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ABSTRACT

Ground plane detection is often used as one of the
important safety key operations to address some of the
issues associated with autonomous navigation in complex
environments. Despite the strides on related detection
methods developed for such navigation, detection of
ground planes inclined with flexed far-fields to alleviate
robot short-sightedness, with a guarantee on tarred and
coarse terrains have received little attention. Finding a
solution to these uncertainty problems is a challenge. In
this paper, collective intelligence of the Emergent
Situation Awareness (ESA) technology is proposed as a
supportive strategy for autonomous robotic navigation.
The ability to reveal uncertainties over time on flexed far-
field is a ground plane detection strategy embedded in the
complex environments. Experimental evaluations of the
ESA by benchmarking the results of publicly available
roads promise that collective intelligence will one day put
an end to most autonomous ground plane detection
problems. Such detection on flexed far fields
tremendously contributes to good navigational strategies
for robotic vehicles being cautious of road accidents.
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1. Introduction

Safe autonomous navigation often formulates one of the
significant objectives of robotic technology [1].
Researchers and practitioners have stressed that
autonomous robotic navigation in complex environments
as shown in Figure 1 is an ongoing key challenge [1] [2].
In practice, it is convenient to say that complex
environments are relatively defined based on the
percentages of mingled features such as collection of
colour pixels for ground planes, bushes, and other objects
perceived from the left, centre and right sides of the
environments. To worsen the situation further, a flexed
(or bent) far-field is one of the major roots of fatal
accidents for most vehicles and this requires adequate
attention.
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The complexity of the flexed terrains affects safe

navigation and robotic research deliveries, and may
hinder the growing usage of robotic vehicles in industries
to save lives. Robots for instance, are required to save
lives from mining accidents such as 4000 coal miners
who died in China in 2006 [3] and 3000 people who were
trapped underground in South Africa in 2007 [4]. From

our practical knowledge, improving the performance of

ground plane detection is obviously a sound basis for
optimizing autonomous robotic vehicle navigation.

Fame (b) Seekur Robotic Vehicle.

Figure 1: A sampled flexed outdoor road frame and a
CSIR four-wheel platform synchronous drive robot, with
three pairs of stereo vision cameras.

Researchers [2] have presented related detection methods
such as ensemble selection for road image (or frame)
segmentations. They develop an individual model for
each image segmentation, but the knowledge of their
individual models is limited to the features extracted from
each frame. There are some significant features which
may not be captured from a single image to acquire
enough knowledge required to predict far-field grounds.
Alternatively, we opined that this can be improved as we
use collective intelligence of temporal probabilistic
models of the ESA to detect ground planes on flexed far-
field terrains. We shall first present the rudimentary
details of our detection strategy before its application in
robotic vehicles.

Situation Awareness (SA) is to a notable extent
becoming popular among decision makers. SA has gained
its popularity in, for example, the areas of air traffic
control, emergency responders and surgical teams [5].
Instances of application areas where taking correct rapid-
response decisions is needed are disaster management,
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business intelligence, robotics, even sport (eafpotic
soccer) where players have to make instant decisioa
constantly changing environment. Most notably, ehisr

an ongoing demand for SA technologies and theiaunts

in environmental water management problems, insarea
presenting human health risks, and in robotic agit

[7]. Each of these problem areas is too complex to
understand due to the uncertainties embedded ihdnet
compact representation of Bayesian Network (BN)
models are effective in handling complexities.

Bayesian Networks (BNs) are probabilistic
models which are gaining popularity in decision-ingk
and are potentially used as robotic module deciding
which field classes are ground planes. The major
shortcomings of their current implementations ideluhe
inaccurate complex modelling despite expert intetioa,
and the absence of complete temporal pattern niogell
capabilities. The available DBNs (Dynamic Bayesian
Networks) with temporal modelling such as; Factloria
HMM (Hidden Markov Models), Coupled HMM, Input-
Output HMM, and PDBN (partial Dynamic Bayesian
Network) [8] [9] have contributed to modelling up the
baseline, but they are explicitly represented biiesk
users, therefore are limited in their expressivavgro
System Engineers such as robotic researchers amd no
expert practitioners struggle to interpret andgrage the
DBN models to carry out a directed goal. This caaken
robots to not become well acquainted with the ibna
of ground planes currently occurring in their vaso
domains. Finding a solution to this issue is a leingle,
and the difference between poor and good autonomous
navigation lies in their situational understandaidlexed
far fields.

In this paper, we achieve emergent situational
awareness by evolving actual local dynamics froobal
emergent behaviour. The global behaviour is thepteal
probabilistic model that captures uncertaintiepagsible
ground situations embedded in a number of compies r
images. The local dynamics are the smallest piefes
information needed by robots for easily making eotr
ground plane detection on a frame. This paper dons
empower robotic autonomy using the ESA technolagy t
make the best possible ground detection from any
recognized flexed far-field over time. The ESA
technology; evolves temporal probabilistic models
directly from complex environments captured as MTS
(Multivariate Time Series) in the absence of domain
experts, views knowledge as situational patternsr ov
time, and provides a suitable platform guide fdrats on
ground detection processes. The major contributions
this paper are as follows:

¢ The applications of the collective intelligence of
the ESA technology to improve autonomous
robot navigation through ground plane detection
over flexed, tarred, and coarse far-fields.

e The evaluation of the ESA models by
benchmarking publicly available roads and
popular image detection methods.

The rest of this paper is arranged as follows:eiction 2,
we present the theoretical background of the ESA as
class of DBN or temporal probabilistic models. 8gtt3
presents the proposed technology, which includes th
system model and algorithm of the ESA. Section 4
critically presents three experimental applicaticarsd
evaluations of the ESA on autonomous robotic ndigga
through ground plane detection. We conclude theipap
section 5.

2. Theoretical Background of the ESA
2.1 Dynamic Bayesian Networks (DBNs)

The simplest form of DBN is shown in Figure 2.

t-1 t t+1

Figure 2: The simplest DBN is Hidden Markov Model
with V as state variables afdas evidence variables
repeated in three time steps.

DBNs are temporal probabilistic models which artemf
referred to as an extension of the Bayesian net\{Bkg
models in artificial intelligence [8]. A Bayesiareltef
network is formally defined as a directed acyclragh
(DAG) represented as G = {V(G), A(G)}, where V(G) =
{Vy,....V;}}, vertices (or variables) of the graph G and
AG) OV(G)xV(G), is the set of arcs of G. The

network requires discrete random values such ttiaere
exists random variableg, . . .,V, with each having a set
of some values,, . . ., Vv, then, their joint probability
density distribution is defined in equation (1);

n

pr(Vq,...Vpn) = i|‘|O prV; | 71(v;))

(1)

where 77(V;) represents a set of probabilistic parent(s) of

child V; [10]. A parent variable otherwise referred to as
cause has a dependency with a child variable known as
effect. This is similar to variable¥ andE in a time step

of Figure 2. Every variable/ with a combination of
parent(s) values on the graph G captures probtbilis
knowledge (distribution) as a conditional probdpitable
(CPT). A variable without a parent encodes a maigin
probability. If the environment is small, a BN cae
modelled by eliciting the probabilistic knowledgeorh
domain experts. For more complex domains, such as
flexed roads, the most suitable Bayesian networks a
learned from the environments captured as datasets.
Figure 3 illustrates the stages required to leaBNaas a
frame model within a time step.



As illustrated in Figure 3, learning such model
dynamically from MTS can be decomposed as follows
into sub-problems of; (i) data discretization aspra-
processing step, (ii) learning the network struesuover
time, (iii) learning the associated CPTs (condition
probability tables) over time, and (iv) model vikeation.
Data discretization classifies numerical data itheir
corresponding interval values relative to the pa#en
the data attributes. Intelligent system researchech as
[11] [12] have presented many algorithms to learn
Bayesian networks from datasets. Its charactesistic
capturing dependency variables make it suitable for
handling complex problems [7].
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Figure 3: Learning Stages of a BN in a time step.

However, the inability of the BNs to capture time a
temporal dependencies facilitated the developmeiits
various ways of modelling the dynamic Bayesian
networks presented at the introduction. The vaeslaind
the CPTs of the BNs are similar to the states dmed t
probabilities used in the temporal dependencieshef
DBNs. According to [7], a DBN is suitable for motied)
the environment that emerges (changes) over tidéhas
the capability to predict the future behaviour die t
environment. In this research, we want to predietrhost
likely ground planes on a flexed far-field that @bot

must traverse, which is not known based on theeatirr
collective closer situations on the frames the tobo
understands. Most DBNs observe the first-order of
Markov model which states that, future event; is
independent of the past given the presepf#. It is
represented as a transition probabilr(Vy., | Vy). The
states of events in a DBN have complex interadiios to

the time dependency and may impact on the observed
variables of the DBN at any time step.

Let Vit represent DBN variables of the ESA at

timet; we derive the following equation (2) from equatio
(1), over all the non-negative time stapsT, where T =
{total time steps over the target areas} e.g. rfrathes,
and t = {the time step within the volume of an areay.
an image frame.

pr(\/lt,VE...,Vrtl):i:HOpr(Vit vy, OteT (@)

The system of equation (2) forms temporal depengenc
relations between the time slices of model framss a
shown in equation (3), which generates a matrix of
collective or transition knowledge embedded in the
environments captured as MTS.
A
1.1 1 2.2 2

pr(\/l ,VZ...,Vn) - per ,V2 ...,Vn ) _

t .t t
prO/1 ,V2...,Vn) 3)

AL . .
implies that equivalence it true generally.

From equation (3), the relationships embedded among
variablesV at time step 1 may or may not be equivalent to
the variables’ relationships at time step 2, and fo
subsequent time steps t. This is as a result ofltaeges

in environmental patterns, which affect the relasiaips

of the model variables over time. Unlike most DBINs
literature, equation (3) is a DBN that varies bdih
probabilistic distributions and its temporal DAGY b
learning directly from MTS, which captures collectiof
road colour pixels. The relationships here are refter
value to situation awareness because hidden ground
planes are revealed over time.

2.2 Situation Awareness

Situation Awareness (SA) refers to, “...the percaptd
the elements in the environment within a voluméirmie
and space, the comprehension of their meaning,tfzend
projection of their status in the near future [S]Fe most
established SA theory is described in a popularehofl
Endsley [5] which describes the current situationdet

as a mental model at three hierarchical levelsyTdre
levels 1, 2, and 3 of SA corresponding gerception,
comprehension and projection respectively. The three
components are; the perception of elements in the
environment within a volume of time and space, the
comprehension of their meaning, and the projectbn
their status in the near future.



SA therefore enables a robot to detect the
presence of ground planes in its domain of intenest
order for it to figure out what to do next. Thubet
temporality link between the theory of SA and thedry
of DBNs motivated the development of the ESA aid it
applications in [13].

3. The Proposed Technology for Robotics
3.1 The System Modd for the ESA

The system model comprises three essential componen
which are; learning algorithms, probabilistic distitions,
and the trend analysis. The first two components
collectively achieve levels 1 and 2 above by discing
the system knowledge of road frames, which are
integrated into the third component called the riafe
(or projection) knowledge. The module in the robses
this knowledge as a platform to detect or undedsthe
flexed ground planes ahead.

The Learning Algorithms dynamically evolve
temporal models from the collection of pixels enbedi
in the multivariate time series (MTS). The MTS s
observed over the collection of closer pixels eotd
from some frames and serves as input for the legrni
model. The algorithms emerge interlink temporal eisd
from frames O to n. The existing learning algorithms such
as genetic algorithms (GA) [11] [12], which are dider
learning BNs from datasets, fit into the ESA, ifguaded
to learn over time. The optimized GA in [12] is upded
to evolve over time and is used as a proof of cohioe
this system model. The algorithm uses information-
theoretic measures (e.g. Minimum Description Lepgth
and mathematical components (e.g. PowerSet in set
theory) as genetic operators and as a means aidiadn
between efficiency and decomposability. The GAssdi
due to its efficiency as it performs very well whesed to
emerge models from the environments of numerical,
nominal, and mixed datasets.

The other functionality of the probabilistic
distribution of the system model is a Bayesian rigriee
of the Variable elimination algorithm [7], which ised to
reason and detect over time. This reasoning alguris
based on Bayes’' theorem [10], expressed as pasterio
probability in equation (4) for some random vares
andV.. TheVsimplies state variable of the model whilg
implies evidence variable.

P Ve)* P
Prtvg IVe) = 'P:\j) ek (4)
e

The component of trend analysis is an interfacd tha
constructs a transition matrix of knowledge on gubu
planes over time. The nature of knowledge on thepes
generated determines the likely navigation or actaken
by the robot on any ground situationto arrive at (or
avoid) the next ground situatiom+1. In applying this

technology, especially by robotic researchers on-no
expert practitioners, we formally present the ESA
algorithm as shown in Figure 4.

3.2 The ESA Algorithm

An MTS serves as the required schema to Figure theu
additional capability of the ESA algorithm in Figud
serves to generate MTS from domain datasets without
changing their originalities. Its development iséd on

the theories, algorithms, models, and mathematical
equations that are used as subroutines as predarites
previous sections.

INPUT (Ds: Dataset Schema)

1. WhileDs= MTS,
[i] If Dg = Nurreric, forj=0,1,2.. m.
+ Call Scalable_DiscretizeD).
[ii] Perform ordering orDs usingt key.
[iii] Set t, the frame count, 0.
[iv]Let dieDs, 1 t=0,1,2,.. .0
[v] For eacht <= n,
» Select framel, for emergence.
« Call Bayesian_Learnedy.
 Store the emerged temporal BN in
matrix B.
* Increment by 1.
[vi] For Situational Trends, Call Probabilistic
Distributions,[] b, € B.
[vii] Return the dynamic BNs iB as the frames’
situations, then exit.
2. WhileDg <> MTS,
[viii] If Dg = Date,
» Select.
» Generate MTS frorDg usingt.
[iX] Repeat step 1.

Figure 4: Emergent Situation Awareness (ESA)
Algorithm

In Figure 4, theDg is a column of the schema,
is a frame dataset arfwlis a temporal Bayesian Network
emerged at timé. As shown in step [ discretization
classifies numerical datasets into their correspand
interval values relative to the patterns in the adat
attributes. Due to the predominance of computationa
intensity during data-preprocessing, the ESA inioms$
scalability into the discretization processes. Imist
scheme, space is shared and every used memory is
cleared for the next processes. In steg, the Bayesian
learners are any of the algorithms that were régent
mentioned [11] [12], whose functionalities are tarrg
out intra-slice learning over time. They emerge feral
optimal BN at each time step. Likewise, the Bayesia
inference generates several situational trends as a



transition matrix of knowledge, which is conseqlent
used to reveal ground planes over the flexed &ddi

Revealing hidden ground planes is made simpler
with the ESA, as robots can now be well acquaimid
their current domains before projecting into thenpéex
far-field. Since the ESA is domain-independentndat
only accommodates highly skilled users, but al$owe
non-expert robotic practitioners to benefit frome th
temporal probabilistic modelling.

4. Experimental Evaluations on Ground
Plane Detection for Robotic Vehicles

One of the objectives of this paper is to bring ttheory

of the ESA technology to practice with an emphasis
robotic applications and practical work on groundne
detection. This consequently alleviates the robstiert-
sightedness as it detects ground planes over cample
flexed far-fields. It is an optimization strategyorf
autonomous robotic vehicle navigation.

To justify the universality of the ESA and to
assure that our modelling design is reproducildal life
and publicly available road images are used to frmack
our theories and implementations. Three experiments
were conducted on five flexed terrains (tarred eoarse)
including (1) CSIR real life road frames captureddlly,

(2) public road images with ensemble selection §2id
(3) public road frames collected by a robotic veh[d4].
The performance accuracies of the ESA detectioaamh

of these frames are also computed using the cross

validation technique and summarised as confusiamixna
described by [15]. With cross-validation, a frantiof the
known data is set aside by using it to test thedietn of

a hypothesis induced from the remaining data [7ithwW
five known ground planes and five known obstaclas o
Figures 5 to 9, we randomly set aside ten frameatpoi
from the middle to the far end on each of the oagi
frames as expected results. They are comparedthéth
ESA detection results, which are visualized as usioh
matrices. It is a matrix of tabular structure thantains
the number of expected and detected ground plames,
obstacles using the ESA model. The performance
accuracy of the detection is computed cagrom the
matrix as expressed in equation (5). In Figure éc f
exampleg = ((5+5)/(5+0+0+5)) * 100% = 100%.

g = > (Left _diagonal _entries)

- x100% (5)
> (All _entries)
4.1 Experiment 1: lllustrating Ground Plane Detection
with CSIR Tarred Roads

Streams of flexed frames are perceived locally f@@&iR
tarred roads, such as the examples shown in Fidgiaes
and 5a. The objective here is to detect groundeglan
especially towards the bent far-fields. A MTS was
captured from these complex frames, where collestif

pixel colours are extracted from each frame pojnTRis

is iterated over 80 by 100 grid points with the ihon
being ignored (or cut-off). The frames run throug
image processing tool in MATLAB, where analysis per
pixel with a 9 by 9 support window is carried otlihis
analysis operates on a defined colour band in 68 R
colour space. The instances of the image pixels
collections are trained and labelled as ground and
obstacles. The closest collections of pixels torttmt’s
view on a number of frames are used as training dat
while the far-field pixels are unknown to the model
emerged by the ESA for detection purposes within a
volume of time space.

pr (Plane'?| P, '= 20%, P, ' = 74%, Py ' = 84%, ...,
Pro'= 84%, P, ' = 87%, P,' = 45%) (6)

Using the Bayes’ theorem in equation (4), equaf&n

Pr(P = 20%,...,R} = 45% | Plane') x Pr(Plane')

PI(P) = 20%,...,Ry = 45%)

This is a Bayesian
information in [7].

inference problem with more

(a) Flexed Tarred Road  (b) ESA Detection

Detected

Expected Ground Plane | Obstacles

(GP) (Ob)
Ground
Planes 5 0
(5)
Obstacles
(5) 0 5

(c) Confusion Matrix with detection accuracy 100%

Figure 5: (a) CSIR original road image, (b) ignoring the

horizon, detected ground plane depicted as green (o

light) colour and obstacles depicted as red (ok)dan a

flexed tarred field, and (c) the ESA accuracy Viged as
confusion matrix.

Having obtained the model of the target environmethie
robot acquires collective knowledge and acts orsehe
frames in real time (during autonomous navigatitm)
detect ground planes on the flexed far-field. Afeefve



stereo camera mounted on the Seekur robot perce¢wes
environmental frame features from a long range, seho
colour pixels collections are used to query theethroad
model within a space of time and enable the robot t
detect the ground planes on CSIR roads. A prolsibili
query example is illustrated in equation (6) and it
detected results are shown in Figure 5 with theuay
captured as confusion matrix.

On the query situation in equation (6), the robot
wants to know within a space of time, timest probable
planes of Figure 5a for example, when the features
situation (e.g. P= the first frame point colour with grey
saturation 20%, P= the last frame point colour with grey
saturation 45%, etc.) are perceived over a distanbe
detection is a continuous process as the robotepes
new features as evidences over time. One can see in
Figure 5 that the ESA adequately detects the comple
flexed far terrain to avoid accidents. For the csign
matrix results, the number of correct detectiomss image
instances are ground plane and obstacles are &igh. e
Therefore, performance is ((5+5)/(5+0+0+5)) * 1068%
100% detection accuracy. Here, our results guagante
ground plane detection on tarred flexed far-fields.

4.2 Experiment 2: Benchmarking the ESA Technology
with Ensemble Selection Outputs on Coarse Roads

A good and related work is from Procopio et al. {#jo
used publicly available coarse road images witleetde
selection as shown in Figures 6 and 7. They sugdest
comparisons of other techniques like ours to their
ensemble selection for possible performance benefit
They sampled near-field labels to create trainiets,s
extracted features for learning and storing theviddal
terrain model as a model library while they usedvsas

a base learner and ensemble selection for clasthific
As shown in Figures 6b and 7b, they indicated \damk
colour with uncertainty, obstacles with red (orkjaand
ground planes with green (or light) colours. Onehair
major challenges is computational intensity whioh do
not experience as we collect the pixels into numeigrid
points. As presented at the introduction, the kreol\ge of
their individual model is limited to the featuregtracted
only from each frame.

For the purpose of aligned comparison, we
improve on this as the ESA model collects knowledge
from the closer features on a number of frames rbefo
detecting the new far-field pixels on the frameslagwn
in Figures 6¢ and 7c. A similar pixel modelling pedure
of experiment one is repeated here except thatefieeda
range of colour bands on a brownish scale and aB RG
colour space. The results depicted by the confusiatmix
are a summary of the detection of the ESA usingtbss
validation technique in terms of expected and detkc
planes. Examples of test features situations are{sP; '
= 20%, P, ' = 55%, P; ' =54%, ..., P, ' = 36%} from
Figure 6a and,s= { P, ' = 20%, P, "= 50%, P; ' = 59%,

, P, ' = 37%} from Figure 7a. The test situations,is

equations (7) and (8) are used similarly for débeclike
the probabilistic query in equation (6).

pr (Plane'?| P, "= 20%, P, ' = 55%, P; ' = 54%, ...,
P.'= 36%) (7)

pr (Plane'?| P, "= 20%, P, ' = 50%, P; ' = 59%, ...,
P,'= 37%) (8)

(a) Fléxed Coarse Frame (b) Ensemble Detection

Expected Detected
GP | Ob
Ground
Plane(GP)| 5 0
()
Obstacles
(Ob) (5)| 1 4
Accuracy 90%

(c) ESA Detection (d) Confusion Matrix

Figure 6: (a) First original coarse road image [2], (t3) i

detection result using ensemble [2], (c) detectexund

plane depicted as green (or light) colour and abssa

depicted as red (or dark) on a flexed coarse feahdi, (d)
the ESA accuracy visualized as confusion matrix.

(a)OngmaICoarseFrame (b) EnsembIeDetectlon

Expected Detected
GP | Ob
Ground

Plane(GP), 4 1

©)

Obstacles
(Ob) (5| O 5
= Accuracy 90%
(c) ESA Detection (dXConfusionMatrix

Figure 7: (a) Second original coarse road image [2], (b)
its detection result using ensemble [2], (c) detct
ground plane depicted as green (or light) coloud an
obstacles depicted as red (or dark) on a coarkg fied

(d) the ESA accuracy visualized as confusion.matrix



One can see in Figures 6 and 7 that the ESA detects
coarse ground planes similarly to ensemble selectio
outputs but with more capability in handling the

uncertainties over time, especially on the flexed f
terrain. On the confusion matrix results, obserhie t

performance detection accuracies of 90% for Fig@ires

and 7. Here, our results also guarantee improvedngr
plane detection on coarse far-fields due to théective
intelligence of the ESA models than Figures 6b and

4.3 Experiment 3: Benchmarking the ESA Results
with Other Coarse Ground Planes

In order to ascertain the performance of the ESA on

ground plane detection for robots, we also benchiritar
with the results of other relevant public coarsedro
images collected by robotic vehicle [14], whoseregbes

are shown in Figures 8 and 9. They were provideti wi

labelled colours; the light blue results depict greund
plane, the red (or dark) class depicts grass, ¢lievy (or
lightest) class depicts tall vegetation and thepdgae (or

very dark) result corresponds to uncertain portion.

Though it is not certain on the method used, thesuolts
seem good. They also provided these results fahdur

comparative studies as presented herein. The olgect

here is focused on ascertaining the performancthef
ESA in detecting ground planes on coarse flexedsoa

(b) Repository Results

Expected Detected
GP | Ob
Ground
Plane(GP), 4 1
5)
Obstacles
(Ob) (5| 1 4
L Accuracy 80%

(c) ESA Detection (d)ConfusionMatrix

Figure 8: (a) Other original coarse road image [14], (b)

its provided repository result [14], (c) ignorindnet

horizon, detected ground plane depicted as green (o

light) colour and obstacles depicted as red (ok)dan a
flexed coarse field, and (d) the ESA accuracy \izad
as confusion matrix.

An MTS was captured from these frames, where
collections of pixel colours are extracted fromre&rame
point similarly to experiment one. We also set rgeaof
colour saturation but on brownish colour bands as a
subspace of RGB colours. The closest collections of
pixels to the robot’s view are used as MTS trainirigle
the far-field pixels are detected by the ESA witkdn
volume of time space. Examples of test featuremsitns
that can be perceived by the robot stereo camerg ar{

P, "= 20%, P,' = 76%, P ' = 77%, ..., P, ' = 40%}, from
Figure 8a and,s= { P, ' = 25%, P, ' = 65%, P; ' = 63%,

, P, "= 43%} from Figure 9a. The test situations ase
used similarly for detection like the probabilistjoeries
in equations (7) and (8) of experiment two respetyi
The sampled results depicted by the confusion rmate
summarised as expected and detected planes and
obstacles.

Once again, one can see in Figures 8 and 9 that
the ESA detects the coarse ground planes adequagely
the benchmark results but with more capability in
handling the uncertainties especially on the fletad
terrain. On the confusion matrix results, obserhe t
performance detection accuracies of 80% and 100% fo
Figures 8 and 9 respectively. Here, our result® @gain
guarantee improved ground plane detection on coarse
flexed far terrain than Figures 8b and 9b.

3 - &,

(a Flexed Coars Frame

(b) Repository Results

Expected Detected
GP | Ob
Ground
Plane(GP)| 5 0
©)
Obstacles
(Ob) (®)| O 5
Accuracy 100%

(c) ESA Detection

(donfusionMatrix

Figure 9: (a) Another original coarse road image [14], (b
its provided repository result [14], (c) detectesbund
plane depicted as green (or light) colour and albsta
depicted as red (or dark) on a flexed coarse feahdi, (d)
the ESA accuracy visualized as confusion matrix.



5. Conclusion and Future Work

In this paper, we have presented the theory and
applications of the collective intelligence of tlEESA
technology to improve autonomous robot navigation
through ground plane detection over flexed, tarest
coarse far-fields. This study shows that one dayEBA

will potentially put an end to all ground plane efgton
problems of robotic vehicles as it contributesrtgpiove
autonomous navigation.

This technology emerges temporal probabilistic
models from complex environments captured as
multivariate time series (MTS), acts on this modeid
detects ground planes for robots. Its critical eatibns
measure its overall detection accuracy as 92% from
confusion matrices of experiments one to three. The
results of Figure 5 guarantee that the ESA detgaisnd
planes accurately on tarred roads. Also, the resoit
Figures 6 to 9 show that the ESA can detect ground
planes on coarse fields similarly to ensemble selec
outputs and the repository road image results bth w
more capability in handling uncertainties, espégiah
the flexed far-field terrains. The good performanté¢he
ESA on ground plane detection for robotic vehidcteas a
result of its collective intelligence paradigm. Tigh we
are not currently experiencing computational initynsve
are working to make our idea robust by carrying aut
sensitivity analysis on texture component and ensur
scalability of the ESA ground plane detection todia
possible massive MTS for robots.
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