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Study Area

Figure: Satellite image of Cape Town
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Problem Statement

Figure: Informal settlements are vulnerable to flooding
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The need for Extreme Value Theory
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Figure: The domain of application Extreme Value Theory
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The Classical Approach

Assume Xi is a sequence of independent random variables with common distribution
F . Without any knowledge of F , a model exists that describes the behaviour of the
largest (or smallest) member of the sample

Mn = max(X1, X2, . . . , Xn).

Conditional on the existence of {an} and {bn} > 0, the Fisher-Tippett theorem states
that the re-scaled sample maxima (or minima) converges in distribution to the
Generalized Extreme Value (GEV) family of distributions

P

(
Mn − an

bn
≤ x

)
−→


exp

− (1 + ξ
x−µ

σ

)− 1
ξ

 1 + ξ
x−µ

σ
> 0, ξ 6= 0

exp
(
− exp

(
− x−µ

σ

))
x ∈ R, ξ → 0

(1)

where −∞ < µ < ∞ and σ > 0.
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From the Classical to the Threshold Exceedance Approach

An important consideration in classical EVT is the choice of block size n.

Affects the trade-off between bias and variance, i.e. choice between accuracy or
precision.

Criticism about the classical approach is that it is wasteful of data.

Using only one observation per block, discarding the rest.

Alternative approach is the threshold exceedance approach.

Essentially finding an approximate distribution for the series of excesses of a
particular level (the threshold).
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Approximate Distribution for Threshold Exceedances

Denote Xi by X . Suppose for large n, the Fisher-Tippett theorem holds. Then, for
suitable threshold u,

P(X − u ≤ y |X > u) ∼ G(y ; σu , ξ) = 1 −
(

1 + ξ
y
σu

)− 1
ξ

(2)

defined on {y : y > 0 and
(

1 + ξ
y
σu

)
> 0}, with

σu = σ + ξ(u − µ) (3)

G(·) defines the Generalized Pareto distribution (GPD).
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The Return Level Parameter

The return level is that level of the process, which we expect to be exceeded on
average once every N years.

qN =

{
u + σu

ξ

[
(λN)ξ − 1

]
ξ 6= 0

u + σu log(λN) ξ = 0
(4)

Exceedance process is assumed to be Poisson with rate λ (per year), estimated by
λ̂ = m/n.
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Issues to Consider

The data are often incomplete due to measuring instrument failure, relocation of
measuring sites, etc.

Careful consideration has to be taken in selecting the threshold.

The length of the data that is available is often shorter than the prediction horizon.
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Data

Rainfall data from Cape Town International Airport (−33◦97′S, 18◦60′E, 44 m altitude).

Figure: Description of the rainfall data
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Data

Figure: Rainfall series by month (1958-2007 Cape Town Int)
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Results

The estimated extremal index θ̂ = 0.78(0.69, 0.89)

Model (m) σ̂(s.e.) ξ̂(c.i.) q̂25 q̂50
GP0 (193) 9.37 (0.98) 0.04 (-0.08,0.22) 68.91 (60.36,83.41) 76.79 (65.50,93.72)
GP1 (149) 11.17 (1.25) -0.02 (-0.14,0.17) 68.69 (58.65,80.09) 72.81 (63.83,89.55)
GP2 (144) 9.74 (1.19) 0.05 (-0.09,0.26) 67.06 (58.38,83.23) 75.47 (63.86,94.65)
GP3 (31) 11.72 (2.95) -0.26 (-0.61,0.22) 45.07 (40.07,56.81) 48.74 (42.95,67.99)

Table: Parameter estimates and the accompanying measures of uncertainty
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Return Level Plots

(a) Annual Rainfall (assuming in-
dependence)

(b) Annual Rainfall (assuming de-
pendence)

(c) Annual Winter Rainfall

(d) Annual Summer Rainfall

Figure: Return level plots resulting from GPD approximation of the excesses of threshold 22 mm
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Conclusion

Clustering extremes should be appropriately treated to ensure better accuracy -
especially for long-range return level estimation.

Where the series shows strong seasonal signal, more insight can be gained by
analyzing the behaviour of the extremes of the process for each season.

To understand the extreme rainfall patterns in the region, extension of the analysis
to nearby sites is necessary.
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