chemical Engineering (2009), doi:10.1016/j.compchemeng.2009.07.008

This example is similar to the previous example in Section 2.2,
owever, there is another reactor in the reaction stage as shown in
ig. 21. The SSN remains the same and is shown here in Fig. 22. The
ata for this example are shown in Tables 5 and 6.
3 0.0 0.0 0.0
4 Unlimited 0.0 1.0

2.4.1. Results
The model was solved using GAMS DICOPT, with CLPEX as the

MIP solver and CONOPT as the NLP solver. The computational results
are shown in Table 7. The resulting plant requires only one reactor
as shown in Fig. 23. The optimal capacities of the remaining units
are 75 units for the mixer (U1), 75 units for the reactor (U2) and
37.5 units for the purificator (U3). The resulting schedule for the
optimal plant is shown in Fig. 24, where the numbers above the
bars are the amount of each state processed and the dotted lines
new operational policy: The PIS operational policy. Computers and

Fig. 23. Resulting design from the model.

dx.doi.org/10.1016/j.compchemeng.2009.07.008
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Fig. 24. Schedule for the optimal design.
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The process has four stages, separated in Fig. 25 by dashed lines.
The first stage involves the reaction between raw 1 and raw 2. This
reaction can take place in either of the two reactors (R1 1 and R1 2)
in stage 1. The intermediate produced in this reaction is then trans-
Fig. 25. Flowsheet fo

.5. Conclusions

MILP and MINLP models are developed to take into account the
IS operational policy for testing and design, respectively. The MILP
odel is used to determine the effectiveness of the PIS operational

olicy by, firstly, solving the model with zero intermediate stor-
ge with and without the use of latent storage. In the illustrative
xample a 50% increase in the throughput was achieved.

Secondly, the minimum amount of intermediate storage is deter-
ined with and without the PIS operational policy. In both the cases

he production goal was set to that which was achieved when the
odel was solved with infinite intermediate storage. In the illus-

rative example a 20% reduction in the amount of intermediate
torage is achieved. The design model is an MINLP model due to
he non-linear capital cost objective function. This model is applied
o an illustrative problem and results in the flowsheet as well as
etermining the capacities of the required units.

. Industrial application
Please cite this article in press as: Pattinson, T., & Majozi, T. Introducing a
Chemical Engineering (2009), doi:10.1016/j.compchemeng.2009.07.008

The industrial case study presented in this section is taken from
he petrochemicals industry. The project is in the design phase and
s such the design model will be used to determine the design
hich leads to the minimum capital cost, while using the PIS oper-

tional policy. For secrecy reasons the example has been modified
ndustrial case study.

and the names of the raw materials and products have been changed
to the generic form.

The flowsheet for the industrial case study is shown in Fig. 25,
this case study is used to illustrate the application of the design
model. The SSN for the case study is shown in Fig. 26.
new operational policy: The PIS operational policy. Computers and

Fig. 26. SSN for the industrial case study.

dx.doi.org/10.1016/j.compchemeng.2009.07.008
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Table 8
Data for industrial case study.

Unit Max capacity (t) Suitability Duration (h)

R1 1, R1 2 25 Reaction 1 5
R2 1, R2 2, R2 3 and R2 4 83 Reaction 2 8
D1 100 Purification 1
Sep 1, Sep 2, Sep 3 and Sep 4 41 Separation 4

Table 9
Capital cost data for industrial case study.

Unit Capital cost

R1 1, R1 2 89.1(c(j)/Vmax
j

)0.6

R2 1, R2 2, R2 3 and R2 4 169.5(c(j)/Vmax
j

)0.6

D1 41.4(c(j)/Vmax
j

)0.6

0.6
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Table 10
Storage and initial amount of state for the case study.

State Description Storage capacity Initial amount

S1 Raw 1 500 400
S2 Stage 2 feed 0 0.0
S3 Stage 4 feed 0 0.0
S4 Stage 3 feed 25 0.0
S5 Raw 2 400 400
S6 Solvent 1000 100
S7 Product 600 0.0
S8 Raw 3 Unlimited Unlimited
S9 Vent to scrubber Unlimited 0.0

Table 11
Feed and output ratios.

State Units ton/ton

S1/S5 R1 1, R1 2 0.9
S2/S8 R2 1, R2 2, R2 3 and R2 4 7
S2/S6 R2 1, R2 2, R2 3 and R2 4 0.5
S3/S9 R2 1, R2 2, R2 3 and R2 4 4
S3/S4 R2 1, R2 2, R2 3 and R2 4 15
S6/S7 Sep 1, Sep 2, Sep 3 and Sep 4 3.5
S1/S6 D1 0.02

Table 12
Results from the industrial case study.

Results

Number of time points 8
Objective function value 1727.9
Number of binary variables 228
Solution time (CPU, s) 12,082

cessor with 1 GB of RAM. The computational results are shown in
Table 12. The model was solved using GAMS DICOPT using CONOPT
Sep 1, Sep 2, Sep 3 and Sep 4 109(c(j)/Vmax
j

)

erred to either of the four reactors in the second step (R2 1, R2 2,
2 3 and R2 4) where a further reactant, raw 3 is added as well as
he solvent. In this stage the hot solvent is added to the reactor, so
arts of the reaction mixture from the previous reaction are flashed
ff and sent to the scrubber. After 3 h of drying, raw 3 is added and
he reaction proceeds. During the reaction, parts of the reaction

ixture are vented and transported to storage tank, Stor 1, before
istillation in unit D1. In the distillation stage the raw material, raw
, is separated from the solvent. Following the separation both the
aw 1 and the solvent are recycled back to storage for reuse. The
emaining reaction mixture is then transferred to either of the four
ettlers (Sep 1, Sep 2, Sep 3 and Sep 4) where the product, prod,
s separated from the solvent, solv. The solvent is then recycled
ack to the solvent storage tank to be reused. All of the units in
tages 1, 2 and 4 can be used for latent storage, while, the distil-
ation column, unit D1, in stage 4 cannot be used as storage for
ontamination reasons. Furthermore, only intermediate states can
ake use of latent storage. The time horizon of interest for the case

tudy is 48 h for illustrative purposes. The production goal for the
Please cite this article in press as: Pattinson, T., & Majozi, T. Introducing a
Chemical Engineering (2009), doi:10.1016/j.compchemeng.2009.07.008

lant was 109.9 ton of product.
The data for the case study are shown in Tables 8–11.

Fig. 27. Resultant flowsheet for
Number of variables 4,777
Number of constraints 8,183
Number of major iterations 3

3.1. Computational results

The model was solved on an Intel Core 2 CPU, T7200 2 GHz pro-
new operational policy: The PIS operational policy. Computers and

as the NLP solver and CPLEX as the MIP solver. The resultant flow-
sheet is shown in Fig. 27, as can be seen from this flowsheet the

the industrial case study.

dx.doi.org/10.1016/j.compchemeng.2009.07.008
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Fig. 28. Schedule for th

Table 13
Unit capacity results from the industrial case study.

Unit Capacity

R1 1, R1 2 25

d
i
d
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l
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f
t
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s
t
h
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t
a

4

d
F
f
c
t
t
f
a
f
S
w

R2 2, R2 3 and R2 4 75.138
Sep 1, Sep 2 and Sep 3 32.700
D1 1.54

esign calls for fewer units in stages 2 and 4. The schedule is shown
n Fig. 28. As can be seen from the schedule latent storage is utilised
uring the time horizon of interest and there are no cycles in this
chedule. Table 13 details the required unit capacities, which are
ower than the original design.

.2. Conclusions and discussion on the industrial application

The model is successfully applied to the case study resulting in
ewer units required to meet the demand. Furthermore, the units
hat are required have a lower capacity than the original design
alled for. The model also makes effective use of the latent stor-
ge available during the time horizon of interest. It is clear from
able 12 that the solution time for this case study is long. The rea-
ons for this are that there is a large degree of complexity due to
he possible use of latent storage. The use of latent storage also
as a significant contribution on the overall number of binary
ariables, which can lead to increases in solution times. Due to
he non-linearity of the objective function global optimality is not
ssured.

. Conclusions

The model developed was based on the framework and model
eveloped by Majozi and Zhu (2001) for the following reasons.
irstly, the models that exploit the structure of the SSN result in
ewer binary variables than those derived from other mathemati-
al methods, because the SSN only takes states into account while
asks are implicitly incorporated. Secondly, this model is based on
he non-uniform discretization of the time horizon, thus resulting in
Please cite this article in press as: Pattinson, T., & Majozi, T. Introducing a
Chemical Engineering (2009), doi:10.1016/j.compchemeng.2009.07.008

ewer binary variables. Thirdly, the model is a MILP, thus solutions
re globally optimal. However, as aforementioned, mathematical
ormulations that are based on other recipe representations like
TN, RTN and mSTN can also be adapted to the PIS policy. Future
ork will involve comparisons between the performance of the
e optimal design.

model presented in this manuscript and the models arising from
the other network representations in the application of this policy.

Two distinctive models were developed in order to investigate
the effectiveness of PIS operational policy. The first model is sepa-
rated into two parts. The first part is used to determine the optimal
throughput when there is zero intermediate storage available. Two
situations were studied. Firstly the model was solved without the
use of the PIS operational policy. Secondly, the model was solved
with the PIS operational policy. In the simple example shown in this
section a 50% increase in the throughput was achieved when the PIS
operational policy was used. In both cases the models developed
were a MILP, thus guaranteeing global optimality.

The second part of the first model was used to determine the
minimum amount of intermediate storage required to achieve the
same throughput achieved when there is infinite storage avail-
able. This part required a three-step algorithm. Firstly, the optimal
throughput was determined where there was infinite storage
available. Secondly, the model was solved with the objective of min-
imizing the amount of intermediate storage without the use of the
PIS operational policy, while keeping the optimal throughput from
the first step fixed. The third step of the algorithm is similar to the
second, however, the PIS operational policy is used. In the litera-
ture example an optimal throughput of 350 units was achieved in
the first step. Using this as the fixed objective, a 20% reduction in
the amount of required intermediate storage was achieved in the
PIS operational policy compared to the case without the PIS oper-
ational policy. Once again the models derived were MILP models,
thus guaranteeing global optimality.

The second model presented in Section 2, is a design model
based on the PIS operational policy. The model developed in this
section is a MINLP model due to the capital cost objective func-
tion. The model is applied to a literature example and an improved
design is achieved when compared to the flowsheet. The design
model is then applied to an industrial case study from the phenols
production facility to determine its effectiveness. The data for the
case study are subject to a secrecy agreement and as such the names
and details of the case study are altered.

The model is successfully applied to the case study resulting
in lower capacity and fewer units than the original design while
new operational policy: The PIS operational policy. Computers and

achieving the required production goal. The model also makes
effective use of the latent storage available during the time hori-
zon of interest. However, the solution time for this case study is
long, due to the large number of binary variables and a complex
non-linear objective function which leads to a high degree of com-

dx.doi.org/10.1016/j.compchemeng.2009.07.008
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