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ABSTRACT 
Ground plane detection is often used as one of the 
important safety key operations to address some of the 
issues associated with autonomous navigation in complex 
environments. Despite the strides on related detection 
methods developed for such navigation, detection of 
ground planes inclined with flexed far-fields to alleviate 
robot short-sightedness, with a guarantee on tarred and 
coarse terrains have received little attention. Finding a 
solution to these uncertainty problems is a challenge. In 
this paper, collective intelligence of the Emergent 
Situation Awareness (ESA) technology is proposed as a 
supportive strategy for autonomous robotic navigation. 
The ability to reveal uncertainties over time on flexed far-
field is a ground plane detection strategy embedded in the 
complex environments. Experimental evaluations of the 
ESA by benchmarking the results of publicly available 
roads promise that collective intelligence will one day put 
an end to most autonomous ground plane detection 
problems. Such detection on flexed far fields 
tremendously contributes to good navigational strategies 
for robotic vehicles being cautious of road accidents. 
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1.  Introduction 
 
Safe autonomous navigation often formulates one of the 
significant objectives of robotic technology [1]. 
Researchers and practitioners have stressed that 
autonomous robotic navigation in complex environments 
as shown in Figure 1 is an ongoing key challenge [1] [2]. 
In practice, it is convenient to say that complex 
environments are relatively defined based on the 
percentages of mingled features such as collection of 
colour pixels for ground planes, bushes, and other objects 
perceived from the left, centre and right sides of the 
environments. To worsen the situation further, a flexed 
(or bent) far-field is one of the major roots of fatal 
accidents for most vehicles and this requires adequate 
attention. 
 
 

The complexity of the flexed terrains affects safe 
navigation and robotic research deliveries, and may 
hinder the growing usage of robotic vehicles in industries 
to save lives. Robots for instance, are required to save 
lives from mining accidents such as 4000 coal miners 
who died in China in 2006 [3] and 3000 people who were  
trapped underground in South Africa in 2007 [4]. From 
our practical knowledge, improving the performance of 
ground plane detection is obviously a sound basis for 
optimizing autonomous robotic vehicle navigation. 
 

   
(a) A Flexed Far-field Frame (b) Seekur Robotic Vehicle.  

     
Figure 1: A sampled flexed outdoor road frame and a 
CSIR four-wheel platform synchronous drive robot, with 

three pairs of stereo vision cameras.  
 
Researchers [2] have presented related detection methods 
such as ensemble selection for road image (or frame) 
segmentations. They develop an individual model for 
each image segmentation, but the knowledge of their 
individual models is limited to the features extracted from 
each frame. There are some significant features which 
may not be captured from a single image to acquire 
enough knowledge required to predict far-field grounds. 
Alternatively, we opined that this can be improved as we 
use collective intelligence of temporal probabilistic 
models of the ESA to detect ground planes on flexed far-
field terrains. We shall first present the rudimentary 
details of our detection strategy before its application in 
robotic vehicles.  

Situation Awareness (SA) is to a notable extent 
becoming popular among decision makers. SA has gained 
its popularity in, for example, the areas of air traffic 
control, emergency responders and surgical teams [5]. 
Instances of application areas where taking correct rapid-
response decisions is needed are disaster management, 
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business intelligence, robotics, even sport (e.g. robotic 
soccer) where players have to make instant decisions in a 
constantly changing environment. Most notably, there is 
an ongoing demand for SA technologies and their variants 
in environmental water management problems, in areas 
presenting human health risks, and in robotic agents [6] 
[7]. Each of these problem areas is too complex to 
understand due to the uncertainties embedded therein, but 
compact representation of Bayesian Network (BN) 
models are effective in handling complexities.   
 Bayesian Networks (BNs) are probabilistic 
models which are gaining popularity in decision-making, 
and are potentially used as robotic module deciding on 
which field classes are ground planes. The major 
shortcomings of their current implementations include the 
inaccurate complex modelling despite expert intervention, 
and the absence of complete temporal pattern modelling 
capabilities. The available DBNs (Dynamic Bayesian 
Networks) with temporal modelling such as; Factorial 
HMM (Hidden Markov Models), Coupled HMM, Input-
Output HMM, and PDBN (partial Dynamic Bayesian 
Network) [8] [9] have contributed to modelling up to the 
baseline, but they are explicitly represented by skilled 
users, therefore are limited in their expressive power. 
System Engineers such as robotic researchers and non-
expert practitioners struggle to interpret and integrate the 
DBN models to carry out a directed goal. This can make 
robots to not become well acquainted with the situations 
of ground planes currently occurring in their various 
domains. Finding a solution to this issue is a challenge, 
and the difference between poor and good autonomous 
navigation lies in their situational understanding of flexed 
far fields.  
 In this paper, we achieve emergent situational 
awareness by evolving actual local dynamics from global 
emergent behaviour. The global behaviour is the temporal 
probabilistic model that captures uncertainties of possible 
ground situations embedded in a number of complex road 
images. The local dynamics are the smallest pieces of 
information needed by robots for easily making correct 
ground plane detection on a frame. This paper aims to 
empower robotic autonomy using the ESA technology to 
make the best possible ground detection from any 
recognized flexed far-field over time. The ESA 
technology; evolves temporal probabilistic models 
directly from complex environments captured as MTS 
(Multivariate Time Series) in the absence of domain 
experts, views knowledge as situational patterns over 
time, and provides a suitable platform guide for robots on 
ground detection processes. The major contributions in 
this paper are as follows: 
 

• The applications of the collective intelligence of 
the ESA technology to improve autonomous 
robot navigation through ground plane detection 
over flexed, tarred, and coarse far-fields.  

• The evaluation of the ESA models by 
benchmarking publicly available roads and 
popular image detection methods. 

The rest of this paper is arranged as follows: in section 2, 
we present the theoretical background of the ESA as a 
class of DBN or temporal probabilistic models. Section 3 
presents the proposed technology, which includes the 
system model and algorithm of the ESA. Section 4 
critically presents three experimental applications and 
evaluations of the ESA on autonomous robotic navigation 
through ground plane detection. We conclude the paper in 
section 5. 
 
 
2.  Theoretical Background of the ESA 
 
2.1  Dynamic Bayesian Networks (DBNs) 
 
The simplest form of DBN is shown in Figure 2.  
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Figure 2: The simplest DBN is Hidden Markov Model 

with V as state   variables and E as evidence variables 
repeated in three time steps. 

 
DBNs are temporal probabilistic models which are often 
referred to as an extension of the Bayesian network (BN) 
models in artificial intelligence [8]. A Bayesian belief 
network is formally defined as a directed acyclic graph 
(DAG) represented as G = {V(G), A(G)}, where V(G) = 
{ V1,…,Vn}, vertices (or variables) of the graph G and 

)()()( GVGVGA ×⊆ , is the set of arcs of G. The 

network requires discrete random values such that if there 
exists random variables V1, . . ., Vn with each having a set 
of some values v1, . . ., vn then, their joint probability 
density distribution is defined in equation (1);   
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where )( iVπ  represents a set of probabilistic parent(s) of 

child Vi [10]. A parent variable otherwise referred to as 
cause has a dependency with a child variable known as 
effect. This is similar to variables V and E in a time step 
of Figure 2. Every variable V with a combination of 
parent(s) values on the graph G captures probabilistic 
knowledge (distribution) as a conditional probability table 
(CPT). A variable without a parent encodes a marginal 
probability. If the environment is small, a BN can be 
modelled by eliciting the probabilistic knowledge from 
domain experts. For more complex domains, such as 
flexed roads, the most suitable Bayesian networks are 
learned from the environments captured as datasets. 
Figure 3 illustrates the stages required to learn a BN as a 
frame model within a time step.  



As illustrated in Figure 3, learning such model 
dynamically from MTS can be decomposed as follows 
into sub-problems of; (i) data discretization as a pre-
processing step, (ii) learning the network structures over 
time, (iii) learning the associated CPTs (conditional 
probability tables) over time, and (iv) model visualization. 
Data discretization classifies numerical data into their 
corresponding interval values relative to the patterns in 
the data attributes. Intelligent system researchers such as 
[11] [12] have presented many algorithms to learn 
Bayesian networks from datasets. Its characteristics of 
capturing dependency variables make it suitable for 
handling complex problems [7].  

 

 

 
Figure 3: Learning Stages of a BN in a time step. 

 
However, the inability of the BNs to capture time as 
temporal dependencies facilitated the developments of 
various ways of modelling the dynamic Bayesian 
networks presented at the introduction. The variables and 
the CPTs of the BNs are similar to the states and the 
probabilities used in the temporal dependencies of the 
DBNs. According to [7], a DBN is suitable for modelling 
the environment that emerges (changes) over time and has 
the capability to predict the future behaviour of the 
environment. In this research, we want to predict the most 
likely ground planes on a flexed far-field that a robot 

must traverse, which is not known based on the current 
collective closer situations on the frames the robot 
understands. Most DBNs observe the first-order of 
Markov model which states that, future event Vt+1 is 
independent of the past given the present Vt [7]. It is 
represented as a transition probability Pr(Vt+1 | Vt). The 
states of events in a DBN have complex interaction due to 
the time dependency and may impact on the observed 
variables of the DBN at any time step.   

Let t
iV  represent DBN variables of the ESA at 

time t; we derive the following equation (2) from equation 
(1), over all the non-negative time steps t є T, where T = 
{total time steps over the target areas} e.g. road frames, 
and t = {the time step within the volume of an area} e.g. 
an image frame. 
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The system of equation (2) forms temporal dependency 
relations between the time slices of model frames as 
shown in equation (3), which generates a matrix of 
collective or transition knowledge embedded in the 
environments captured as MTS.  
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 implies that equivalence is not true generally. 

From equation (3), the relationships embedded among 
variables V at time step 1 may or may not be equivalent to 
the variables’ relationships at time step 2, and for 
subsequent time steps t. This is as a result of the changes 
in environmental patterns, which affect the relationships 
of the model variables over time. Unlike most DBNs in 
literature, equation (3) is a DBN that varies both its 
probabilistic distributions and its temporal DAGs by 
learning directly from MTS, which captures collection of 
road colour pixels. The relationships here are of greater 
value to situation awareness because hidden ground 
planes are revealed over time.  
 
2.2  Situation Awareness 
 
Situation Awareness (SA) refers to, “…the perception of 
the elements in the environment within a volume of time 
and space, the comprehension of their meaning, and the 
projection of their status in the near future [5].” The most 
established SA theory is described in a popular model of 
Endsley [5] which describes the current situation model 
as a mental model at three hierarchical levels. They are 
levels 1, 2, and 3 of SA corresponding to perception, 
comprehension and projection respectively. The three 
components are; the perception of elements in the 
environment within a volume of time and space, the 
comprehension of their meaning, and the projection of 
their status in the near future.  



SA therefore enables a robot to detect the 
presence of ground planes in its domain of interest in 
order for it to figure out what to do next. Thus, the 
temporality link between the theory of SA and the theory 
of DBNs motivated the development of the ESA and its 
applications in [13]. 
 
 
3.  The Proposed Technology for Robotics 
 
3.1  The System Model for the ESA 
 
The system model comprises three essential components 
which are; learning algorithms, probabilistic distributions, 
and the trend analysis. The first two components 
collectively achieve levels 1 and 2 above by discovering 
the system knowledge of road frames, which are 
integrated into the third component called the interface 
(or projection) knowledge. The module in the robot uses 
this knowledge as a platform to detect or understand the 
flexed ground planes ahead.  

The Learning Algorithms dynamically evolve 
temporal models from the collection of pixels embedded 
in the multivariate time series (MTS). The MTS is 
observed over the collection of closer pixels extracted 
from some frames and serves as input for the learning 
model. The algorithms emerge interlink temporal models 
from frames 0 to n. The existing learning algorithms such 
as genetic algorithms (GA) [11] [12], which are used for 
learning BNs from datasets, fit into the ESA, if upgraded 
to learn over time. The optimized GA in [12] is upgraded 
to evolve over time and is used as a proof of concept in 
this system model. The algorithm uses information-
theoretic measures (e.g. Minimum Description Length) 
and mathematical components (e.g. PowerSet in set 
theory) as genetic operators and as a means of balancing 
between efficiency and decomposability. The GA is used 
due to its efficiency as it performs very well when used to 
emerge models from the environments of numerical, 
nominal, and mixed datasets.  

The other functionality of the probabilistic 
distribution of the system model is a Bayesian inference 
of the Variable elimination algorithm [7], which is used to 
reason and detect over time. This reasoning algorithm is 
based on Bayes’ theorem [10], expressed as posterior 
probability in equation (4) for some random variables Vs 
and Ve. The Vs implies state variable of the model while Ve 
implies evidence variable.    
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The component of trend analysis is an interface that 
constructs a transition matrix of knowledge on ground 
planes over time. The nature of knowledge on the patterns 
generated determines the likely navigation or action taken 
by the robot on any ground situation n to arrive at (or 
avoid) the next ground situation n+1. In applying this 

technology, especially by robotic researchers or non-
expert practitioners, we formally present the ESA 
algorithm as shown in Figure 4. 
 
3.2  The ESA Algorithm 
 
An MTS serves as the required schema to Figure 4 but the 
additional capability of the ESA algorithm in Figure 4 
serves to generate MTS from domain datasets without 
changing their originalities. Its development is based on 
the theories, algorithms, models, and mathematical 
equations that are used as subroutines as presented in the 
previous sections.  
  
 
INPUT (Ds : Dataset Schema) 
          
1.     While Ds = MTS,  

[i] If Dsj = Numeric, for j = 0, 1, 2. . . m. 
• Call Scalable_Discretizer (Dsj).  

[ii] Perform ordering on Ds using t key.   
[iii] Set t, the frame count, to 0. 
[iv] Let dt є Ds, ∀  t = 0, 1, 2, . . ., n.  
[v] For each t <= n, 

• Select frame dt for emergence. 
• Call Bayesian_Learner (dt). 
• Store the emerged temporal BN in 

matrix B. 
• Increment t by 1. 

[vi] For Situational Trends, Call Probabilistic  
       Distributions, ∀  bt є B.   
[vii] Return the dynamic BNs in B as the frames’ 
situations, then exit.  

2.     While Ds <> MTS, 
[viii] If Dsj = Date,  

• Select t.  
• Generate MTS from Ds using t. 

[ix] Repeat step 1.  
 
Figure 4: Emergent Situation Awareness (ESA) 

Algorithm 
 

In Figure 4, the Dsj is a column of the schema, dt 
is a frame dataset and bt is a temporal Bayesian Network 
emerged at time t. As shown in step 1[i], discretization 
classifies numerical datasets into their corresponding 
interval values relative to the patterns in the data 
attributes. Due to the predominance of computational 
intensity during data-preprocessing, the ESA introduces 
scalability into the discretization processes. In this 
scheme, space is shared and every used memory is 
cleared for the next processes. In step 1[v], the Bayesian 
learners are any of the algorithms that were recently 
mentioned [11] [12], whose functionalities are to carry 
out intra-slice learning over time. They emerge temporal 
optimal BN at each time step. Likewise, the Bayesian 
inference generates several situational trends as a 



transition matrix of knowledge, which is consequently 
used to reveal ground planes over the flexed far-fields. 

Revealing hidden ground planes is made simpler 
with the ESA, as robots can now be well acquainted with 
their current domains before projecting into the complex 
far-field. Since the ESA is domain-independent, it not 
only accommodates highly skilled users, but also allows 
non-expert robotic practitioners to benefit from the 
temporal probabilistic modelling. 
  
 
4.  Experimental  Evaluations  on  Ground 

Plane Detection for Robotic Vehicles 
 
One of the objectives of this paper is to bring the theory 
of the ESA technology to practice with an emphasis on 
robotic applications and practical work on ground plane 
detection. This consequently alleviates the robot’s short-
sightedness as it detects ground planes over complex 
flexed far-fields. It is an optimization strategy for 
autonomous robotic vehicle navigation.  
 To justify the universality of the ESA and to 
assure that our modelling design is reproducible, real life 
and publicly available road images are used to benchmark 
our theories and implementations. Three experiments 
were conducted on five flexed terrains (tarred and coarse) 
including (1) CSIR real life road frames captured locally, 
(2) public road images with ensemble selection [2], and 
(3) public road frames collected by a robotic vehicle [14]. 
The performance accuracies of the ESA detection on each 
of these frames are also computed using the cross 
validation technique and summarised as confusion matrix 
described by [15]. With cross-validation, a fraction of the 
known data is set aside by using it to test the detection of 
a hypothesis induced from the remaining data [7]. With 
five known ground planes and five known obstacles on 
Figures 5 to 9, we randomly set aside ten frame points 
from the middle to the far end on each of the original 
frames as expected results. They are compared with the 
ESA detection results, which are visualized as confusion 
matrices. It is a matrix of tabular structure that contains 
the number of expected and detected ground planes, and 
obstacles using the ESA model. The performance 
accuracy of the detection is computed as α from the 
matrix as expressed in equation (5). In Figure 5c for 
example, α = ((5+5)/(5+0+0+5)) * 100% = 100%. 
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4.1 Experiment 1: Illustrating Ground Plane Detection 

with CSIR Tarred Roads 
 
Streams of flexed frames are perceived locally from CSIR 
tarred roads, such as the examples shown in Figures 1a 
and 5a. The objective here is to detect ground planes 
especially towards the bent far-fields. A MTS was 
captured from these complex frames, where collections of 

pixel colours are extracted from each frame point Pi. This 
is iterated over 80 by 100 grid points with the horizon 
being ignored (or cut-off). The frames run through an 
image processing tool in MATLAB, where analysis per 
pixel with a 9 by 9 support window is carried out. This 
analysis operates on a defined colour band in the RGB 
colour space. The instances of the image pixels 
collections are trained and labelled as ground and 
obstacles. The closest collections of pixels to the robot’s 
view on a number of frames are used as training data 
while the far-field pixels are unknown to the model 
emerged by the ESA for detection purposes within a 
volume of time space.  
  
pr (Plane t ? | P1 

t = 20%, P2 
t = 74%, P3 

t = 84%, ... ,  

     Pn-2
 t = 84%, Pn-1 

t = 87%, Pn
 t = 45%)                 (6) 

 
Using the Bayes’ theorem in equation (4), equation (6) 
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This is a Bayesian inference problem with more 
information in [7].  
 

      

(a) Flexed Tarred Road (b) ESA Detection  
 
 
Expected 

                          Detected 
Ground Plane    
         (GP)           

Obstacles  
    (Ob)  

Ground 
Planes          
(5) 

 
            5 

 
            0 

Obstacles     
(5)   

 
            0  

 
            5    

(c) Confusion Matrix with detection accuracy 100% 
 
Figure 5: (a) CSIR original road image, (b) ignoring the 
horizon, detected ground plane depicted as green (or 
light) colour and obstacles depicted as red (or dark) on a 
flexed tarred field, and (c) the ESA accuracy visualized as 

confusion matrix.   
 
Having obtained the model of the target environments, the 
robot acquires collective knowledge and acts on these 
frames in real time (during autonomous navigation) to 
detect ground planes on the flexed far-field. An effective 



stereo camera mounted on the Seekur robot perceives new 
environmental frame features from a long range, whose 
colour pixels collections are used to query the tarred road 
model within a space of time and enable the robot to 
detect the ground planes on CSIR roads. A probabilistic 
query example is illustrated in equation (6) and its 
detected results are shown in Figure 5 with the accuracy 
captured as confusion matrix.  

On the query situation in equation (6), the robot 
wants to know within a space of time, the most probable 
planes of Figure 5a for example, when the features 
situation (e.g. P1 =  the first frame point colour with grey 
saturation 20%, Pn = the last frame point colour with grey 
saturation 45%, etc.) are perceived over a distance. The 
detection is a continuous process as the robot perceives 
new features as evidences over time. One can see in 
Figure 5 that the ESA adequately detects the complex 
flexed far terrain to avoid accidents. For the confusion 
matrix results, the number of correct detections that image 
instances are ground plane and obstacles are five each. 
Therefore, performance is ((5+5)/(5+0+0+5)) * 100% = 
100% detection accuracy. Here, our results guarantee 
ground plane detection on tarred flexed far-fields. 
 
4.2 Experiment 2: Benchmarking the ESA Technology 

with Ensemble Selection Outputs on Coarse Roads 
 
A good and related work is from Procopio et al. [2] who 
used publicly available coarse road images with ensemble 
selection as shown in Figures 6 and 7. They suggested 
comparisons of other techniques like ours to their 
ensemble selection for possible performance benefits. 
They sampled near-field labels to create training sets, 
extracted features for learning and storing the individual 
terrain model as a model library while they used SVM as 
a base learner and ensemble selection for classification. 
As shown in Figures 6b and 7b, they indicated very dark 
colour with uncertainty, obstacles with red (or dark), and 
ground planes with green (or light) colours. One of their 
major challenges is computational intensity which we do 
not experience as we collect the pixels into numerous grid 
points. As presented at the introduction, the knowledge of 
their individual model is limited to the features extracted 
only from each frame.   

For the purpose of aligned comparison, we 
improve on this as the ESA model collects knowledge 
from the closer features on a number of frames before 
detecting the new far-field pixels on the frames as shown 
in Figures 6c and 7c. A similar pixel modelling procedure 
of experiment one is repeated here except that we define a 
range of colour bands on a brownish scale and as RGB 
colour space. The results depicted by the confusion matrix 
are a summary of the detection of the ESA using the cross 
validation technique in terms of expected and detected 
planes. Examples of test features situations are s1 = { P1 

t 
= 20%, P2 

t = 55%, P3 
t =54%, ..., Pn 

t = 36%} from 
Figure 6a and s2 = { P1 

t = 20%, P2 
t = 50%, P3 

t = 59%, 
..., Pn 

t = 37%} from Figure 7a. The test situations, si, in 

equations (7) and (8) are used similarly for detection like 
the probabilistic query in equation (6).  
 
pr (Plane t ? | P1 

t = 20%, P2 
t = 55%, P3 

t = 54%, ... ,  

      Pn
 t = 36%)                 (7) 

pr (Plane t ? | P1 
t = 20%, P2 

t = 50%, P3 
t = 59%, ... ,  

      Pn
 t = 37%)                  (8) 

   
(a) Flexed Coarse Frame  (b) Ensemble Detection  
 

 
(c) ESA Detection  (d) Confusion Matrix  
 
Figure 6: (a) First original coarse road image [2], (b) its 
detection result using ensemble [2], (c) detected ground 
plane depicted as green (or light) colour and obstacles 
depicted as red (or dark) on a flexed coarse field, and (d) 

the ESA accuracy visualized as confusion matrix.   
 

    
(a)Original Coarse Frame   (b) Ensemble Detection  
 

  
(c) ESA Detection                (d) Confusion Matrix  
 
Figure 7: (a) Second original coarse road image [2], (b) 
its detection result using ensemble [2], (c) detected 
ground plane depicted as green (or light) colour and 
obstacles depicted as red (or dark) on a coarse field, and 

(d) the ESA accuracy visualized as confusion matrix.   
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One can see in Figures 6 and 7 that the ESA detects on 
coarse ground planes similarly to ensemble selection 
outputs but with more capability in handling the 
uncertainties over time, especially on the flexed far 
terrain. On the confusion matrix results, observe the 
performance detection accuracies of 90% for Figures 6 
and 7. Here, our results also guarantee improved ground 
plane detection on coarse far-fields due to the collective 
intelligence of the ESA models than Figures 6b and 7b. 
 
4.3  Experiment 3:  Benchmarking  the  ESA  Results 

with Other Coarse Ground Planes 
 
In order to ascertain the performance of the ESA on 
ground plane detection for robots, we also benchmark it 
with the results of other relevant public coarse road 
images collected by robotic vehicle [14], whose examples 
are shown in Figures 8 and 9. They were provided with 
labelled colours; the light blue results depict the ground 
plane, the red (or dark) class depicts grass, the yellow (or 
lightest) class depicts tall vegetation and the deep blue (or 
very dark) result corresponds to uncertain portion. 
Though it is not certain on the method used, their results 
seem good. They also provided these results for further 
comparative studies as presented herein. The objective 
here is focused on ascertaining the performance of the 
ESA in detecting ground planes on coarse flexed roads. 

 

    
(a) Flexed Coarse Frame      (b) Repository Results  
 

 
(c) ESA Detection           (d) Confusion Matrix  
 
Figure 8: (a) Other original coarse road image [14], (b) 
its provided repository result [14], (c) ignoring the 
horizon, detected ground plane depicted as green (or 
light) colour and obstacles depicted as red (or dark) on a 
flexed coarse field, and (d) the ESA accuracy visualized 

as confusion matrix.   
 

An MTS was captured from these frames, where 
collections of pixel colours are extracted from each frame 
point similarly to experiment one. We also set a range of 
colour saturation but on brownish colour bands as a 
subspace of RGB colours. The closest collections of 
pixels to the robot’s view are used as MTS training while 
the far-field pixels are detected by the ESA within a 
volume of time space. Examples of test features situations 
that can be perceived by the robot stereo camera are s3 = { 
P1 

t = 20%, P2
t = 76%, P3 

t = 77%, ..., Pn 
t = 40%}, from 

Figure 8a and s4 = { P1 
t = 25%, P2 

t = 65%, P3 
t = 63%, 

...,  Pn 
t = 43%} from Figure 9a. The test situations, si, are 

used similarly for detection like the probabilistic queries 
in equations (7) and (8) of experiment two respectively. 
The sampled results depicted by the confusion matrix are 
summarised as expected and detected planes and 
obstacles.  

Once again, one can see in Figures 8 and 9 that 
the ESA detects the coarse ground planes adequately as 
the benchmark results but with more capability in 
handling the uncertainties especially on the flexed far 
terrain. On the confusion matrix results, observe the 
performance detection accuracies of 80% and 100% for 
Figures 8 and 9 respectively. Here, our results once again 
guarantee improved ground plane detection on coarse 
flexed far terrain than Figures 8b and 9b. 
 

     
(a) Flexed Coarse Frame      (b) Repository Results  
 

            
(c) ESA Detection                 (d) Confusion Matrix  

 
Figure 9: (a) Another original coarse road image [14], (b) 
its provided repository result [14], (c) detected ground 
plane depicted as green (or light) colour and obstacles 
depicted as red (or dark) on a flexed coarse field, and (d) 

the ESA accuracy visualized as confusion matrix.   
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5.  Conclu  and Future Work 
 
In this paper, we have presented the theory and 
applications of the collective intelligence of the ESA 
technology to improve autonomous robot navigation 
through ground plane detection over flexed, tarred, and 
coarse far-fields. This study shows that one day the ESA 
will potentially put an end to all ground plane detection 
problems of robotic vehicles as it contributes to improve 
autonomous navigation.  

This technology emerges temporal probabilistic 
models from complex environments captured as 
multivariate time series (MTS), acts on this model, and 
detects ground planes for robots. Its critical evaluations 
measure its overall detection accuracy as 92% from 
confusion matrices of experiments one to three. The 
results of Figure 5 guarantee that the ESA detects ground 
planes accurately on tarred roads. Also, the results of 
Figures 6 to 9 show that the ESA can detect ground 
planes on coarse fields similarly to ensemble selection 
outputs and the repository road image results but with 
more capability in handling uncertainties, especially on 
the flexed far-field terrains. The good performance of the 
ESA on ground plane detection for robotic vehicles is as a 
result of its collective intelligence paradigm. Though we 
are not currently experiencing computational intensity, we 
are working to make our idea robust by carrying out a 
sensitivity analysis on texture component and ensure 
scalability of the ESA ground plane detection to handle 
possible massive MTS for robots.  
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