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Preface 
 

The series of Australasian Ontology Workshops, begun in 2005, is now in its fifth year with the Australasian Ontology 
Workshop (AOW 2009), to be held at the University of Melbourne, in Melbourne, Australia on the 1st December 2009. 
Like most of the previous workshops, AOW 2009 is held in conjunction with the Australasian Joint Conference on 
Artificial Intelligence, now in its 22nd year as AI’09. 

 

We expanded the scope of the workshop slightly this year, in line with significant growth in semantic web 
technologies. In addition to the traditional ontology and knowledge representation topics, we specifically requested 
papers on novel ontology applications, and on linking open data. We also sought papers on contributions of ontologies 
to e-research: the latter topic being of major interest in Australia at this time due to the knowledge-sharing emphasis of 
the Government’s National Collaborative Research Infrastructure Strategy. Our invited keynote speaker, Professor 
Peter Fox of Rensselaer Polytechnic Institute in New York State, USA, will address the e-research topic through his 
presentation on experiences in ontology development primarily for the High Altitude Observatory at the National 
Center for Atmospheric Research in the US. 

 

Out of ten papers submitted, we accepted six on the basis of three or four reviews each of full papers by our program 
committee of international standing. Our papers offer an interesting balance of topics with two on formal ontology 
topics, two on applications of ontologies in software engineering, and two relating to ontologies in sensor networks.  
Despite being a nationally-titled workshop, located with a national conference, we were very pleased to note the truly 
international nature of our submitting authors: from Finland, China, South Africa, and the United Kingdom as well as 
Australia. 

 

For the first time this year, the conference offered a modest best paper award. Unfortunately, we are unable to 
announce the winner at the time of writing. 

 

Many individuals contributed to this workshop. We thank our contributing authors and our invited speaker, Peter Fox, 
who will be travelling to Australia especially for this event. We thank our international Program Committee and 
additional reviewers for their careful reviews in a tight time-frame. We appreciated the support of the organising 
committee for AI‘09, most especially the workshops chair, Christian Guttmann. 

 

We acknowledge the EasyChair conference management system which was used in all stages of the paper submission 
and review process and also in the collection of the final camera-ready papers. We thank Vladimir Estivill-Castro, John 
Roddick and Simeon Simoff, the editors of the CRPIT series, for facilitating the formal publication of the AOW 2009 
proceedings, and Christian Guttmann for organising pre-prints for the day of the workshop. 

 

We hope that you find this Fifth Australasian Ontology Workshop to be informative, thought-provoking, and most of 
all, enjoyable! 

 

Thomas Meyer, Meraka Institute, South Africa  

Kerry Taylor, CSIRO ICT Centre, Australia 

Organisers of AOW 2009 

November, 2009 
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Balancing Expressivity and Implementability in OWL Ontologies for  
Semantic Data Frameworks:

The Journey from 2004 to 2009 and Beyond  

Peter Fox 
Tetherless World Constellation Chair and Professor of Earth  

and Environmental Science and Computer Science,
Rensselaer Polytechnic Institute, Troy, NY, USA  

pfox@cs.rpi.edu

Abstract
In 2004, a small team of investigators undertook a prototype development effort to explore how semantics could be 
inserted in several existing scientific data systems being supported by the High Altitude Observatory at the National 
Center for Atmospheric  Research. The problem to be solved was: discovery and access to interdisciplinary and 
heteroegeneous data sources without very detailed expert knowledge of the domain which included cryptic jargon 
(mnemonics). Ontology development expertise was included in the team but instead of  a bottom-up or top-down 
approach to ontology development, we used a variant on the  use case driven design to formalize vocabulary and 
relation requirements. We also had to use much of the existing infrastructures. Instead of a prototype the result was a 
production semantic data framework after about the first 9 months of the project. Several successive releases based on 
implemented use cases as well as an evaluation study led to some clear lessons in ontology development.
In this talk I will present the setting for this development effort, describe the use cases, experience with the ontology 
and language encoding choices, including software tools. Since 2007, we have carried these developments to a wider 
range of disciplines and I will also relate these recent experiences and consequences for ontology development 
including current and future directions with ontology modularization and OWL-2.

Copyright © 2009, Australian Computer Society, Inc.  This paper appeared at the Fifth Australasian Ontology Workshop 
(AOW 2009), Melbourne, Australia.  Conferences in Research and Practice in Information Technology (CRPIT), Vol. ??. 
Thomas Meyer and Kerry Taylor, Eds. Reproduction for academic, not-for-profit purposes permitted provided this text is 
included.
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Visualizing and Specifying Ontologies using Diagrammatic Logics

Ian Oliver1 John Howse2 Gem Stapleton2 Esko Nuutila3 Seppo Törmä3

1 Nokia Research, Finland
Email: ian.oliver@nokia.com

2 Visual Modelling Group, University of Brighton, UK
Email: {John.Howse,g.e.stapleton}@brighton.ac.uk

3 Helsinki University of Technology, Finland
Email: {esko.nuutila,seppo.torma}@hut.fi

Abstract

This paper proposes a diagrammatic logic that is suit-
able for specifying ontologies. We take a case study
style approach to presenting the diagrammatic logic,
and draw contrast with RDF graphs and description
logics. We provide specifications of two ontologies and
show how to depict instances. Diagrammatic reason-
ing is used to show that an instance conforms to a
specification. We also include examples to show how
diagrammatic rules can be used to (a) constrain on-
tology specifications and (b) define mappings between
ontologies. The framework also allows the specifica-
tion of queries. The positive features of the diagram-
matic logic are discussed, supporting a claim that the
new logic is intuitive and appropriate for ontology
specification. Finally, we discuss the possibilities for
developing tools to support the use of the diagram-
matic logic, including automated diagram drawing
and reasoning procedures.

1 Introduction

The need to specify ontologies frequently arises, with
a prominent example being the semantic web area.
Specifications can be provided symbolically, but many
people find such notations inaccessible. Added to
that, ontology construction and conceptualization can
be difficult, and is hindered by the inaccessibility of
the symbolic syntax available to the user. There are
three main tasks that must be performed by users
in the context ontology specification: (a) converting
their semantic understanding into a specification in
their chosen notation, (b) interpreting syntactic spec-
ifications created by themselves or others, and (c)
reasoning about that specification to further under-
stand its logical consequences. Of course, one can
break these tasks down in to subtasks and add fur-
ther tasks to this specified list. We argue that making
the syntax more accessible to the user will aid with all
three tasks. Indeed, the provision of a fit-for-purpose,
more widely accessible notation specifically designed

Oliver, Nuutila and Törmä were supported by the TEKES
ICT SHOK DIEM project. Howse and Stapleton acknowl-
edge the support of the EPSRC for the Visualization with Eu-
ler diagrams project (EP/E011160/1 and EP/E010393/1); the
project web site can be found at www.eulerdiagrams.com. Sta-
pleton further acknowledges EPSRC support for the Defining
Regular Languages with Diagrams project (EP/H012311/1).
We thank Sergey Boldyrev, Jukka Honkola and Pekka Luoma
for helpful discussions on this research.
Copyright c©2009, Australian Computer Society, Inc. This pa-
per appeared at the 5th Austrailisian Ontologies Workshop.
Conferences in Research and Practice in Information Technol-
ogy (CRPIT), Vol. xx, Vladimir Estivill-Castro and Gillian
Dobbie, Ed. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

for specifying and reasoning about ontologies may be
helpful to a large community of users.

Diagrammatic notations are potentially a viable
alternative to symbolic notations. In the Descrip-
tion Logic Handbook (Baader et al. 2003), Nardi and
Brachman state that a “major alternative for increas-
ing the usability of description logics as a model-
ing language” is to “implement interfaces where the
user can specify the representation structures through
graphical operations.” Moreover, we argue that us-
ing diagrammatic (graphical) notations for reasoning,
in addition to specification, can bring huge benefits.
Currently, some diagrammatic notations have been
used for representing ontologies, but typically they
are not formalized. For instance, (Brockmams et al.
2004) investigate using the UML for this purpose.
However, the UML is not formal (some regard the
UML as semi-formal) and was not designed for spec-
ifying ontologies. Dau and Ekland proposed using
existential graphs for ontology modelling and estab-
lished that they were capable of representing any DL
statement made in ALC (Dau & Ekland 2008). Ex-
istential graphs have the flavour of a first-order logic
which uses a minimal set of logical operators (∧ and
¬) along with existential quantification. Restricting
to a minimal logic, such as this, can render it hard to
use when formulating constraints that are naturally
phrased using, for instance, disjunction and universal
quantification. Thus, the syntax of existential graphs
is very different from the ontology diagrams proposed
in this paper.

We further note that standard ontology editors of-
ten support a visualization of the specified ontology.
For instance, Protégé includes a plug-in visualiza-
tion package, OWLVis, that provides a visualization
in a graph-based form. This visualization shows de-
rived hierarchical relationships between the concepts
(classes) in the ontology and, thus, is very limited.
We note that automatically generated visualizations
from a given symbolic specification help with task (b)
described above. However, we want to enable the
users to perform the act of specification directly with
a graphical notation.

In this paper, we propose a diagrammatic notation
for specifying and reasoning about ontologies, called
ontology diagrams. We consider various aspects of on-
tology specification, including the need to place con-
straints on ontologies and relate two or more ontolo-
gies. We also consider how ontology diagrams can be
used in reasoning tasks. The design of the notation
has been strongly informed by the tasks to be per-
formed, including the semantic properties that are to
be visualized using them. Of particular note is that
we do not design the notation by aiming to have the
same expressive power of any particular description
logic. In our opinion, it would be inappropriate to de-
sign a graphical notation by aiming for the expressive
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power of an existing symbolic notation. There is no
reason to suppose that a natural design of any given
notation should necessarily coincide with any other
notation in terms of its expressiveness. Our primary
goal is to obtain an effective notation, not a visual-
ization of a particular description logic. Of course,
it would be very interesting and important, once the
notation has been fully formalized, to identify which
description logic statements can be expressed by on-
tology diagrams.

The notation builds on previous work in the di-
agrams area. In particular, ontology diagrams use
constraint diagrams (Kent 1997) as a basis, but we
extend and modify the syntax to make it appropriate
for the kinds of tasks described. Moreover, our se-
mantic interpretation of ontology diagrams is not the
same as constraint diagrams (Fish et al. 2005, Sta-
pleton & Delaney 2008). We assign semantics that
are appropriate for their use in ontology specification.
Some of the differences between these notations are
mentioned in the paper.

Section 2 illustrates ontology diagrams and how
they can be used to specify information about con-
cepts (concepts) and relationships between concepts
(roles). Their use to visualize instances is discussed in
section 3, where we illustrate how to show an instance
is consistent with the specification using diagram-
matic inference rules. Section 4 presents a schema
for placing constraints on the ontology specification
and queries are discussed in section 5. In section 6
we show how ontology diagrams can be used to re-
late two or more ontologies, allowing agents to reason
about multiple ontologies, taking advantage of any
semantic similarity between their respective concepts
and roles. Further features of ontology diagrams are
demonstrated in section 7 and approaches to formal-
ization are discussed in section 8. Section 9 briefly
discusses the future development tools to support the
use of ontology diagrams. In section 10, we discuss
cognitive theories that identify qualities of good dia-
grammatic notations, from a user perspective, linking
the theories with ontology diagrams; this serves to
justify their utility for ontology specification to some
extent.

2 Ontology Specification

To illustrate our proposed ontology diagrams we
present a case study, adapted from (Oliver et al.
2009), in which the notion of meetings, ontologies sup-
porting those concepts and the interaction and map-
ping between the ontologies and agents were inves-
tigated. We will use this case study throughout this
paper, illustrating a variety of features of the ontology
diagram syntax and semantics.

The case study specifies a meeting ontology, in-
troducing various concepts such as Location and Par-
ticipant. Briefly, this ontology, called nMeeting, com-
prises seven concepts:

1. Meeting: this represents the notion of a meeting,
2. Location: every meeting will have a location (in

this ontology, exactly one location),
3. Topic: every meeting will have at least one topic,
4. AgendaItem: every meeting will at least one item

on its agenda,
5. Participant: every meeting will have at least one

host and a set of participants (including the
host),

6. Document: each agenda item will have a set of
documents (possibly none),

7. Name: each participant will have a name.

Meeting

Name

Participant

Topic

AgendaItem

Location

location

Document

participants

meetingHost

topic

agenda

ParticipantAgendaItem

Document

responsibilityOf

documents

Ont_spec: nMeeting

m

NameParticipant

p

name

a

Figure 1: An ontology diagram specifying nMeetings.

Most of the roles in the ontology are evident from
the description above. The only exception is that we
will require each agenda item to be the responsibility
of some participant. All of the concepts are pairwise
disjoint.

One could produce alternative specifications of a
meetings ontology. The purpose of this paper is to
merely use the case study to illustrate some features
of ontology diagrams, rather than present an ‘ideal’
model of such an ontology. This case study is in-
tentionally simple, so that we can focus on pertinent
features of ontology diagrams. Consequently, it is not
rich enough to exemplify all aspects of the notation.
Thus, section 7 presents further examples with fea-
tures that do not arise from this case study.

The ontology diagram in figure 1 consists of 3 sub-
diagrams and captures relationships between the con-
cepts, represented by labelled closed curves (circles
are examples of closed curves). In each sub-diagram,
the curves form an Euler diagram: an Euler diagram
is a collection of labelled closed curves whose spa-
tial relationships express semantic relationships be-
tween the concepts. Non-overlapping curves assert
that the concepts are disjoint; a curve placed inside
another asserts a subset relationship. We can im-
mediately see from the top sub-diagram that all the
concepts represented are pairwise disjoint since all the
labelled curves have pairwise disjoint interiors; given
that there are 7 concepts, this would require 7C2 = 21
textual assertions (such as MeetinguTopic v ⊥), illus-
trating a certain succinctness of ontology diagrams.
An obvious question asks how well ontology diagrams
specify ontologies where not all of the concepts are
disjoint; examples will be given in section 7.

The unlabelled dots (called unlabelled spiders) as-
sert the existence of elements in the sets represented
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by the regions of the diagram in which they are placed
(further explanation is given below). The labelled spi-
ders in this diagram are acting as free variables. So,
m is a free variable that is ‘talking’ about meetings.
Later, we will use labelled spiders to represent con-
stants; the cases are distinguished by the use of italics
for free variables. We note here that constraint dia-
grams do not include spiders that act as free variables.

The arrows in the ontology diagram are used to
make statements about binary relationships between
concepts, with their labels being analogous to roles
in description logics. In the context of an ontology
diagram that is specifying an ontology (like that in
figure 1), the arrows are interpreted as providing do-
main and range (codomain) information; this feature
is particular to ontology diagrams in that it is not
part of constraint diagrams. In our nMeetings exam-
ple, the arrow labelled topic informs us that there is
a relation (or role) called topic between the concepts
Meeting and Topic. Since the target of the arrow is
an unlabelled curve that contains an unlabelled spi-
der, we have asserted that each meeting (through the
use of the free variable m) has a non-empty set of
topics; the unlabelled curve represents the image of
the relation topic when the domain is restricted to m.
Using description logic syntax, this arrow, its source
and target (including the spider inside the targeted
curve), tells us:

∃ topic.> v Meeting
∃ topic.¬Topic v ⊥
Meeting ≡ Meeting u ∃ topic.Topic.

The location arrow targets an unlabelled spider and
tells us that each Meeting has exactly one Location;
thus, location is a function with domain Meeting and
range Location. We observe that the ontology dia-
gram specifies that (the functional role) meetingHost
is a subrole of participants, since the host of the meet-
ing must be one of the meeting participants; equiv-
alently meetingHost v participants. In section 7 we
show how to assert subrole relationships where nei-
ther of the roles are necessarily functional.

We now summarize the semantics of the top sub-
diagram: all represented concepts are pairwise dis-
joint, and every member, m, has exactly one loca-
tion, a non-empty set of topics, a non-empty set of
agenda items, a meeting host, and a set of partic-
ipants which includes the meeting host. The other
two sub-diagrams make further assertions about bi-
nary relations and functions. For instance, the bot-
tom diagram tells us that the function name returns
the Name of each Participant.

Figure 2: Output from Protégé illustrating the nMeet-
ing hierarchy.

As mentioned in the Introduction, Protégé (Pro-
tege web site accessed June 2009) includes some
support for the visualization of ontologies via
OwlViz (Horridge accessed June 2009). Figure 2
illustrates the Protégé output obtained for the
nMeeting hierarchy, but it only shows the concepts
and the fact that they are all Things. The only
semantic information in the output diagram is given
by the names of the concepts and the direction of the
is-a arrows. This diagram includes no information
about the disjointness of these concepts or the
properties between them; the disjointness cannot

be inferred from the diagram at all, though it does
appear so.

3 Instances

An instance of the nMeetings ontology is in figure 3.
Here, the spiders are all labelled and they represent
specific objects (analogous to constants). Notice that
the ontology instance diagram contains shading in the
image of the relation topic. Semantically, the shading
places an upper bound on set cardinality: the Meeting
m1 is related to all and only the elements represented
by the spiders in the unlabelled curve targeted by the
topic arrow. In an ontology instance diagram, the
arrows are providing information about properties of
the relations that their labels represent, and are not
interpreted as providing domain and range informa-
tion (which is their role in an ontology specification
diagram).

Meeting

Location

Participant

Topic

AgendaItem

location

l1

participants

meetingHost

t1
topic

agenda m1

p1

p3

p2
p4

Participant

AgendaItem

Document

p1

p3
a1 a2

responsibilityOf

responsibilityOf

d1 d2

documents

p2
p4

Ont_inst: nMeeting

d3

d4

documents

a1 a2

Participant

p1

p2

Name

p3

p4

Ian

John

Gem

Sergey

name

name

name

name

Document

Name

Figure 3: An instance of the nMeeting ontology.

The given ontology instance diagram tells us that
the meeting m1 has exactly one topic, namely t1. We
can also see that m1 has at least two items on its
agenda, namely a1 and a2 (distinct spiders are taken
to denote distinct objects). The middle sub-diagram
shows that the two agenda items have a document,
d2, in common. Moreover, there is a document d4
that is not in the set of documents associated with a1
or a2. The rest of the diagram is similarly interpreted.

The instance diagram is not entirely shaded, so
there could be more objects than those represented
by the labelled spiders. Consequently, we only have
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partial information about the ontology instance. For
example, there may be more agenda items than the
two represented. For comparison purposes, an RDF
graph for the same instance can be seen in figure 4.
However, we cannot infer, for instance, from the RDF
graph that a1 and a2 are different agenda items,
whereas the ontology diagram in figure 3 does provide
this information; this is due to the lack of expressive
power of RDF.

m1

Meeting

typet1

Topic

type

a1

AgendaItem

type

a2

l1

Location

type

p1

Participants

type

p2 p3
location

participants

topic

agenda

Document

d1 d2 d3 d4

Name

Ian

type

John Sergey Gem

type

documents

responsibilityOf
responsibilityOf

documents

p4

name name name

name

Figure 4: RDF graph of the nMeeting instance

We can prove that this instance is consistent with
the specification by using diagrammatic inference
rules. To show that it is consistent, we can establish
that each sub-diagram of the instance conforms to
each respective sub-diagram in the specification. We
illustrate how this is done for the top sub-diagram,
which is D1 in figure 5. To do this, we establish that
the meeting, m1, is related to entities as specified in
figure 1. We are showing that the only member we
know about (m1) has the properties that a member
should have according to the specification.

We first observe that, since shading provides an
upper bound on set cardinality, a sound inference rule
allows us to delete shading (thus ‘forgetting’ the up-
per bound). This is shown as the first step in the
proof shown in figure 5, where we derive D2 from D1.
Next, we notice that if we have a labelled spider, s,
placed in a region of the diagram then we can delete
that spider (provided the region is not shaded); this
is because a labelled spider placed in a region tells
us that the represented object (or individual) is in
the set represented by that region and, thus, deleting
the spider forgets this information. Therefore, we can
delete spiders from D2 to give D3. Finally, we turn
the remaining labelled spiders (except m1), into un-
labelled spiders, giving D4. This is sound since if we
know a specific object has a particular set of proper-
ties then there exists an object with those properties.
We see that m1 in D4 now has all the properties that
a member is specified to have in figure 1.

Similar proofs can be constructed for the other two
sub-diagrams. Notice that the middle sub-diagram
has two AgendaItems and we are required to show
each of them has the necessary properties; similarly
the bottom sub-diagram has four Participants. In
any case, we can use these types of inference rules to
prove that the instance conforms to the specification.
Inference rules similar to those described here have
been defined for constraint diagrams (Stapleton et al.
2005); their formalisation should extend to ontology
diagrams but, since the semantics are not identical,
we would be obliged to prove their soundness when
applied to ontology diagrams.

We can also use diagrammatic inference rules to
explore properties of our instance. In addition to be-

Meeting

Location

Participant

Topic

AgendaItem

location

l1

participants

meetingHost

t1
topic

agenda m1

p1

p3

p2
p4

a1 a2 Document

Name

Meeting

Location

Participant

Topic

AgendaItem

location

l1

participants

meetingHost

t1
topic

agenda m1

p1

p3

p2
p4

a1 a2 Document

Name

Meeting

Location

Participant

Topic

AgendaItem

location

l1

participants

meetingHost

t1
topic

agenda m1

p1
Document

Name

Meeting

Location

Participant

Topic

AgendaItem

location

participants

meetingHost

topic

agenda m1

Document

Name

D1

D2

D3

D4

Figure 5: Proving that the instance is consistent with
the specification.

ing able to delete shading and spiders, we can also
delete labelled curves and arrows without increasing
the informational content of a diagram (that is, such
inference rules are sound). In figure 6, we can deduce
D6 from D5 (which is the top sub-diagram in figure 3)
by deleting syntax. Next, we can use the information
from the middle sub-diagram in figure 3 to add pieces
of syntax as follows. We can add documents d1, d2,
d3 and d4 to D6, since the middle sub-diagram tells us
that they are Documents, giving D7. Finally, we can
add arrows, again using information in the middle
sub-diagram, to yield D8. Alternative proofs could
be constructed to achieve the same outcome; for in-
stance, deleting the shading from D5 could be delayed
until the last step of the proof.

This type of reasoning provides a way for users
to explore, and understand, the consequences of an
instance. We can also define similar inference rules
that allow us to explore the consequences of ontology
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Meeting

Location

Participant

Topic

AgendaItem

location

l1

participants

meetingHost

t1
topic

agenda m1

p1

p3

p2
p4

a1 a2 Document

Name

D5

Meeting

Participant
AgendaItem

participants

meetingHost

agenda m1

p1

p3

p2
p4

a1 a2 Document

D6

Meeting

Participant

participants

meetingHost
agenda

m1

p1

p3

p2
p4

responsibilityOf

responsibilityOf

AgendaItem

Document

a1 a2

d1 d2

documents

d3

d4

documents

Meeting

Participant

participants

meetingHost
agenda

m1

p1

p3

p2
p4

AgendaItem

Document

a1 a2

d1 d2 d3

d4

D7

D8

Figure 6: Deductions from an instance.

specification diagrams (like that in figure 1) which is
important: understanding the consequences can re-
veal inconsistencies or unintended consequences. This
understanding can lead to refinements or improve-
ments to the specification which is clearly desirable.
Of course, we can always convert a reasoning task
into a problem stated symbolically, and reason at the
symbolic level (provided we have a mechanism to con-
struct an appropriate translation). We believe that
applying diagrammatic inference rules to construct
reasoned arguments will facilitate a greater under-
standing in users of why inferences hold (or, even, why
intended consequences do not follow). Thus, the mo-
tivation for developing diagrammatic inference rules
is primarily driven by users.

4 Constraints on Ontologies

In addition to specifying an ontology, we may want to
enforce constraints on that ontology. In the nMeeting
example, we probably want to assert that if a Par-
ticipant is responsible for an AgendaItem then that
Participant is one of the Meeting participants; this in-
formation is not deducible from the ontology specifi-

cation diagram in figure 1 and must be enforced by a
constraint. In order to allow this type of constraint to
be imposed on ontologies, we introduce a constraint
rule schema.

Meeting ParticipantAgendaItem

a

agenda

m p

Meeting Participant

m p

participants

Ont_Constraint: nMeeting ParticipantRule

responsibilityOf

Figure 7: The constraint rule schema.

Figure 7 illustrates the schema (which is following
the presentation style of a natural deduction rule),
with a constraint called ParticipantRule. The diagram
asserts that if a is an AgendaItem, on the agenda of
Meeting m and a is the responsibilityOf Participant p
(above the line) then it must be the case that the set
of m’s participants includes p (below the line). In this
example, the labelled spiders are acting as free vari-
ables, not constants. We may want to use constants
in a constraint rule schema. When formalizing the
logic, one would know which spider labels are vari-
ables and which are constant since these sets would
be pre-defined. Recall that, in order to differentiate
them in drawn diagrams, we have adopted the con-
vention that free variables, unlike constants, are in
italics. Further investigations are needed to establish
any relationship between the rules that can be defined
in this type of schema and role chains and role sub-
sumption in OWL 2 and any relationship that may
exist with OWL with SWRL.

5 Querying Ontologies

It is useful to be able to specify queries over ontolo-
gies. Ontology diagrams can also be used for this
purpose. As an example, we may want to obtain the
set of documents associated with the agenda items
for some given meeting. Such a query, called getDoc-

Meeting DocumentAgendaItem

agenda

m

documents

Ont_Query: nMeeting getDocuments(m) D

D

Figure 8: Query.

uments is defined in figure 8; the notation getDocu-
ments(m)→ D provides the name of the query, the
required inputs (in this case, m), and the output (in
this case D). Notice here that the source of the doc-
uments arrow is an unlabelled curve. This unlabelled
curve represents the set of agenda items associated
with the meeting m; more formally, it represents the
image, I, of the relation agenda when its domain is
restricted to m. Continuing in this manner, the set
D is the image of the relation documents when the
domain is restricted to I; the query returns the set
D. We show how to represent more complex queries
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in section 7. Future work will involve establishing
the relationship between these query diagrams and
SPARQL (Perez et al. 2006).

6 Ontology Mapping

There are likely to be times when multiple ontologies
have been defined that contain similar or identical
concepts and roles. If we want agents to be able to
reason about these ontologies, taking into account the
similar concepts and roles, then we need to be able to
specify the commonality. Typically, this is done via
ontology mapping: providing a layer from which we
can access multiple ontologies. That is, we can take
advantage of semantic similarity to enable interop-
erability between the various ontologies (Budanitsky
& Hirst 2006, Lindsey et al. 2007). This is possible
by (a) specifying how the concepts and roles in the
ontologies relate, and (b) by providing additional con-
straints that ‘tie up’ the two ontologies more precisely.
Here, we show how ontology mapping is possible us-
ing ontology diagrams and, to this end, we introduce
a second ontology specification for devices and pre-
sentations; see figure 9.

Meeting

PresentationController

AVDevice

MultipagePres

m

presentationscontrollers

Paper

Meeting
Presentation

belongsTo
Paper

p
papers

MeetingController

c

participatesIn

PresentationPresentationCont

pc

controlsP

PresentationAVDeviceCont

dc

controlsD

PresentationAVDevice

d

shows

Ont_spec: devAndPres

SKIM

PresentationCont

AVDeviceCont

Figure 9: An ontology diagram for devices and pre-
sentations.

The concept AVDevice represents things that are
able to present audiovisual content, such as a video
projector, a display of a laptop, a loudspeaker, a win-
dow on a computer desktop, and so forth. The con-
cept AVDeviceController represents a software com-
ponent that can render output to an AVDevice.
The concept SKIM is an example subconcept of
AVDeviceController. It represents a software compo-
nent that uses the SKIM viewer (Skim, PDF reader
and note-taker for OS X. n.d.) to show a PDF doc-
ument on a display. The concept Controller is just

an abstraction of the controller components (i.e. it
is an abstract concept), hence the shading inside the
respective curve but outside the labelled curves which
it contains.

When considering two (or more) ontologies, in or-
der to distinguish the use of common names for con-
cepts or roles (which we may or may not intend to
have a common or similar interpretation), we prefix
them by the name of the ontology from which they
are derived. So, in the case of Meeting, which oc-
curs in both of our example ontology specifications,
we write nMeeting:Meeting and devAndPres:Meeting,
to differentiate between the two uses of the com-
mon concept name. Similarly, we can choose to write
nMeeting:AgendaItem, nMeeting:agenda, and so forth,
to identify the ontology from which the concept or
role derived even though the names do not appear in
both of the original ontologies, should this be deemed
helpful to us.

Meeting

Ont_spec: meetingSetUp

Document

Papers

nMeeting:Meeting

devAndPres:Meeting

Ont_spec: nMeetingOnt_Link Ont_spec: devAndPres

Figure 10: Relating ontologies.

When relating the two ontologies, we may in-
tend for nMeeting:Meeting and devAndPres:Meeting
to be interpreted as the same concept. In addition,
we may want to assert that Paper (from devAnd-
Pres) is a sub-concept of Document (from nMeeting).
These two relationships are illustrated in figure 10
which specifies the ontology meetingSetUp which re-
lates the nMeeting and devAndPres ontologies. The
‘equality’ of nMeeting:Meeting and devicesAndPresen-
tations:Meeting is asserted by drawing their respec-
tive curves on top of one another. Notice that we
have drawn a curve labelled Meeting (with shading),
so that we can simply use Meeting in place of either
nMeeting:Meeting or devAndPres:Meeting to simplify
matters. We could also choose to express further in-
formation about the relationships between other con-
cepts, but for space reasons we have chosen only to de-
fine the relationships shown in figure 10. We can also
use this framework to specify relationships between
roles in the Ont Link diagram (using the sub-diagram
style) where appropriate.

Notice that figure 10 includes tabs, showing that
our ‘super-ontology’ meetingSetUP includes links be-
tween ontologies (the diagram shown), and relates the
nMeeting and devAndPres ontologies (the tabs with
hidden diagrams). With appropriate tool support,
one could click on the tab to reveal the original on-
tologies, since these form part of the meetingSetUp
ontology.

Our framework further allows the specification of
constraints on the super-ontology, like that in fig-
ure 11. The diagram asserts that if m is a meeting
whose agenda items are associated with set of docu-
ments D then the papers associated with m’s presen-
tations form a subset of D. This constraint uses con-
cepts and roles from both of the original ontologies.
We can go on to define additional queries, visualize
instances, and reason about the specification and in-
stances, using the same approaches as illustrated for
the nMeetings ontology.
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Ont_Constraint: meetingSetUp DocumentRule

Meeting DocumentsAgendaItem

agenda

m

documents D

Meeting
D

Presentation

presentations

m

papers

Figure 11: Constraints on the super-ontology.

7 Further Features of Ontology Diagrams

Ontology diagrams include additional syntax not yet
demonstrated in the paper. For instance, they include
syntax to assert equality between elements, which
could be named individuals (i.e. constants), existen-
tially quantified elements, or those elements repre-
sented by spiders acting free variables. The syntax
used looks very much like an equals sign, which was
chosen since people are generally very familiar with
this symbol. An example is given in figure 12 which
asserts that the functional role f is injective using the
constraint rule schema: if x is related to a and y is
related to a then x = y.

A

f

x

Ont_Constraint: myOntology Injective

a

A

f

y aand

x

A

y

Figure 12: Asserting equality.

We note that description logics have a unique
name assumption, that is different names imply dif-
ferent entities. In ontology diagrams different names
imply different entities unless connected by an equals
sign. By contrast, first order predicate logic assumes
that entities may or may not be equal and one must
assert either equality or distinctness whenever one
or the other is intended. Similarly, OWL does not
make the unique name assumption, but includes con-
structs to express equality or distinctness, namely
OWL:sameAs and OWL:differentFrom.

A further feature of ontology diagrams can be seen
in figure 13. The spider is placed in more than one
(minimal) region of the diagram. Here, x represents
an element in A ∪B and, therefore, conveys disjunc-
tive information: x ∈ A−B ∨x ∈ A∩B ∨x ∈ B−A.
Disjunctive statements can also be made using logi-
cal connectives between diagrams. We have already
seen the use of conjunction between diagrams: fig-
ure 1 contains three sub-diagrams whose semantics
are taking in conjunction. An example of how to
represent disjunction, essentially following the style
used in (Shin 1994), can be seen in figure 14. In
this constraint rule, the two subdiagrams above the
line are taken in disjunction. Other logical operators
can be used in a similar fashion, although in fact we

A B

f S

x

Ont_Query: myOntology f(x) S

Figure 13: Making disjunctive statements within di-
agrams.

have been using juxtaposition to assert conjunction
between subdiagrams such as in figure 1. The dia-
gram in figure 14 also shows how subrole assertions
can be made when the roles are not necessarily func-
tional: the subdiagram below the line asserts that f
is a subrole of g, when its domain is restricted to x.

A

f

x

Ont_Constraint: myOntology MyRule

B

g

xor

f

g

x

Figure 14: Making disjunctive statements between di-
agrams.

Figure 15 shows an example of a specification
where none of the concepts are disjoint. The arrow
between the two sub-diagrams allows us to asserts
that there is a relation, g, with domain A and range
B∩C. Having arrows between sub-diagrams was first
explored in (Howse & Stapleton 2008) precisely to al-
low less cluttered diagrams to be produced. Figure 16
shows an alternative representation of the same in-
formation that does not utilize arrows between sub-
diagrams. As with any notation, semantically equiv-
alent statements exist and some are more effective at
conveying information than others.

A C

x

Ont_Spec: myOntology

g B

Figure 15: Non-disjoint concepts: arrows between
sub-diagrams.

8 Approaches to Formalization

There has been considerable progress, over the last
decade or so, on approaches to formalizing visual lan-
guages. With respect to formalizing the syntax, we
advocate the distinction between concrete and ab-
stract syntax. The concrete syntax captures the phys-
ical representation of the diagram whereas the ab-
stract syntax is a mathematical description of the di-
agram that captures the pertinent (semantically im-
portant) features and disregards semantically irrele-
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A

x

Ont_Spec: myOntology

g

B

C

Figure 16: Non-disjoint concepts: a single diagram.

vant geometric properties. One can think of the con-
crete syntax as being the physical diagram itself and
the advantages of this two-tiered approach are dis-
cussed in (Howse et al. 2001). The remainder of this
section presents preliminary work on the formaliza-
tion of ontology diagrams for the interested reader
and is not necessary for the following sections.

First, we present the abstract syntax for so-called
’unitary’ sub-diagrams. These are the diagrams that
form the building blocks of more complex diagrams.
For space reasons, we do not include a formalization
of the syntax of the entire notation. We start by
defining various sets:

1. LC is a set whose elements are used to label
curves in concrete diagrams.

2. UC is a set whose elements correspond to unla-
belled curves in concrete diagrams (note that the
elements are not themselves curves).

3. Z is the set of zones defined by

Z =
(
P(LC ∪ UC))2

.

4. CS is a set whose elements are used to label con-
stant spiders in concrete diagrams.

5. US is a set whose elements correspond to unla-
belled spiders in concrete diagrams.

6. FS is a set whose elements are used to label free
spiders (those acting as free variables) in concrete
diagrams.

7. S = CS ∪ US ∪ FS.

8. AL is a set whose elements are used to label ar-
rows in concrete diagrams.

9. A is the set of arrows defined by

A = {(s, l, t) : s, t ∈ LC ∪ UC ∪ S ∧ l ∈ AL}.

We assume that all of the above sets are pairwise
disjoint. The definition of a unitary diagram draws its
components from these sets; we explain the definition
via an example immediately below.

Definition 8.1 An abstract unitary
ontology sub-diagram is a tuple
(LC, UC,Z, SZ,CS,US, FS, η, δ, A) whose com-
ponents are all finite sets defined as follows.

1. LC ⊆ LC and UC ⊆ UC
2. Z ⊂ Z such that each zone (in, out) ∈ Z satisfies

in ∪ out = LC ∪ UC.

3. SZ ⊆ Z is a set of shaded zones.

4. CS ⊆ CS, US ⊆ US and FS ⊆ FS

5. η is a function with domain S, where S = CS ∪
US ∪ FS, and range PZ − {∅}.

6. δ is a partial function which identifies whether
two spiders are joined by =. It has domain
(S × S) and codomain {0, 1} and is defined pre-
cisely for the pairs (s1, s2) where s1 6= s2 and it
is symmetric.

7. A ⊆ A such that for each (s, l, t) ∈ A, s and t
are both in LC ∪ UC ∪ CS ∪ US ∪ FS.

For example, figure 12 contains three unitary sub-
diagram. The top left sub-diagram has abstract syn-
tax comprising (the omitted components of the tuple
are all empty):

1. LC = {A},
2. Z = {({A}, ∅), (∅, {A}),
3. FS = {x, a},
4. η(x) = {({A}, ∅)} and η(a) = {(∅, {A})},
5. δ(x, a) = δ(a, x) = 0 (the spiders are not joined

by =), and

6. A = (x, f, a).
Turning to the semantics, typical approaches in

diagrammatic logics mirror those found in more tra-
ditional symbolic logics. We start by defining a struc-
ture, (U,Ψ0,Ψ1, Ψ2) where U is a universal set,

1. Ψ0 maps elements of CS to elements of U ,

2. Ψ1 maps elements of LC to subsets of U , and

3. Ψ2 maps elements of AL to binary relations on
U .

Given a structure, one can then define when the struc-
ture satisfies a diagram as has been done for con-
straint diagrams (Fish et al. 2005, Stapleton & De-
laney 2008).

A complete formalization of the syntax and seman-
tics of ontology diagrams remains the subject of fu-
ture work. The initial ideas presented here are based
on over a decade of work formalizing Euler, spider
and constraint diagrams on which ontology diagrams
build. For examples, see (Stapleton et al. 2007), (Gil
et al. 1999, Howse et al. 2005, Stapleton, Taylor,
Howse & Thompson 2009), and (Stapleton et al. 2005,
Stapleton & Delaney 2008, Fish et al. 2005) for for-
malizations of Euler diagrams, spider diagrams and
constraint diagrams respectively.

9 Tool Support

Significant tool support has been developed for using
symbolic notations to specify and reason about on-
tologies, such as (FaCT++ accessed June 2009, Pro-
tege web site accessed June 2009), including function-
ality for visualizing aspects of the ontologies (Hor-
ridge accessed June 2009). However, the visualiza-
tions available to the users are not as sophisticated as
those possible with the notations proposed in this pa-
per. It is possible to provide tool support for ontology
diagrams. Key pieces of functionality include:

1. The ability to input ontology diagrams via an
editor or sketch recognition system.

2. The ability to automatically translate ontology
diagrams into symbolic forms (such as OWL or
Description Logics) to enable us to take advan-
tage of the significant tool support that has been
developed to date, including highly efficient rea-
soners. Moreover, it is desirable to support the
translation of symbolic statements into ontology
diagrams, permitting their visualization.
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3. The provision of a proof assistant or automated
theorem prover which can be used to allow users
to explore the logical consequences of their on-
tology diagrams.

4. The ability to automatically generate ontology
diagrams, in particular to support automated
reasoning and visualization of symbolic state-
ments.

In the latter case above, significant research has been
directed towards the automated generation and lay-
out of Euler diagrams, which form the basis of on-
tology diagrams, including (Chow & Ruskey 2003,
Flower & Howse 2002, Stapleton, Rodgers, Howse &
Zhang 2009, Stapleton, Howse & Rodgers 2009, Ver-
roust & Viaud 2004). These diagram generation tools
typically take as input the abstract syntax of the to-
be-generated diagram. Already, theorem provers have
been developed for Euler diagram (Stapleton et al.
2007) and spider diagrams (Flower et al. 2004). Thus,
whilst significant work is required to develop tool sup-
port for ontology diagrams, there is already a firm ba-
sis on which we can build. We plan to develop tools
as part of our future work, possibly as a plug-in for
Protégé.

10 Free-rides and Well-matchedness

Some of the benefits of diagrammatic notations are
evident in figure 9, where both set intersection, dis-
jointness and containment are represented visually:
for example, Meeting and Controller assert the dis-
jointness of the represented concepts since these two
curves do not overlap, and PresentationCont repre-
sents a subset of Controller asserted by the inclusion
of the former curve inside the latter. This diagram
has properties that are thought to correlate with ar-
eas where diagrams are superior to symbolic nota-
tions, from a user interpretation perspective, because
it is well-matched to its set-theoretic semantics (Gurr
2001). Extending this observation, using containment
to represent set inclusion has the added benefit that
the transitive property of the (semantic) subset rela-
tion is mirrored by the transitive property of (syn-
tactic) containment. Any notation that is based on
Euler diagrams to make such statements about sets is
well-matched to its semantics. Thus, Euler diagrams
are a good basis for ontology diagrams.

The economy of syntax afforded by diagrams over
symbolic notations is also sometimes an advantage.
In Fig. 9, the relative placement of the Meeting, Pre-
sentationCont and Controller curves gives, for free,
that ‘PresentationCont is disjoint from Meeting’. This
example of a free ride, the theory of which is devel-
oped by Shimojima (Shimojima 2004), is an instance
of where the explicit information in a diagram in-
cludes facts that would need to be inferred in the
symbolic case. Other types of free rides arise and
are not solely an advantage of Euler diagrams; for
example, see the discussions on various types of free
rides in constraint diagrams that relate to their ar-
rows (Howse & Stapleton 2008); many of the free rides
exhibited by constraint diagrams extend to ontology
diagrams due to the similarity of their syntax. This
type of inferential advantage of diagrams has been
noted by several researchers, including (Barwise &
Etchemendy 1990, Stenning & Lemon 2001), and is
backed up by empirical evidence provided in (Shimo-
jima & Katagiri 2008). The advantages of diagrams
in numerous reasoning contexts are further discussed
in (Larkin & Simon 1987).

11 Conclusion

In this paper we have proposed a new diagrammatic
logic, ontology diagrams, for specifying and reason-
ing about ontologies. We have argued that these dia-
grams are well-matched to their semantics and, there-
fore, have advantages over symbolic notations that
are currently on offer. The visual nature of the syn-
tax may make ontology diagrams more appealing to
non-mathematically minded people who have a need
to specify ontologies. Moreover, they may provide
a more accessible means of communicating an ontol-
ogy specification to a variety of stakeholders (not just
those who are familiar with current mechanisms to
define ontologies).

The expressiveness required of the description
logic capable of specifying the two ontologies pre-
sented here is relatively simple: in the meeting on-
tology it is ALCHQ(D) and the device/presentation
ontology it is ALCF(D). This level of expressiveness
means that any reasoning that is required to be made
over these ontologies is reasonably simple and does
not require the power of OWL1 reasoner. We note
that most current business information models have
been specified using entity-relationship models which
are easily mapped to simple description logics of much
less complexity than OWL (Baader et al. 2003). We
note here that, without the arrows present, ontology
diagrams are essentially spider diagrams (Howse et al.
2005), a notation which is equivalent in expressiveness
to monadic first order logic with equality (Stapleton
et al. 2004). For ontology diagrams, it remains the
subject of future work to establish their expressive
power relative to description logics.

In the future, we plan to formalize the syntax and
semantics of ontology diagrams, following the style
used for constraint diagrams (Stapleton & Delaney
2008). This formalization will then allow us to define
inference rules for ontology diagrams and prove their
soundness and, ideally, completeness. We will care-
fully design the inference rules, using a wide variety
of case studies to inform us of the kinds of reasoning
that takes place. We would aim to define rules that
are intuitive to human users, so that people can better
understand why entailments hold. This complements
current work on computing justifications (Horridge
et al. 2009) which aims to produce minimal sets of
axioms from which an entailment holds; finding mini-
mal sets allows users to focus on the information that
is relevant to the deduction in question which is im-
portant when dealing with ontologies containing very
many concepts. Using a visual syntax with which to
communicate why the entailment holds (i.e. provid-
ing a diagrammatic proof) may allow significant in-
sight beyond merely knowing the axioms from which
a statement can be deduced.
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Abstract

Module extraction plays an important role in the
reuse of ontologies as well as in the simplification and
optimization of some reasoning tasks such as finding
justifications for entailments. In this paper we fo-
cus on the problem of extracting small modules for
EL+ entailment based on reachability. We extend
the current notion of (forward) reachability to ob-
tain a bi-directional version, and show that the bi-
directional reachability algorithm allows us to trans-
form an EL+ ontology into a reachability preserving
context free grammar (CFG). The well known Ear-
ley algorithm for parsing strings, given some CFG,
is then applied to the problem of extracting mini-
mal reachability-based axioms sets for subsumption
entailments. We show that each reachability-based
axiom set produced by the Earley algorithm corre-
sponds to a possible Minimal Axiom Set (MinA) that
preserves the given entailment. This approach has
two advantages – it has the potential to reduce the
number of subsumption tests performed during MinA
extraction, as well to minimize the number of axioms
for each such test.

1 Introduction

Reasoning tasks such as finding all justifications for
an entailment are inherently hard, having at least an
exponential worst case complexity. Even for descrip-
tion logics (DLs) such as EL+ (Suntisrivaraporn 2009)
for which many reasoning tasks can be performed in
polynomial time, the exponential nature of finding all
justifications for an entailment is inescapable. Mod-
ule extraction is one of the methods that aims to op-
timize the performance of this process by reducing
the size of the ontology to a smaller subset of axioms
that contains only the relevant axioms required for
the entailment, thereby reducing the search space.

Extracting a minimal module is closely related to
computing a deductive conservative extension of an
ontology, which has been shown by Grau et al. (2007,
2008) to be intractable. They introduce syntactic
locality-based modules, an approximation of minimal
modules, that are more tractable and can be com-
puted in polynomial time, whilst preserving all en-
tailments.

Suntisrivaraporn (2009) introduced the notion of
reachability-based modules for the DL EL+. Though
the reachability-based module extraction algorithm
differs from the syntactic locality-based algorithm, he
proves that the modules extracted correspond to min-
imal syntactic locality-based modules.

The main criticism against reachability-based
modules, as raised by Jianfeng Du & Ji (2009), is
that, given an entailment O |= A v B, these meth-
ods extract a module for A and all concepts reachable

from it without considering the super-concept B, re-
sulting in large modules that in some cases do not
reduce the size of the ontology at all. They propose a
goal-directed algorithm for extracting just-preserving
modules. The algorithm proceeds in two phases; the
first, the off-line phase, transforms the ontology into
a propositional program which preserves all logical
relationships. The second phase, the on-line phase,
utilizes the idea of maximally connected components,
as used in SAT problem optimization, to extract a
justification-preserving module. Experimental results
show that modules obtained this way are smaller by
an order of magnitude than their locality-based mod-
ule counterparts.

Once a module has been extracted, various meth-
ods are used to find all justifications. A common ap-
proach is to systematically remove axioms that do
not play a role in the entailment. After every itera-
tion of the axiom removal procedure, a subsumption
test determines if the entailment still holds in the re-
sulting axiom set. This process continues until no
more axioms can be removed. The resulting axiom
set then constitutes a MinA. Subsumption testing is
a computationally expensive procedure, even for EL+.
Minimizing the number of subsumption tests during
MinA extraction is therefore a primary concern when
developing MinA extraction algorithms.

Our approach extends the reachability heuris-
tic as introduced by Suntisrivaraporn (2009) to in-
clude backward reachability, thereby obtaining a
bi-directional version of reachability. The heuris-
tic allows us to make use of the well known Ear-
ley algorithm (Earley 1970) for parsing context free
grammars (Jurafsky & Martin 2009) to compute all
reachability-based paths between the sub- and super-
concepts for an entailment. Each such path consti-
tutes a minimal set of axioms such that reachabil-
ity is preserved. Every reachability preserving axiom
set does not guarantee entailment in itself, and there-
fore does not necessarily constitute a MinA. We focus
on extracting all such minimal reachability preserving
axiom sets. A standard subsumption test can then be
employed in order to determine if the set constitutes a
valid MinA. In this way we hope to reduce the number
of subsumption tests performed during MinA extrac-
tion, as well as to minimize the number of axioms for
each such test.

The Earley algorithm has been studied extensively
in the literature and highly optimized software and
hardware implementations exists (Chiang & Fu 1984,
Pavlatos et al. 2003). At present we restrict our fo-
cus to EL+ which, because of its particular structure,
allows us to transform any axiom into reachability
preserving CFG production rules. The original Ear-
ley algorithm can then be used to extract all parse
trees.

The rest of the paper is structured as follows. Sec-
tion 2 contains the relevant background information
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Name Syntax Semantics
top > ∆I

bottom ⊥ ∅
conjunction C uD CI ∩DI

existential restriction ∃r.C {x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ rI ∧ r ∈ CI}
general concept inclusion (GCI) C v D CI ⊆ DI

role inclusion (RI) r1 ◦ . . . ◦ rk v r rI
1 ◦ . . . ◦ rI

k ⊆ rI

transitivity transitive(r) ∀d, e, f ∈ ∆I : (d, e), (e, f) ∈ rI → (d, f) ∈ rI

reflexivity reflexive(r) ∀d ∈ ∆I : (d, d) ⊆ rI

range restriction range(r)v C {e ∈ ∆I | ∃d : (d, e) ∈ rI} ⊆ CI

domain restriction domain(r)v C {d ∈ ∆I | ∃e : (d, e) ∈ rI} ⊆ CI

role hierarchy (RH) r v s rI ⊆ sI

Table 1: EL+ syntax and semantics

on description logics, context free grammars, the Ear-
ley algorithm, and existing versions of reachability. In
Section 3 we introduce a notion of backward (top-
down) reachability. We show that a bi-directional
reachability-based approach may be used to extract
small modules that considers the sub-concept as well
as the super-concept in an entailment. We show
that modules obtained in this way may be smaller
than reachability-based modules that consider only
the sub-concept. In Section 4 we provide an algorithm
for transforming any EL+ ontology into a reachability
preserving CFG and show how the Earley algorithm
can be used to extract a small strong subsumption
module for a given entailment. Furthermore, in sec-
tion 5 we show that the Earley algorithm simultane-
ously computes all parse trees, where each parse tree
corresponds to a possible MinA. Section 6 is a discus-
sion on work in progress, where we discuss possible
changes to the standard Earley algorithm specifically
aimed at optimizing the MinA discovery process. Sec-
tion 7 briefly concludes and discusses future work.

2 Preliminaries

2.1 DL terminology

In the standard set-theoretic semantics of concept de-
scriptions, concepts are interpreted as subsets of a
domain of interest, and roles as binary relations over
this domain. An interpretation I consists of a non-
empty set ∆I (the domain of I) and a function ·I (the
interpretation function of I) which maps each atomic
concept A to a subset AI of ∆I , and each atomic
role R to a subset RI of ∆I × ∆I . The interpre-
tation function is extended to arbitrary concept and
role descriptions, with the specifics depending on the
particular description logic under consideration. We
provide the details for EL+ in Definition 1 below.

A DL knowledge base consists of a TBox which
contains terminological axioms, and an ABox which
contains assertions, i.e. facts about specific named
objects and relationships between objects in the do-
main. For the purposes of this paper we concern our-
selves only with Tbox statements.

TBox statements are general concept inclusions of
the form C v D, where C and D are (possibly com-
plex) concept descriptions. C v D is also called a sub-
sumption statement, read “C is subsumed by D”. An
interpretation I satisfies C v D, written I 
 C v D,
iff CI ⊆ DI . C v D is valid, written |= C v D, iff it
is satisfied by all interpretations.

An interpretation I satisfies a DL knowledge base
K iff it satisfies every statement in K. A DL knowl-
edge base K entails a DL statement φ, written as
K |= φ, iff every interpretation that satisfies K also

satisfies φ.
Roughly speaking, DLs are defined by the con-

structors they provide. There exists a correlation be-
tween the expressivity of the DL and the complexity
of reasoning over it. We consider the DL EL+ which
is defined as follows:

Definition 1 (EL+ syntax and semantics) The
syntax and semantics of EL+ constructors are defined
in Table 1.

We further require that an EL+ ontology conform
to the following syntactic restriction (Suntisrivara-
porn 2009): For an ontology O and role names r,s,
we write O |= r v s if and only if r = s or O con-
tains role inclusions r1 v r2, . . . , rk−1 v rk with r =
r1 and s = rk. Also, we write O |= range(r) v C
if there is a role name s such that O |= r v s and
range(s) v C ∈ O. The EL+ syntactic restriction is
as follows: If r1 ◦ . . . ◦ rk v s ∈ O with k ≥ 1 and
O |= range(s) v C, then O |= range(rk) v C.

Intuitively, the restriction ensures that a role in-
clusion r1 ◦· · ·◦rk v s does not induce any new range
constraints on the role composition r1 ◦ · · · ◦ rk. For-
mally, it ensures that if the role inclusion implies a
role relationship (d, e)∈ sI in the model, then the
range restrictions on s do not impose new concept
memberships on e. Without this restriction reasoning
in EL+ becomes intractable (Suntisrivaraporn 2009,
Baader et al. 2008).

Given an ontology O and an entailment O |= σ
with σ a statement of interest, a justification for σ
is a set of axioms from O such that the entailment
is preserved. A minimal axiom set (MinA) is the
smallest set of axioms that preserves the entailment.

Definition 2 (Minimal Axiom set) Let O be an
ontology, and σ a subsumption statement such that
O |= σ. A subset S ⊆ O is a minimal axiom set
(MinA) for σ w.r.t. O, also written as “S is a MinA
for O |= σ”, if and only if

1. S |= σ, and

2. for every S′ ⊂ S, S′ 6|= σ.

Definition 3 (Signature of O) Let CN(O) repre-
sent the set of all concept names in O, RN(O) the
set of all role names in O. We define the signature of
O, denoted as Sig(O), as the union of all concept and
role names occurring in O i.e., Sig(O) = CN(O) ∪
RN(O). Similarly for any EL+ statement σ, Sig(σ)
is the union of all concept and role names occurring
in σ.
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2.2 The Earley algorithm for parsing CFG
languages

Context free grammars (CFGs) provide a well-known
method for modeling the structure of English and
other natural languages. A grammar consists of a
set of productions or rules, each of which expresses
the ways the symbols (strings) in a language can be
grouped together, as well as a lexicon of words or
symbols.

Definition 4 (CFG production rules) Given
that X represents a single non-terminal, the symbol
“a” represents a single terminal and α and σ repre-
sent mixed strings of terminals and non-terminals,
including the null string. CFG production rules have
the form:

X → ασ (1)
X → a (2)

Parsing a CFG string results in a parse tree, assign-
ing syntactic structure to it. The Earley parsing al-
gorithm (Earley 1970) uses a dynamic programming
approach applying a single left-to-right, top-down,
depth-first parallel search strategy to compute a chart
that contains all possible parses for a given input. It
accomplishes this in polynomial worst case time (n3),
where n is the size of the input string.

Example 1 Consider the sample CFG for a sub-
set of English grammar below. The set of symbols
{that, book, flight} represent terminal symbols and
all other symbols represent non-terminals.

S → V P

S → NP V P

V P → V P NP

NP → Det Noun

V P → V erb

Det → that

V erb → book

Noun → flight

During execution the Earley algorithm generates
a state entry for each production rule it operates on.
The purpose of the state is to record the progress
made during the parsing process.

Definition 5 (Parse states) Let X and Y repre-
sent single non-terminal symbols, let a represent a
single terminal symbol, and let α, β and σ represent
mixed strings of terminal and non-terminal symbols,
including the null string. Then for each token (word)
in the input string, the Earley algorithm creates a set
of states, called a chart. A chart at position k of the
input is represented by Ck. Each state consists of a
tuple (X → α • β, i) where

1. X → αβ is the current production rule,

2. • indicates the dot rule which represents the cur-
rent parsing position in the state, with α • β in-
dicating that α has previously been parsed and β
is expected next, and

3. i indicates the starting index of the substring
where parsing of this production began.

The parser consists of three sub-parts, the predic-
tor, scanner and completer. For each state in chart
Ci, the tuple (X → α • β, j) is evaluated and the
appropriate sub-part executed:

1. Predictor: If state = (X → α • Y β, j) , then
for every production Y → σ, if (Y → •σ) /∈ Ci
then Ci := Ci + (Y → •σ, i),

2. Scanner: If state = (X → α •aβ, j), with a the
next symbol in the input stream, and if (X →
αa•β, j) /∈ Ci+1 then Ci+1 := Ci+1 + (X → αa•β,
j),

3. Completer: If state = (X → γ•, j), then for
every (Y → α • Xβ, k) ∈ Cj , Ci := Ci + (Y →
αX • β, k).

The algorithm executes all states iteratively in a top-
down manner until no new states are available for
processing, and no state may appear more than once
in a given chart (Jurafsky & Martin 2009).

Example 2 Table 2 shows the output of the Earley
algorithm given the input string ‘book that flight’ and
the CFG in Example 1. The state

20. S → V P•

in chart 3 represents a successful parse of the string.

Table 2: Parse for ‘book that flight’
Chart 0: • book that flight
1. S → • NP VP j = 0 : Inital State
2. S → • VP j = 0 : Inital State
3. NP → • Det Noun j = 0 : Predictor 1
4. VP → • VP NP j = 0 : Predictor 2
5. VP → • Verb j = 0 : Predictor 2
6. Det → • that j = 0 : Predictor 3
7. Verb → • book j = 0 : Predictor 5
Chart 1: book • that flight
8. Verb → book • j = 0 : Scanner 7
9. VP → Verb • j = 0 : Completer 5, 8
10. VP → VP • NP j = 0 : Completer 4, 8
11. NP → • Det Noun j = 1 : Predictor 10
12. Det → • that j = 1 : Predictor 11
Chart 2: book that • flight
13. Det → that • j = 1 : Scanner 12
14. NP → Det • Noun j = 1 : Completer 11, 13
15. Noun → • flight j = 2 : Predictor 14
Chart 3: book that flight •
16. Noun → flight • j = 2 : Scanner 15
17. NP → Det Noun • j = 1 : Completer 14, 16
18. VP → VP NP • j = 0 : Completer 10, 17
19. VP → VP • NP j = 0 : Completer 4, 18
20. S → VP • j = 0 : Completer 2, 18

2.3 Reachability-based module extraction

Given an ontology O and an entailment O |= σ with
σ a statement of interest, extracting a module aims to
obtain a small subset O′ of O, such that entailment
of σ is preserved, where Sig(σ) is defined as in Defi-
nition 3. For the purposes of this paper σ is always a
subsumption statement.

Definition 6 (Module for EL+) Let O be an EL+

ontology, and σ a statement formulated in EL+.
Then, O′ ⊆ O is a module for σ in O(a σ-module
in O) whenever: O |= σ if and only if O′ |= σ. We
say that O′ is a module for a signature S in O (an
S-module in O) if, for every EL+ statement σ with
Sig(σ) ⊆ S, O′ is a σ-module in O.

Definition 7 (Reachability-based modules)
Let O be an EL+ ontology and S ⊆ Sig(O) a signa-
ture. The set of S-reachable names in O is defined
inductively as:
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• x is S-reachable in O, for every x ∈ S;

• for all inclusion axioms αL v αR, if x is S-
reachable in O for every x ∈ Sig(αL), then y
is S-reachable in O for every y ∈ Sig(αR).

We call an axiom αL v αR S-reachable in O if ev-
ery element of Sig(αL) is S-reachable in O. The
reachability-based module for S in O, denoted by
Oreach

S , consists of all S-reachable axioms from O.

When S is the single concept A, we write A-
reachable and Oreach

A . An interesting result of reach-
ability is that it can be used to test negative sub-
sumption. That is, if B is not A-reachable in O, then
O 6|= A v B, unless A is unsatisfiable w.r.t O (Sun-
tisrivaraporn 2009).

Definition 8 (Subsumption module) Let O be
an ontology, and A a concept name occurring in O.
Then, O′ ⊆ O is a subsumption module for A in O
whenever: O |= A v B if and only if O′ |= A v B
holds for every concept name B occurring in O.

A subsumption module O′ for A in O is called
strong if the following holds for every concept name
B occurring in O: if O |= A v B, then every MinA
for O |= A v B is a subset of O′.

Theorem 1 (Suntisrivaraporn 2009). The module
Oreach

A is a strong subsumption module for A in O.

We require that an EL+ ontology O be in normal
form. We use the same form as Brandt (2004) and
Suntisrivaraporn (2009). Any EL+ ontology O can
be converted to an ontology O′ in normal form in
linear time, with at most a linear increase in the size
of the ontology.

Let CN (O) represent the set of all concept names
in O, RN (O) the set of all role names in O,
CN (O)> = CN (O) ∪ {>} and CN (O)⊥ = CN (O) ∪
{⊥}.

Definition 9 (Normal Form) An EL+ ontology O
is in normal form if the following conditions are sat-
isfied:

1. all concept inclusions in O have one of the fol-
lowing forms:
A1 u . . . uAn v B,

A1 v ∃r.A2,
∃r.A1 v B

where Ai ∈ CN>(O) and B ∈ CN⊥(O);

2. all role inclusions in O have one of the following
forms:

ε v r,
r v s,

r ◦ s v t,
where r, s, t ∈ RN(O) and ε is the identity ele-
ment;

3. there are no reflexivity statements, transitivity
statements or domain restrictions, and all range
restrictions are of the form range(r) v A with
A a concept name.

3 Bi-directional reachability-based module

Given an EL+ ontology O and entailment O |= A v
B, as well as the module Oreach

A , we have that O |=
A v B if and only if Oreach

A |= A v B, where A and

B are concepts names. Oreach
A preserves entailments

for all concept names α such that O |= A v α.
A criticism raised against reachability-based mod-

ules, in terms of finding justifications, is that they
contain many irrelevant axioms, and in some cases do
not reduce the size of the ontology at all (Jianfeng Du
& Ji 2009). This stems from the fact that Oreach

A con-
siders only the sub-concept A in O |= A v B; the
super-concept B is never used to elimate unwanted
axioms.

Example 3 Given the small ontology O below, as
well as O |= A v B, Oreach

A will consist of axioms
1, 2 and 4. Axiom 4 is irrelevant in terms of finding
justifications for O |= A v B, yet it is included in
Oreach

A .

A v ∃r.D (1)
∃r.D v B (2)

E v B (3)
A v F (4)

Given the entailment O |= A v B, reachability can
be applied in two directions: The standard bottom-
up approach, which extracts Oreach

A , and a top-down
approach, which extracts Oreach

←
B

, and is defined as
follows:

Definition 10 (Top-down reachability-based
module) Let O be an EL+ ontology and S ⊆ Sig(O)
a signature. The set of ←S -reachable names in O is
defined inductively as:

• x is ←S -reachable in O, for every x ∈ S;

• for all inclusion axioms αL v αR, if x is ←S -
reachable in O for some x ∈ Sig(αR), or if αR =
⊥, then y is ←S -reachable in O for every y ∈
Sig(αL).

We call an axiom αL v αR
←S -reachable in O if some

element of Sig(αR) is ←S -reachable or if αR = ⊥. The
top-down reachability-based module for S in O, de-
noted by Oreach

←
S

, consists of all ←S -reachable axioms
from O.

Besides the direction of application, there is a
fundamental difference between the two approaches.
When extracting Oreach

A , the axiom αL v αR be-
comes A-reachable only when all xi ∈ Sig(αL) are
A-reachable. When extracting Oreach

←
B

, the axiom
αL v αR is ←B-reachable whenever any xi ∈ Sig(αR)
is ←B-reachable.

By definition of reachability, axioms of the form
> v αR and ε v r are A-reachable, since Sig(>)
= Sig(ε) = ∅, and form part of any module Oreach

A
extracted (Suntisrivaraporn 2009).

Further by definition of top-down reachability, ax-
ioms of the form αL v ⊥ are ←B-reachable. Therefore
all axioms αL v ⊥ will also always be a part of any
module Oreach

←
B

being extracted.
From Theorem 1 we have that Oreach

A preserves all
entailments in terms of the sub-concept A. We show
in Theorem 2 that a similar result holds for Oreach

←
B

with respect to the super-concept B.

Definition 11 (Top-down subsumption module)
Let O be an ontology, and B a concept name occur-
ring in O. Then, O′ ⊆ O is a top-down subsumption
module for B in O whenever: O |= A v B if and
only if O′ |= A v B holds for every concept name A
occurring in O.
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A top-down subsumption module O′ for B in O is
called strong if the following holds for every concept
name A occurring in O: if O |= A v B, then every
MinA for O |= A v B is a subset of O′.

We show that top-down reachability modules
preserves all subsumption relationships i.t.o super-
concepts.

Lemma 1 Let O be an EL+ ontology and S ⊆ Sig(O)
a signature. Then, O |= C v D if and only if
Oreach
←
S

|= C v D for arbitrary EL+ concept descrip-
tions C and D such that Sig(D) ⊆ S.

Proof: We have to prove two parts. First: If
Oreach
←
S

|= C v D then O |= C v D. This follows
directly from the fact that Oreach

←
S
⊆ O and that EL+

is monotonic.
Second, we show that, if O |= C v D then

Oreach
←
S

|= C v D: Assume the contrary, that is,
assume O |= C v D but that Oreach

←
S

6|= C v D.
Then there must exist an interpretation I and an
individual w ∈ ∆I such that I is a model of Oreach

←
S

and w ∈ CI \DI . Modify I to I ′ by setting xI′ := ∆I

for all concept names x ∈ Sig(O) \ (S∪ Sig(Oreach
←
S

)),
and rI′ := ∆I × ∆I for all roles names r ∈ Sig(O)
\ (S∪ Sig(Oreach

←
S

)). I ′ is a model of Oreach
←
S

since it
does not change the interpretation of any symbol in
its signature. For each α = (αL v αR) ∈ O \ Oreach

←
S

,
we have αI′

L ⊆ αI′

R since α is not ←S -reachable and
thus αI′

R = ∆I . Therefore I ′ is a model for O. But
I and I ′ correspond on all symbols y ∈ Sig(D) ⊆ S

and CI ⊆ CI′ , therefore we have that w ∈ CI′ \DI′ ,
contradicting the assumption.

In order to show that Oreach
←
B

contains all MinAs
for the entailment O |= A v B, we show that Oreach

←
B

is a strong top-down subsumption module:

Theorem 2 Let O be an EL+ ontology and B a con-
cept name occurring in O. Then Oreach

←
B

is a strong
top-down subsumption module for B in O.

Proof: That Oreach
←
B

is a top-down subsumption mod-
ule follows directly from Lemma 1 above. To show
that it is strong, assume that O |= A v B, but there
is a MinA S for O |= A v B that is not contained in
Oreach
←
B

. Thus, there must be an axiom α ∈ S\Oreach
←
B

.
Define S1 := S ∩ Oreach

←
B

. S1 is a strict subset of S
since α 6∈ S1. We claim that S1 |= A v B, which con-
tradicts the fact that S is a MinA for O |= A v B.

We use proof by contradiction to show this. As-
sume that S1 6|= A v B i.e., there is a model I1 of
S1 such that AI1 6⊆ BI1 . We modify I1 to I by set-
ting yI := ∆I1 for all concept names y that are not
←B-reachable, and rI := ∆I1 ×∆I1 for all roles names
r that are not ←B-reachable. We have BI = BI1 since
B is ←B-reachable, and AI = AI1 if A is ←B-reachable,
or AI = ∆I1 otherwise. Therefore AI 6⊆ BI . It re-
mains to be shown that I is indeed a model of S, and
therefore satisfies all axioms β = (βL v βR) in S,
including A v B. There are two possibilities:

• β ∈ S1. Since S1 ⊆ Oreach
←
B

, all symbols in
Sig(βL) and one or more symbols in Sig(βR) are←B-reachable. Consequently, I1 and I coincide on
the names occurring in βL and since I1 is a model
of S1, we have that (βL)I = (βL)I1 and (βR)I1 ⊆
(βR)I . Therefore (βL)I ⊆ (βR)I .

• β 6∈ S1. Since S1 = S \ Oreach
←
B

, we have that β
is not ←B-reachable. Thus no x ∈Sig(βR) is ←B-
reachable. By the definition of I, (βR)I = ∆I1 .
Hence (βL)I ⊆(βR)I .

Therefore I is a model for S.

Example 4 Extracting Oreach
←
B

from the sample on-
tology in Example 3, we see that it will consist of ax-
ioms 1, 2 and 3. This correctly differs from Oreach

A in
that axiom 4 is not ←B-reachable. Similar to Oreach

A
though, it contains an axiom that is irrelevant in
terms of finding justifications for O |= A v B, ax-
iom 3 in this case.

It is clear that when extracting modules for finding
justifications, Oreach

←
B

opens itself to the same criticism
as Oreach

A . Given the entailment O |= A v B we see
that where Oreach

A considers only the sub-concept A,
Oreach
←
B

considers only the super-concept B.
Both reachability module extraction methods pre-

serve all entailments; Oreach
A entailments in terms of

the sub-concept A and Oreach
←
B

entailments in terms of
the super-concept B. Given the entailment O |= A v
B, we may now extract the module (Oreach

A )reach←B , or
similarly (Oreach

←
B

)reach
A , such that it considers both

the sub- and super concepts in the entailment. The
resulting module is a bi-directional reachability-based
module denoted by Oreach

A↔B .

Definition 12 (Bi-directional reachability-
based module) A bi-directional reachability-based
module, denoted Oreach

A↔B , is defined as the set of
all axioms αL v αR ∈ O such that for every xi ∈
Sig(αL), xi is A-reachable, and for some yi ∈
Sig(αR), yi is ←B-reachable.

Example 5 Extracting Oreach
A↔B from the sample on-

tology in Example 3, we see that it will consist of ax-
ioms 1 and 2. The previous irrelevant axioms 3 and
4 are no longer present.

From Theorem 1 and Theorem 2 we have that bi-
derectional reachabiliy modules preserves all MinAs
for the entailment O |= A v B.

Corollary 1 Oreach
A↔B preserves all MinAs for O |=

A v B.

4 Reachability preserving CFG

We show how an EL+ ontology O can be transformed
into a reachability preserving CFG. In the discussion
that follows we assume that we have an EL+ ontology
O in normal form, and an entailment O |= A v B,
where A and B are single concept names.

From the definition of Oreach
A↔B above , we have that

every axiom αL v αR ∈ Oreach
A↔B has the following two

properties:

1. every xi ∈ Sig(αL) is A-reachable, and

2. some yi ∈ Sig(αR) is ←B-reachable.

Every CFG production rule we introduce must
preserve bi-directional reachability. By Property 1
above, A-reachability of the axiom αL v αR is solely
dependent on symbols in αL. Similarly, by Property
2, ←B-reachability is solely dependent on symbols in
αR.

From the previous section we know that there ex-
ists special cases in which A- and←B-reachability hold.
For A-reachability these axioms have one of the forms:
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• > v αR, or

• ε v αR

For ←B-reachability these axioms have the form:

• αL v ⊥
In the steps that follow, all production rules we

introduce have the form yi → σ. Each rule is read
as: any ←B-reachable symbol yi is A-reachable only
if all symbols xi ∈ σ are A-reachable. This clearly
conforms to the definition of bi-directional reachabil-
ity. We further note that the symbols on the rhs of
CFG production rules have a fixed order, whereas the
conjunction of EL+ concepts and roles are symmetric,
i.e. A u B = B u A, and thus order is unimportant.
We therefore place no restrictions on the order of the
symbols on the rhs of production rules and thus con-
sider production rules differing only in the order of
symbols on the rhs as identical.

The conversion process below proceeds in a step
by step manner until all axioms in O have been pro-
cessed.

Step 1: All axioms αL v αR in O such that
Sig(αR) = ∅ are ←B-reachable by definition. By
Property 2 above, in order to preserve both ←B-
reachability as well as bi-directional reachability,←B-reachability depends solely on αR. For each
such axiom the implicit ←B-reachability of αR is
made explicit by introducing the following pro-
duction rule:

B → Sig(αL)

Step 2: All axioms αL v αR in O such that Sig(αL)
= ∅ are (implicitly) A-reachable. By property 1
above, in order to preserve both A-reachability as
well as bi-directional reachability, A-reachability
depends solely on αL. For each such axiom the
implicit A-reachability of αL is made explicit by
introducing the production rule:

yi → A

for each yi ∈ Sig(αR).

Step 3: For each axiom αL v αR in O such that
|Sig(αL)| ≥ 1 and |Sig(αR)| ≥ 1, introduce the
production rule:

yi → Sig(αL)

for each yi ∈ Sig(αR). Axioms of this kind do
not have any implicit reachability concerns like
those in Steps 1 and 2 above, and bi-directional
reachability is preserved trivially.

We note that it follows from the normal form in Defi-
nition 9 that, for every rule introduced in Steps 2 and
3 above where |Sig(αR)| = 2, αR has the form ∃rC.
By property 2 above, ←B-reachability is preserved if
either one of r or C is ←B-reachable. Bi-directional
reachability is therefore preserved by the two rules:

r → Sig(αL)

C → Sig(αL)
in Step 3 above, and similarly for Step 2. We therefore
define the reachability preserving CFG for an EL+

ontology O as:

Definition 13 (Reachability preserving CFG)
Let O be an EL+ ontology in normal form, and
O |= A v B an entailment, then the reachability
preserving CFG, denoted CFGO, is the minimal set
of CFG production rules such that for each axiom
αL v αR ∈ O:

• if Sig(αR) = ∅, the rule B → Sig(αL) ∈ CFGO;

• if Sig(αL) = ∅ the rule xi → A ∈ CFGO for each
xi ∈ Sig(αR);

• for all other axioms the rule xi → Sig(αL) ∈
CFGO for each xi ∈ Sig(αR);

where the symbol A represents the only terminal sym-
bol and the set Sig(O)\A represent the set of non-
terminals.

Example 6 All production rules for CFGO may be
obtained from the ontology in Example 3 above as fol-
lows:

r → A (Step 3 applied to axiom 1)
D → A (Step 3 applied to axiom 1)
B → r D (Step 3 applied to axiom 2)
B → E (Step 3 applied to axiom 3)
F → A (Step 3 applied to axiom 4)

Given an EL+ ontology O, with O′ being O in
normal form, and n the number of axioms in O′,
we see that there can be at most 2 × n production
rules in CFGO′ . This follows directly from the def-
inition of CFGO′ , and the fact that there is a one-
to-one correspondence between all CFG production
rules introduced and axioms in O′, except for axioms
αL v αR ∈ O′ where αR = ∃r.C; for these axioms
two production rules are introduced.

5 Earley as a MinA extraction algorithm

Given an EL+ ontology O, an entailment O |= A v B
and the resulting CFG CFGO, the Earley algorithm
may be applied to extract all possible parse trees.

Before the algorithm is executed we introduce the
start state S → B, where S 6∈ Sig(O). The algorithm
now proceeds in a top-down manner, starting with
this state, and then proceeds to find all production
rules σL → σR such that σL is ←B-reachable and all
xi ∈ σR are A-reachable.

From the definition of CFGO we have that the
symbol A is the only terminal symbol and all other
symbols are considered to be non-terminals. The
standard algorithm requires an input string to parse.
While in terms of reachability there is no explicit in-
put string, it is implicit from the definition of CFGO
that the input string consists of a finite string of As.

The standard Earley algorithm may now be ap-
plied in order to extract all possible reachability paths
between the concepts A and B. However, since the
Earley algorithm is not explicitly bound by an input
string, the situation arises that it may never termi-
nate. The algorithm inherently handles cycles, but
the absence of an explicit input-sentence may lead to
non-termination. This occurs when a cycle is right-
recursive, where the recursive part is not A-reachable.
For example let the rules:

B → C D

C → A

D → B

represent such a cycle. Then D can never be A-
reachable, however since C is A-reachable the Earley
algorithm will go into an infinite loop.

There are a few ways to remedy this. The first is
to introduce a depth bound n, where n is the sum to-
tal of production rulesl symbols appearing on the rhs
of production rules. The choice of n stems from the
fact that the Earley algorithm exhaustively searches
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for parse trees, each node represented by some pro-
duction rule. In chart k, the Early algorithm searches
trees with the length of the longest branch in the tree
equal to k+1. This branch then represents the longest
chain of bi-directional reachability preserving produc-
tion rules, with each rule appearing at most j times,
where j is the sum total of times the lhs symbols of
the production rule appears on the rhs of other pro-
duction rules. Thus the longest branch of any parse
tree cannot exceed n. The standard Earley algorithm
will in this case run in O(n3) worst case time.

A different approach is to first extract Oreach
A and

running the Earley algorithm on it. This guaran-
tees that all production rules are A-reachable and the
above cycle can never occur, this however does not
gurantee that no other bad cycles exists. A third ap-
proach involves changing the algorithm itself similar
to the method used in Section 6.

Both Oreach
A and Oreach

←
B

can be extracted in linear
time, and hence so can Oreach

A↔B . The standard Earley
algorithm is therefore non-optimal by two orders of
magnitude in terms of module extraction. The benefit
gained from the Earley algorithm however is that all
parse trees are computed simultaneously.

Each parse tree computed by the Earley algo-
rithm corresponds to a set of production rules, start-
ing with the state S → B, such that for each rule
σL → σR, we have that σL is ←B-reachable and σR is
A-reachable. Each branch of a parse tree corresponds
to a minimal set of productions rules such that B
is A-reachable and A is ←B-reachable, removing any
rule from this set would cause reachability to be lost
for that branch, and hence the whole tree would not
preserve bi-directional reahcability. Each parse tree
therefore corresponds to a possible MinA, dependent
only upon a positive subsumption test.

It must be noted that in the worst case, there is an
exponential number of parse trees. The Earley algo-
rithm computes all parse trees in parallel in polyno-
mial time. However, extracting an exponential num-
ber of parse trees will run in exponential time.

6 Work in progress

In this section we outline some modifications to the
Earley algortihm to improve its efficiency in terms of
MinA extraction.

During its search for parse trees, the predictor
procedure expands all production rules for a non-
terminal symbol it encounters. Terminal symbols are
not expanded and are handled by the scanner proce-
dure. We note that, in our case, when a concept C be-
comes A-reachable, future expansions of production
rules for C are unneccesary. When a specific reach-
ability path between the concept A and C has been
found, we never need to traverse that path again, and
the symbol C effectively becomes a terminal symbol.

The algorithm may therefore be improved by in-
troducing a dynamic terminal set. That is, initially
only the symbol A is a terminal symbol. When any
symbol becomes A-reachable we add it to the set of
terminals and remove it from the set of non-terminals.

The completer procedure forms the core of mark-
ing parse trees. It keeps track of the production rules
responsible for completions; for every symbol in a pro-
duction rule, it maintains a list of pointers to other
states responsible for completing it. Having a dy-
namic terminal set complicates this bookkeeping pro-
cess and requires changes to the data-structures used,
as well as the completer and predictor procedures.

1. Data structures: We introduce an array such
that, for each concept/symbol that becomes A-
reachable, we maintain a set of pointers to states,

responsible for completing the symbol. Each
pointer records the state in which the symbol be-
comes A-reachable, i.e. whenever the completer
is run, a pointer to this state entry is recorded in
the array of pointers for the symbol being com-
pleted.

2. Predictor: The predictor procedure normally
expands all relevant production rules for a sym-
bol and adds new states to the current chart. It
never adds the same state more than once to the
current chart. In a different chart however it may
expand the same symbol again. We restrict the
procedure so that it may never introduce a pro-
duction rule more than once, irrespective of the
chart it which it occurs.

3. Completer: For each state completed the com-
pleter stores a pointer to the state in the array
above for the symbol being completed. Every
symbol completed also gets marked as a termi-
nal symbol. The changes in the predictor further
neccesitates that once a new symbol D becomes a
terminal, that the completer completes all states
α→ σ •D in any prior chart, and that the scan-
ner be called for each state α → σ • D in the
current chart.

4. Production states: Production states no
longer require an index to mark their originat-
ing charts, because, for each state, the new com-
pleter procedure will scan all previous charts for
symbols to the right of the dot to complete, and
not only those from the chart the state originated
from.

These optimizations have the potential for a more
efficient algorithm. The problem of non-termination
described earlier is no longer relevant, since every pro-
duction rule can only ever be introduced once by the
predictor. From this we have that the only way a
production rule occurs more than once in any chart
is by virtue of the scanner or completer procedures.
Each of these advances the dot in some way and new
symbols may need to be expanded, but these expan-
sions can only be done by the predictor which would
never expand any production rule more than once.

The proposed modified Early algorithm is listed
in Table 3. Before the algorithm is executed we ob-
tain CFGO. For the entailment O |= A v B the ap-
propriate substitutions have been made and the start
state S → B added to CFGO and chart[0]. The set
TERMINALS represent the set of all terminals, ini-
tialised to {A}, NONTERMINALS the set of non-
terminals initialised to Sig(O)\A, and REF[α] an ini-
tially empty array which will contain pointers to all
states where the symbol α has been completed.

Once the algorithm terminates all MinAs still need
to be extracted. The process is similar to the method
used to extract the parse trees from the original Ear-
ley algorithm. The algorithm proceeds in a standard
depth-first manner. Starting with the completion ref-
erences for the symbol S, select the production rule
referenced. Let this state be S → α. Then for
each symbol xi ∈ α choose a production rule from
REF(xi); this process continues recursively. Once no
new production rules can be added, the set of all
states represent a possible MinA. Mapping back to
the origional axioms in normal form the set can be
tested for subsumption, and if subsumption holds the
MinA is valid. More parse trees may be extracted
by backtracking and making alternate choices where
|REF(xi)|> 1.

We use the standard example in the literature
(Brandt 2004), showing that there exists an ontology
O such that it contains exponentially many MinAs
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Table 3: Modified Earley algorithm

function EARLY-PARSE returns chart
cIndex = 0
do

for each state in chart[cIndex] do
if next symbol ∈ NONTERMINALS then

PREDICTOR(state, cIndex)
elseif next symbol ∈ TERMINALS then

SCANNER(state, cIndex)
else

COMPLETER(state, cIndex)
end

while(hasNextChart)
return chart

procedure ENQUEUE(state, chart-entry)
if state not in chart-entry then

PUSH(state, chart-entry)

procedure SCANNER((A→ α •Bβ), cIndex)
if B ∈ TERMINALS then

ENQUEUE((A→ αB • β), chart[cIndex+1])

procedure PREDICTOR((A→ α •Bβ), cIndex)
if B ∈ NONTERMINALS and
if no B-productions have been expanded then

ENQUEUE((B → •αβ), chart[cIndex])
for all production rules for B

procedure COMPLETER((B → γ•), cIndex)
REF[B] += Pointer(B → γ•)
TERMINALS += B
NONTERMINALS -= B
for each (A→ α •Bβ) in chart[0 → cIndex-1] do

ENQUEUE((A→ αB • β), cIndex)
if B is a new terminal then

for each (A→ α •Bβ) in chart[cIndex] do
SCANNER((A→ α •Bβ), cIndex)

for an entailment, and show how the improved Earley
algorithm can be used to extract all MinAs.

Example 7 Let O be an EL+ ontology consisting of
the axioms:

α1 : A v P1 uQ1 α4 : P2 v B
α2 : P1 v P2 uQ2 α5 : Q2 v B
α3 : Q1 v P2 uQ2

O in normal form is:
ω1 : A v P1 ω2 : A v Q1 ω3 : P1 v P2
ω4 : P1 v Q2 ω5 : Q1 v P2 ω6 : Q1 v Q2
ω7 : P2 v B ω8 : Q2 v B

Then CFGO for the entailment O |= A v B is:

σ1 : S → B σ4 : B → Q2 σ7 : B → P2
σ2 : Q2 → Q1 σ5 : Q2 → P1 σ8 : P2 → Q1
σ3 : P2 → P1 σ6 : Q1 → A σ9 : P1 → A

The chart returned by the algorithm consist of
only two chart entries for this problem as shown in Ta-
ble 4. With the final completion reference list shown
in Table 5. Extracting all parse trees using a depth
first search results in all the MinAs being extracted
for the problem as shown in Table 6.

Table 4: Solution chart

Chart 0

1. S → •B Initial State
2. B → •Q2 Predictor from 1
3. B → •P2 Predictor from 1
4. Q2 → •P1 Predictor from 2
5. Q2 → •Q1 Predictor from 2
6. P2 → •P1 Predictor from 3
7. P2 → •Q1 Predictor from 3
8. P1 → •A Predictor from 4 and 6
9. Q1 → •A Predictor from 5 and 7

Chart 1

10. P1 → A• Scanner from 8
11. Q1 → A• Scanner from 9
12. P2 → P1• Completer (10-6)
13. Q2 → P1• Completer (10-4)
14. Q2 → Q1• Completer (11-5)
15. P2 → Q1• Completer (11-7)
16. B → P2• Completer (12-3), (15-3)
17. B → Q2• Completer (13-2), (14-2)
18. S → B• Completer (16-1), (17-1)

Table 5: Completed reference list

REF[S] = [18] REF[B] = [16, 17]
REF[Q2] = [13, 14] REF[P2] = [12, 15]
REF[Q1] = [11] REF[P1] = [10]
REF[P1] = [10]

Table 6: Extracted MinAs

MinA1 : 18 16 12 10
MinA2 : 18 16 15 11
MinA3 : 18 17 13 10
MinA4 : 18 17 14 11

Mapping back to the origional axioms we have:

MinA1 : α4 α2 α1
MinA2 : α4 α3 α1
MinA3 : α5 α2 α1
MinA4 : α5 α3 α1

7 Conclusion and future work

The combinatorial nature of MinA extraction makes
it an inherently hard problem, with most approaches
extracting a module based on reachability or syntac-
tic locality. The set of axioms within this module is
then systematically reduced by various methods, af-
ter which subsumption tests determine if the desired
entailment still holds. Though these aproaches work
well, the cost of repetitive subsumption testing is pro-
hibitive. It is therefore desirable to eliminate as many
axioms as possible before each subsumption test is
performed. To this end partition methods can be em-
ployed, with the hope of eliminating large chunks of
axioms that do not play a role in an entailment.

The Earley algorithm presented, based on bi-
directional reachability, aims to extract all reacha-
bility based paths for an entailment directly, with-
out first extracting smaller modules. Each parse tree
extracted by the algorithm corresponds to a mini-
mal axiom set such that reachabilty between the sub-
and super-concepts in an entailment is preserved. A
standard subsumption test is then performed to test
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whether the axiom set is a valid MinA. This has the
potential to reduce the number of subsumption tests
drastically since for each parse tree the Earley algo-
rithm extracts, the set of axioms extracted is mini-
mal. No additional procedures need to be employed
to further reduce the set of axioms and only a single
subsumption test is neccesary in order to determine
if the set represents a valid MinA.

We require two mapping layers, the first map-
ping between the original axioms in the ontology and
the axioms in the normal form, the second between
the normal form axioms and the production rules.
Though these mappings may seem to introduce a high
memory and computational overhead, in our opinion
they perform an important function in debugging on-
tologies. Consider the axiom A v B uC which forms
part of a MinA for some entailment, where only con-
cept C actually plays a role in the entailment. The
mappings allow us to identify exactly which concepts
play a role in the entailment. Therefore instead of just
presenting whole complex axioms for debugging, we
have the ability to highlight exactly which concepts
within the axioms are relevant to the entailment.

There are two possible problems with our ap-
proach: The first being that parse trees are minimal
bi-directionally preserving axioms sets, and since they
are minimal, it may occur that that all such sets are
only subsets of a MinA. Thus not all MinAs may be
obtained as parse trees. This boils down to the com-
pleteness question of the algorithm i.t.o. finding justi-
fications. The second issue is that there does not exist
a one-one correspondence between the axioms in the
different mapping layers. Therefore when mapping
back from a minimal parse tree to original axioms,
we may find that the set of axioms is not a MinA
anymore, in that it contains extra axioms. Though
we do not directly address these issues in the current
paper, we believe that the ideas presented in this pa-
per, are both interesting and promosing, and as such
warrant further investigation.

For future work we intend to implement the algo-
rithm as a plugin for the widely used ontology editor
Protégé1 in order to test its usefulness in practise on
large scale ontologies, as well as to optimize it as much
as possible. If the algorithm proves useful we will in-
vestigate the possibility of extending it towards more
expressive DLs. We also aim to investigate the pos-
sible link between our appraoch and automata-based
pinpointing approaches (Peñaloza 2008).
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Abstract 
“Ontology” in association with “software engineering” is 
becoming commonplace. This paper argues for the need 
to place ontologies at the centre of the software 
development lifecycle for multi agent systems to enhance 
reuse of software workproducts as well as to unify agent-
based software engineering knowledge. The paper 
bridges the state-of-the-art of ontologies research from 
Knowledge Engineering (KE) within Artificial 
Intelligence and Metamodelling within Software 
Engineering (SE). It presents a sketch of an ontology-
based Multi Agent System (MAS) methodology 
discussing key roles on ontologies and their impact of 
workproducts, illustrating these in a MAS software 
development project for an important application that 
utilizes dynamic web services composition.  
 
Key words: Software Development Lifecycle (SDLC), 
Ontologies, Agents, Multi Agent Systems (MAS), Services 

1 Introduction 
This paper promotes ontology-based software 
development with a current focus on methodologies for 
building a multi agent1 system (MAS). Substantial 
integration between ontologies and software engineering 
has been achieved e.g. in ODE of (Falbo et al., 2005) and 
Onto (Leppänen, 2007). This paper is part of an ongoing 
effort to place ontologies at the centre of the software 
development lifecycle (SDLC) for MASs to enhance the 
reuse of MAS workproducts as well as to unify agent-
based software engineering knowledge.  

In a MAS composed of a heterogeneous collection of 
agents with distinct knowledge-bases and capabilities, 
coordination and cooperation between agents facilitate 
the achievement of global goals that cannot be otherwise 
achieved by a single agent working in isolation 
(Wooldridge, 2000). The unique characteristics of a MAS 
have rendered most standard systems development 
methodologies inapplicable, leading to the development 
of Agent Oriented Software Engineering (AOSE) 
methodologies. Several AOSE methodologies exist 
(Henderson-Sellers and Giorgini, 2005). Indeed  any one 
of the extant methodologies has limited applicability 
(Tran and et al, 2005) e.g. to a specific domain or a 
specific type of software application. This limits adoption 
of AOSE. Furthermore, a review (Tran and Low, 2005) of 
sixteen prominent AOSE methodologies revealed  that 

                                                           
1 Agents are highly autonomous, situated and interactive software 
components. They sense their environment and respond accordingly. 

most ignore system extensibility, maintenance, 
interoperability and reusability issues. This imposes a 
second barrier to the adoption of AOSE. This paper 
outlines a path towards resolution of both of these 
barriers through the use of ontologies during the software 
development lifecycle. Given that the “fixed costs” 
associated with learning or configuring methodologies to 
suit the requirements of a given project are high, it is 
critical to address these concerns and protect the various 
facets of investments associated with using a MAS 
including: interoperability of systems, reuse of their 
components, reuse of human skills acquired and reuse of 
designs generated during development.    

As a first step towards using ontologies as a central 
software engineering construct throughout the whole 
development lifecycle of a MAS, this paper reviews the 
state-of-the-art of ontology research in two key 
communities: the Artificial Intelligence (AI) community 
and the Information Systems (IS)/Software Engineering 
(SE) community. Much of our understanding of 
ontologies has been derived from the AI community; in 
contrast, the IS/SE community have focussed on the use 
of a systematic relationship and understanding of models 
and metamodels. To illustrate how ontologies can be 
central to MAS development, we use an example 
application that also highlights the power of agents. The 
example chosen is a MAS Peer to Peer system 
constructed to allow dynamic composition of web 
services in highly distributed and heterogeneous 
environments.  

The rest of the paper is organised as follows: Section 2  
provides a conceptual analysis bridging software 
engineering concepts and existing ontology research 
emanating largely from the knowledge engineering 
community. Section 3, using the grounded position on 
what an ontology can do to the SDLC, provides an 
argument placing ontologies at the heart of SDLC 
specifically tailored for Agent Oriented Software 
Engineering. Section 4 develops this into a sketch of an 
AOSE ontology-based methodology. Section 5 illustrates 
key concepts in an application. Section 6 concludes with 
a summary and discussion of future work.   

2 Background: Bridging Ontologies in KE to Models 
and Metamodels in SE 
In SE, terms such as model, metamodel and ontology are 
often used with disparate meanings across the literature 
even within the same sub-domain of SE. To pin down the 
appropriate usage of an ontology within the SDLC of a 
methodology, it is important to describe how an ontology 
may be linked to a model and/or a metamodel and, 
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indeed, how models and metamodels are defined and 
inter-related. This leads to the need to understand the 
relationship between ontologies and a metamodelling 
hierarchy such as that of the (OMG, 2005a) or (ISO/IEC, 
2007). (Favre et al., 2007) note the lack of a general, 
systematic technique to map between metamodels and 
ontologies which is the focus of this section. 

In SE, additional characteristics for an ontology are 
required. It is widely agreed that it needs to be formal e.g. 
(Corcho et al., 2006; OMG, 2005b; Guizzardi, 2005; 
Rilling et al., 2007). However the meaning of ‘formal’ is 
not very well agreed. For example, (Corcho et al., 2006) 
suggests it to mean ‘understandable by a computer’, 
OMG suggests it to mean underpinned by a metamodel 
and (Guizzardi, 2005) uses “formal” to mean “having 
form” rather than precise or mathematical.  A second 
required characteristic is that it should represent shared 
knowledge e.g. (Gruber, 1993; Noy and McGuinness, 
2001) and a third characteristic is that an ontology is 
represented by a vocabulary (Gruber 1993; Guarino 
1998). This last notion is used to differentiate between an 
ontology linked to a representation in a specific 
vocabulary but with a common conceptualization 
(Guarino 1998). Following (Guarino, 1998), (Ruiz and 
Hilera, 2006; Guizzardi, 2005) identify four general kinds 
of ontologies: high-level ontologies (or upper level 
ontologies)2, domain ontologies, task ontologies, and 
application ontologies. This is a scheme that will 
underpin our ontology-centric SDLC to be detailed in 
Section 4. This is in accordance with (Ruiz and Hilera, 
2006) as shown in Figure 1 which also compares two 
classification schemes (of (Guarino, 1998 and Fensel, 
2004)) and differentiates between domain-independent 
ontologies and domain-dependent ontologies (a 
discrimination also adopted in this paper). 

To link ontologies to metamodels in current SE, two 
stacked architectures are commonly used. It is worth 
noting the OMG architecture based on strict 
metamodelling wherein the only inter-level relationship 
permitted is “instance of” (in Figure 2). This is not 
universally accepted within SE, for instance, the 
architecture used in ISO/IEC 24744 (ISO/IEC, 2007) 
(Figure 3) uses the powertype pattern (Gonzalez-Perez 
and Henderson-Sellers, 2006), which permits both 
instance-of and generalization relationships between 
levels. Indeed, as observed in several papers summarized 
in (Gonzalez-Perez and Henderson-Sellers, 2008) 
application of the four layer hierarchy used by the OMG 
to methodologies results in several contradictory 
situations – hence the creation of the newer architecture 
in Figure 3. For our purpose, we can say that a 
metamodel describes a domain that is representative of 
more than one instance in a less abstract domain and, 
importantly, each model/metamodel describes a domain 
of discourse, the language used for a metamodel domain 
and a model domain (although relative) is distinct.  

                                                           
2 Uschold (2005) suggests that, while an upper-level ontology is 

important, it is less important which such ontology is used. In fact, we 
omit upper level ontology from our methodological sketch in Section 4. 
 

We can now ask which ‘metamodels’ or ‘models’ (or 
both) are useful, both theoretically and pragmatically, to 
link our SE-defined “ontology” definition. (Atkinson et 
al., 2006) suggest that ontologies and models may be 
different technologies since they appear to be derived 
from different subfields of computing and knowledge 
representation and there appear to be several projects, for 
example within the OMG and W3C, aimed at producing a 
bridge between the technologies. Their conclusion is that 
ontologies are a subset of models since ontologies fulfil 
the criteria for being models but have additional 
characteristics i.e. they are specializations in the object-
oriented (OO) sense. 
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Figure 1 Ontologies by generality level (after (Ruiz and Hilera, 2006))  
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Figure 2 The 4 layer hierarchy of the OMG- based on (ANSI, 1989) 
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Figure 3 Three layer architecture of ISO/IEC 24744 International 
Standard (after (Henderson-Sellers, 2006)) 

While noting that much of ontology design originated in 
OO design, (Noy and McGuinness, 2001) suggest that 
OO stresses operational rather than the structural 
properties of classes, which are the focus of ontology 
design. This suggests an alignment with data models. On 
the other hand, the equivalencing of models with 
database-focussed models, as is done by (Ruiz and Hilera, 
2006), unnecessarily restricts the meaning of model for 
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such a comparison to be useful here. In contrast, (OMG, 
2005b) takes a broader meaning to the term “conceptual 
model”. It notes some missing concepts in the UML – in 
particular, the treatment of disjoint classes, set 
intersection and set complement. They argue that 
ontology instances may also be required without the prior 
defi

del is prescriptive, 
belo

ntology Defintion 
M

n with the 
strict metamodelling architecture of Figure 2. 

nition of a class (not permissible using UML). 
Many other authors equate ontologies with models 

despite noting the difference in intent i.e. that an ontology 
is descriptive and a model typically (but not always) 
prescriptive e.g. (Wand and Weber, 2005; Ruiz and 
Hilera, 2006). For example, (Gruber, 1993) states that 
“Ontologies are also like conceptual schemata in database 
systems” which “provide a logical description of shared 
data”; and (Guarino, 1998) clearly indicates that he 
regards an ontology as belonging to the model domain 
and not the metamodel domain. (Ruiz and Hilera, 2006) 
suggest differences based on arguing that an ontology is 
descriptive whereas a metamo

nging to the solution domain.  
In the context of agent modelling languages, 

(Guizzardi and Wagner, 2005a) propose a unified 
foundational ontology (UFO). The UFO is categorized as 
an upper level ontology (a.k.a. foundational ontology), 
and an application to business modelling is given in 
(Guizzardi and Wagner, 2005b). (Guizzardi, 2005) states 
that a foundational ontology is a meta-ontology. Since he, 
and others, effectively equates “ontology” with “model”, 
then we must conclude that a meta-ontology can be 
effectively equated with metamodel, at least in the OMG 
sense. Indeed, in (Guizzardi and Wagner, 2005a) it is 
clearly stated that a foundational ontology can be 
represented as a MOF (Metaobject Facility) model, MOF 
being a language for defining modelling languages i.e. it 
is used as a metamodelling language. In other words, a 
foundational ontology is at the metamodel level in that it 
is equivalent to the UML or the ER definition. This 
means that we need to reassess Figure 1 because “domain 
independence” is also seen as a feature of a meta-
ontology whilst, in contrast (see Figure 1) a generic 
model is widely recognized as not being at this meta 
level. In a section entitled “combining metamodels and 
ontologies to achieve semantic interoperability” – words 
suggesting that ontologies belong to the metalevel – 
(Karagiannis et al., 2008) go on to describe “semantic 
mappings between metamodel elements and ontology 
concepts”. Arguably this latter statement, at odds with the 
former, can be interpreted as ontology concepts being the 
classes in the ontology metamodel – as for instance 
documented in the OMG’s O

etamodel (ODM) (OMG, 2005b). 
Contrasting several chapters from the same book 

(Calero et al., 2006), we see that while the software 
maintenance ontology of (Anquetil et al., 2006) and the 
software development environment ontology of de 
(Oliveira et al., 2006) clearly discuss a domain ontology, 
the ontology for software measurement of (Bertoa et al., 
2006) and the ontology for software development 
methodologies and endeavours are all clearly defined in 
terms of a metamodel. Indeed, (OMG, 2005b) clearly 
differentiates between the OWL metamodel that allows 
users to define ontology models and the ontology that is 

“generally specified as a system of classes and properties 
(the structure) which is populated by instances (the 
extents)”. Hence, the UoD is described by a set of 
ontologies where ontologies are used to enhance the 
target system and be complementary to UML modelling 
artefacts. In other words, ontologies belong to the M1 
level (Figure 2) or Method Domain (Figure 3) since an 
ontology is a conceptual model (OMG, 2005b), sharing 
characteristics with more traditional data models. This 
OMG ODM approach suggests a multi-level ontology 
architecture (Figure 4). Here, the “M2” level is equivalent 
with (Guizzardi and Wagner, 2005a)’s foundational 
ontology, with the OMG’s ODM and with the term 
“upper level ontology”. The “M1” level includes not only 
domain-specific ontologies (such as that for, say, a 
banking domain) but also a domain-independent generic 
ontology (cf. Figure 1). Instances of elements of a 
domain-specific ontology (Figure 4) are discussed in 
(Noy and McGuinness, 2001) where it is argued that the 
depth in the ontology hierarchy at which this occurs is 
context dependent, making no attempt to alig
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ware as opposed to 
the ontological usage of knowledge. 

3 t Agent-Oriented SE be Ontology-

ure 4. Three level ontology architecture suggested by OMG. 

If an ontology refers to a universe of discourse and to 
conceptualization, as according to (Gruber, 1993), then 
the term “ontology” would appear to be equally 
applicable to either M1 or M2 (although not both 
simultaneously), in just the same way that the term 
“model” can be applied to a M1 UML visualization (e.g. 
a system design) or to a M2 visualization (e.g. the UML 
metamodel). This may explain the ambiguity regarding 
whether an ontology is an M1 or M2 thing. In some 
contrast to the notion of ontologies being focussed at their 
specification level i.e. the metamodel, most “ontologies” 
found by a web search and documented, for example in 
Protégé, are hierarchies of terms in a specific (often 
commercial) domain. For instance, we have located an 
ontology for newspaper publishing containing elements 
such as editor, journalist and printing press; an ontology 
for health care with concepts including doctor and 
patients. Such an ontological hierarchy bears a good 
correspondence to a UML model (M1) that might be 
constructed if one were building soft

Why Mus
Centric? 

Many of the IS/SE focussed application areas are brought 
together in (Green and Rosemann, 2005), a volume on 
business systems analysis. However, there remain only a 
small number of existing MAS methodologies that 
include ontologies in their workproducts and processes. 
This support is generally confined to the early phases of 
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the development (the analysis phase). For example, 
(Girardi and Serra, 2004) specify how a domain model 
that includes goal and role analyses is developed from an 
initial ontology. Another example (DiLeo et al., 2002) 
uses ontologies to mediate the transition between goal 
and task analyses. An ontology-based methodological 
framework that can be used to build new ontology-centric 
AOSE methodologies from scratch, or a repository of 
add-on methodological elements that can be added to an 
existing AOSE methodology to enhance it with new 
support for ontology-based AOSE, would be a significant 
in

. We identify the following three 

eyond avoiding repetition and 

s various 

n be used to 
ea

ost likely lead 
to

this can support its inter-operation 
with 

novation in the support for ontology-based AOSE.   
In addition, while existing methodologies suffer from 

other deficiencies (Tran and Low, 2005), there is a 
growing realization that some form of consolidation is 
needed. To merge this existing body of agent-oriented 
software engineering knowledge into a more effective 
methodological approach, we consider two key issues: 
how easy it is for software developers to actually apply 
the outcome (usability) and how feasible is the merging 
approach (realisability)
candidate approaches: 

Approach 1: An ad-hoc approach consisting of merging 
existing methodologies one at a time, with an arbitrary 
methodology as a starting point, and without guidance on 
attaching methodologies, b
inconsistent use of terms. 

Approach 2: A metamodelling method engineering 
approach characterised by having a formal unifying 
formal language (a metamodel) to expres
methodology fragments from different sources. 

Approach 3: A feature-identification-guided approach to 
identify AOSE development steps and modelling concepts 
from existing AOSE methodologies to produce a unified 
methodological framework that in turn ca

sily generate methodologies as required. 
Approach 1 does not offer any guide on the scope of 

software development lifecycle concepts and can lead to 
one of two types of errors: assuming differences of 
concern when none exists, or falsely assuming similarity 
of concern because of the common use of terms. The first 
type of error may lead to repetition and to an 
unnecessarily large and cumbersome methodology, 
rendering it less accessible to developers. Tolerating 
errors of the first type, a successful unification effort 
would result in a large methodology with its bulk 
concerned with a collection of ‘exceptional cases’ 
without common structures. We find that this is exactly 
what happened with UML (in a slightly different domain 
but nevertheless providing a highly relevant parallel). The 
second type of error can create inconsistencies because of 
inconsistent interpretations of terms. Tolerating such 
errors, the resultant methodology would produce 
inconsistent models and lower its usability, as software 
developers subsequently struggle to deal with problems 
resulting from inconsistencies and would m

 its abandonment (Bernon et al., 2004).  

Approach 2 requires a formal language, a metamodel, 
whose units serve to generate methodology fragments 
with similar concerns, but with a different flavour 

according to the context of the development project.  This 
approach has been the focus of (Beydoun et al., 2006b; 
Beydoun et al, 2009). In this approach, the development 
project decides the concern and the flavour of the 
methodology generated rather than subjective 
‘interpretations’ skewed towards a forced merging 
between methodologies and their fragments (as in 
Approach 1). Such interpretations are avoided, preventing 
any inconsistencies. However, to avoid inconsistencies 
only a select subset of the rewritten components of 
methodologies can be integrated at any one time. For 
example, in every given object-oriented development 
project (Brinkkemper et al., 2001), a customised 
integration of selected components is required. For an 
emerging area of application such as MASs, development 
experience is limited and the criteria of selection are not 
yet easily discerned. Hence, the benefit in the 
applicability of this approach does not outweigh the 
added effort required for assembling selected method 
components. Consequently, to balance the work on 
Framework Agent Modelling Language (FAML) (e.g. 
(Beydoun et al., 2009)), in this paper Approach 3 is 
pursued as an alternative, and potentially complementary, 
approach to a method engineering approach (Henderson-
Sellers, 2003) with the aim to explore cross fertilisation 
between the two approaches. For example, the ontology 
techniques developed for Approach 3 will be used to 
enhance the method engineering repository of Approach 
2.  Approach 3, guided by feature-identification, does not 
require the cumbersome re-writing of existing 
methodologies using a common formal language 
(metamodel) as in Approach 2. It is sufficient to validate 
and refine the set of candidate steps and modelling 
concepts and overlay these on top of existing 
methodologies. Hence, this approach requires much less 
effort and it is the most realizable as it does not require 
the collaboration of the creators of the existing 
methodologies. Crucially, this approach rids developers 
of the highly specialised and difficult task of the merging 
of methodology components on a per project basis. The 
approach instead relies on using explicit ontologies as a 
focal point during development to facilitate combining 
features from different AOSE methodologies. This will 
use ontologies as a means for semantic mappings to 
convert software work products to suit various 
development steps.  This can substantially support 
integration of processes and products; and, for the finally 
implemented MAS, 

other systems.  

Using off-the-shelf domain ontologies as a starting 
point of system development, will become the focus of 
our efforts on the applied use of ontologies in an AOSE 
methodology (not their actual creation). This will enable 
the transfer and adaptation existing techniques for 
ontologies (e.g. techniques for mapping and translating 
between multiple ontologies) to obtain a more 
economical approach to MAS development, addressing 
interoperability and work product reuse. Not only will an 
ontology-based AOSE methodology be complete and 
consistent and produce systems that can easily be evolved 
to new contexts but, in addition, it can have a highly 
developed maintenance phase to guide developers in 
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reusing existing systems and components previously 
developed (using an ontological approach). This will 
foster wider deployment of agent-based systems by 
industry by focussing on the commercial success of the 
te

erability concerns in 
eterogeneous environments.  

gies in SE to Ontology-based Agent 

                                                          

chnology.  
At least three significant contributions to the state-of-

the-art in AOSE are identified: firstly, designers will have 
a tested and verified framework to handle interoperability 
issues in an heterogeneous environment at design time by 
allowing a MAS to be formed from loosely coupled 
components connected through ontological mappings. 
Thus, they will be inherently flexible and their actual 
design and architecture will be reusable across 
applications and in different settings. Secondly, 
ontological commitments related to a MAS will be 
explicitly integrated with its actual design and 
development. In exploring the currently overlooked 
ontology-related interactions between the analysis and 
design phases of software development for MAS,  
iterative verification during the design and development 
of the system will become possible, increasing the 
likelihood of producing a correct system. Thirdly, all key 
concerns of AOSE practitioners will be combined into 
one methodological framework. The first two 
contributions are actually interrelated: The explicit and 
extensive support for ontology-based MAS development 
will address the interop
h
 
4 From ontolo
Oriented SE  
Inclusion of ontologies into a specific SE methodology 
for the development of MAS permits the long term reuse 
of software engineering knowledge and effort and can 
produce reusable MAS components and designs. 
(Beydoun et al., 2006a) argue that using ontologies in 
developing a MAS is complicated by having to 
simultaneously provide knowledge requirements to 
different Problem Solving Methods3 that are still required 
to share results using a common terminology. This is 
even further complicated because individual PSMs may 
operate at different levels of abstraction of the domain, 
they may be complementary, and they may have varying 
degrees of prescription to the domain requiring various 
degrees of adjustment to suit the domain. A set of six 
requirements were proposed for developing a MAS using 
an ontology-based software engineering approach. In this 
section, we present the methodology sketch motivated by 
the original drive for using ontologies for reuse (as also 
discussed in (Beydoun et al, 2006a)). Specifically, we 
propose the unification of and reuse of AOSE knowledge 
(as outlined briefly in the previous section). As targeted 
by this methodology, the role of ontologies during the 
SDLC is detailed. Similar to KBS development, it is 
assumed that the choice of PSM may be made 
independently of domain analysis. Moreover, it is also 
assumed that a domain ontology describing domain 
concepts and their relationships is available. Such an 
ontology may be available from an existing repository 

 

ld only be to 
id

tion of 
P

se tasks in the maintenance 
p

ntation) 
to so e a problem needs to know this ontology.   3 PSMs are high-level structures that describe a reasoning process 

employed to solve general problems (Rodríguez et at., 2003) 

e.g. (DARPA, 2000) or a domain analysis may be 
considered the first stage of developing the system. The 
purpose of such a domain analysis wou

entify concepts and their relationships.  
There is inter-play between the role of reuse and other 

roles of ontologies in a MAS. Various reuse roles cannot 
be smoothly accommodated (e.g. interoperability at run-
time) without careful consideration of run-time temporal 
requirements. For example, an ontology’s role in 
reasoning at run-time is based on fulfilling PSM 
knowledge requirements at design time. This requires 
scoping domain analysis for each individual agent at 
design time. The key to ontology-based design of a MAS 
is the appropriate allocation of a PSM to individual 
agents in order to match system requirements. Towards 
this, we note that goal analysis is the usual way to express 
requirements e.g. (Giunchiglia et al, 2003; Wooldridge et 
al, 2000) and we suggest associating PSMs (using PSM 
libraries) and system goals in the early stages of a MAS 
design. The ontologies provides a conceptualization and 
the basis upon which a machine accessible defini

SMs may be created (similar to (Fensel, 1997)).  
We envisage that the MAS development starts with a 

domain ontology, an application ontology and a 
collection of task ontologies used to identify goals and 
roles of the agents in the system. This in turn is used to 
index an appropriate set of problem solving capabilities 
from an appropriate existing library of capabilities. 
Individual ontologies corresponding to the requirements 
of each capability are then extracted from the initial 
common ontology in order to provide knowledge 
representation and allow reasoning by individual agents. 
Those ontologies will form the basis for an iterative 
process to develop a common communication ontology 
between all agents and verify the knowledge 
requirements of chosen capabilities. Individual localised 
ontologies may also require incremental refinement 
during the iterative process. Appropriate ontology 
mappings are needed between local ontologies and the 
communication ontology. To be complete, the 
methodology needs technical guidelines to develop the 
various ontology mappings, operators to extract localized 
agent ontologies from the domain ontology, operators for 
consistency checking between related ontologies and 
support for managing reu

hase of the methodology. 
The SDLC requires three related ontologies (shown in 

Figure 5): First is a domain ontology to describe the 
domain knowledge for the problem and the requirements 
for a solution to the problem.  Domain ontologies may be 
unique to the problem itself or may be adapted from 
previous problems in similar domains.  Second is 
problem-type ontology to describe types of problems to 
which PSMs have been developed to solve. The problem-
type ontology is necessary for defining the PSM interface 
(capabilities and preconditions).  In the construction of a 
PSM library, the problem-type ontology is necessary for 
indexing suitable PSMs. Third is a PSM ontology to 
describes knowledge required for the tasks, control 
structure, and PSM dependencies.  An agent that seeks to 
dynamically select a PSM (or its coded impleme

lv
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Figure 5 illustrates the role that the ontologies play in PSM 

implementations. We omit upper level ontologies, we domain 
ontologies, application ontologies (Problem-type), task ontologies (or 
PSM ontology) 

 e.g. (Giunchiglia et al, 2003; Wooldridge 
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e individual knowledge 
requirement of each agent PSM.  

 

 
The collection of all PSMs for local goals should also 

be verified for completeness against stated system goals. 
These goals should also be checked against cooperation 
potential. (A form of distributed goal interaction 
evaluation could be done using existing approaches e.g. 
(van Lamsweerde et al, 1998)). Most current 
methodologies view the decision of problem-solving 
mechanisms as a low level design step. In our current 
view, paralleling KBS development, ontology-based 
design and development requires elevating this to an early 
design phase and making it central to a later decision on 
the communication and interface requirement of each 
agent (rather than the other way around as in many other 
methodologies
t al, 2000)).  
Chosen problem solving capabilities for different agents 

in a given MAS do not necessarily have the required 
degree of domain dependence. Hence, for a PSM chosen 
for some agents, the ontology required may need to be 
adapted. For this, the domain ontology and the problem-
type ontology (application ontology) are again the most 
convenient reference point. Ontology mapping (between 
portions of these two ontologies and the local agent’s 
knowledge) is required to ensure that all PSMs have their 
knowledge requirement available to their reasoning

rmat (adaptors of (Fensel, 1997) may be useful here). 
Agents need to communicate their results and instigate 

cooperation using a common language. For this purpose, 
we recommend a global communication ontology (as in 
(Esteva et al, 2002)), rather than many-to-many 
individual mappings between agents. Such a 
communication ontology is most conveniently based on 
the domain ontology available, and it depends on the 
individual ontology of each agent. In some cases, an 
ontology mapping may be required between PSM 
ontologies and the communication ontology. The same 
adaptation between the reasoning and domain ontology 
can be used to map the result of reasoning back to a 
common communication ontology. Our work so far is 
geared towards ‘extendable closed’ systems. In the case 
of ‘open systems’, introducing new agents may require  
runtime extension of the communication ontology or 
some local ontologies to allow cooperation with new 
agents. This is currently beyond our current scope. It is 

worth noting, that we never assume that local ontologies 
for agents are complete from the perspective of the agent. 
This is a considerable step in the right dire

plementing completely ‘open systems’.  
Hierarchical ontologies are one way to have flexible 

domain ontology refinement for agents according to their 
PSMs, and to accommodate differences in strength of the 
PSM of agents. A common hierarchical domain ontology 
can be used as a starting point for verification during 
development and for multiple access at multiple 
abstraction levels depending on th

 
Figure 6. 1. Ontology-based MAS development: Domain Ontology 

produces Goal Analysis 2. Goal analysis produces a collection of PSMs 
(using a PSM bank) 3. Knowledge requirement analysis (4). can then be 
used to delineate local ontologies that can be verified against the domain 
ontology (step 5). Finally, in step 6 the communication ontology 

anguage) can then be derived using appropriate mappings. 

 

may result in further localized 
ontology mappings.  

 

(l

Figure 6 provides the methodological sketch 
accommodating the observations of this section. The 
MAS development process starts with a domain and an 
application ontology (domain-type ontology). These are 
used to identify goals and roles and to create appropriate 
interfaces to index an appropriate set of PSMs from a 
bank of PSMs (see Figure 5 in combination with Figure 
6). Appropriate individual ontologies for each PSM are 
extracted from the initial task ontology. These individual 
ontologies are used for reasoning by individual problem 
solvers and may be used to represent results 
communicated by the individual problem solver. They are 
next verified against the knowledge requirement of 
chosen PSMs. The collection of the individualised task 
ontologies, in combination with the application and 
domain ontologies, is then used to develop a common 
communication ontology. Appropriate mappings may be 
required between individual local ontologies and the 
communication ontology, to facilitate communicating 
results between individual agents. Verification between 
problem solvers and the communication ontology is 
undertaken, which 
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5 Case Study of Ontologies in a MAS application: 
MAS for Dynamic Web Services Compostion 
To illustrate how ontologies can be central to MAS 
development, we use an example application that also 
highlights the power of cooperative agents. The 
application example is a MAS P2P system to allow 
dynamic composition of web services in highly 
distributed and heterogenous computing environment and 
is adapted from (Shen et al, 2007) to highlight how 
ontologies can be used4 (using semantically driven 
composition of services as is often advocated e.g (Souza 
et al, 2009)). The system will provide, to both service 
requestors and service providers, Quality of Service 
(QoS) evaluation. The system will identify service 
providers’ capability and performance so as to enhance 
the service composition for service clients over the real 
distributed service network. Due to the complexity of 
QoS metrics, well-defined QoS service description does 
not actually exist. With a P2P architecture the QoS is 
gauged by a service client through cooperative 
interactions with other peers that can potentially provide 
the service. The scope of using ontologies in this MAS 
development is available given that most of the current 
work focuses on the definition of QoS ontology, 
vocabulary or measurements and to a lesser extent on a 
uniform evaluation of qualities, however. Furthermore, a 
Problem Solving Method unit of analysis nicely 
corresponds to a service carried by an agent. In this 
application, the agents themselves will dynamically select 
PSM implementations that best suit the service or the 
QoS required. This selection will be made using a P2P 
searching mechanism to locate appropriate services from 
other peer agents. Cooperative communication between 
agents about their existing services, their past services 
requests and their performance will enable service 
requesters to locate the service with the most suitable 
QoS. An ontology-based approach described here will 
complement existing service repositories, which will 
provide PSM implementations that may be used in both 
the design and implementation phases (Figure 7).  

 

 
Figure 7. Ontologies can be used to give a dynamic interface to services 
to agents within a MAS. 

 

                                                           
4 As a reviewer noted, existing methodologies for creating PSMs are 
often inadequate. In this example, this problem is by-passed as services 
do exist and they are typically used to describe atomic tasks within a 
business process. 

When an agent receives a service request that it cannot 
fulfil, it seeks out a service from another agent or 
repository of services. This may happen as follows:  

1. Identify the corresponding domain of the request 
2. Use the domain knowledge to map to the service 

interface in order to index the PSM corresponding 
to the service requested.    

3. Map its domain knowledge to the individual PSM 
tasks and perform the tasks to fulfil the service 
request.   

For example, suppose that an agent is interested in 
engaging in a specific negotiation with another opponent 
agent.  Assuming it is aware of the negotiation protocol, 
with limited domain knowledge and information about its 
opponent’s preferences, it needs a method to model the 
opponent and a method to devise a strategy to act. By 
mapping its domain knowledge to the PSM library, it 
identifies and employs a suitable coded implementation 
for a model and strategy. As the negotiation commences, 
the agent feeds information to the PSM model interface, 
the model updates, the agent feeds the output of the 
model (along with the negotiation protocol) to the 
strategy interface, and follows the recommended course 
of action.  The agent has no fixed automated negotiation 
approach but, rather, has the capacity to dynamically 
select the approaches that best suit its circumstance.  

In this P2P service evaluation and exchange 
application, ontologies at various levels of abstractions 
and details have been developed. This offers a unique 
workbench to test the reuse of ontologies and places them 
at the centre of the SDLC. For instance, OWL-S is an 
ontology to describe Web services with rich semantics. It 
will allow individual software agents to discover, invoke, 
compose and monitor Web services with a high degree of 
automation under dynamic circumstances. The use of this 
ontology has also been delineated to easily identify 
problem solving methods of individual agents, bypassing 
problems identified in (Beydoun et al, 2006a). In fact, 
OWL-S (OWL-S Coalition, 2006) ontology consists of 
three main components: the services profile, the process 
model and the grounding. The services profile is for 
advertising and discovering Web services. The process 
model is used to describe detailed operations of services 
and define composite Web services. The grounding is 
used to map the abstract definition of services to concrete 
specifications of how to access the services.  

The services profile component of the ontology 
(corresponding to Task/PSM ontology in Section 4) can 
be detailed and refined to allow detailed services’ 
description and evaluation. Basically, the service profile 
does not mandate any representation of services; rather, 
using the OWL subclass it is possible to create 
specialised representations of services that can be used as 
service profiles. OWL-S provides one possible 
representation through the class “Profile”. An OWL-S 
“Profile” describes services individually as a combination 
of three basic types of information: what organisation 
provides each service, what functions each service 
computes, and a host of features that specify 
characteristics of each service. In this way, the 
complementary descriptions about Web services 
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including the QoS can be extended in the services profile, 
so that we can improve the automation and reliability of 
Web services’ composition in dynamic circumstance. 

QoS is an important criterion for e-service selection in 
dynamic environment. In general, QoS refers to the 
capability of a network to provide better service to 
selected network traffic over various technologies. As for 
P2P-based network, the dynamic and unpredictable 
nature in e-service processes always affects the service’s 
composition and performance significantly. In addition, 
the dynamic e-business vision calls for a seamless 
integration of business processes, applications, and e-
services over the Web space and time. In other words, 
QoS properties such as reliability and availability for an 
e-service process are in high demand. Furthermore, 
changes and delay in traffic patterns, denial-of-service 
attacks and the effects of infrastructure failures, low 
performance in executions, and other quality issues over 
the Web are creating QoS complications in a P2P 
network. Quite often, unresolved QoS issues cause 
critical transactional applications to suffer from 
unacceptable performance degradation. Consequently, 
there is a need to distinguish e-services using a set of 
well-defined QoS criteria. 

With the large number of e-services, consumers 
definitely would like to require a means to distinguish 
between ‘good’ and ‘bad’ service providers. In such a 
case, QoS is the means to select a ‘better’ e-service 
among various providers. From another aspect, the 
different collaborating e-services applications will 
compete for network resources in an unreasonable and 
uncontrollable manner if their interactions are not 
coordinated by any agreements or specification on QoS 
differentiation. Naturally, these factors will force service 
providers to understand and achieve QoS-aware services 
to meet the demands. Also, a better QoS specification for 
e-service will become more significant by being a unique 
selling point for a service provider. Fundamentally, the 
Web services QoS requirement refers to the quality, both 
functional and non-functional, aspects of an e-service. 
This includes performance, reliability, integrity, 
accessibility, availability, interoperability, and security 
(Mani and Nagarajan, 2002). The properties become even 
more complex when adding transactional features to e-
services.  

How to properly design and integrate QoS criteria in 
P2P-based e-service process is an important innovation 
for e-business development in decentralised network. It 
particularly lends itself to ontology based development, 
as services correspond to tasks that can be indexed using 
a task ontology. In a dynamic environment, higher level 
ontologies (application and domain ontologies) can be 
used by agents to locate appropriate providers of services 
and undertaking dynamic evaluation through appropriate 
communication between agents. (Greco et al., 2004) 
present an ontology-driven framework to build complex 
process models that can be reused in this application. 
More specifically, a web services modelling ontology is 
described in detail in (Roman et al., 2005) and a “Generic 
Negotiation Ontology (GNO)” in (Ermolayev and 
Keberle, 2006) as an upper level negotiation ontology for 

software agents. All these can be reused in this 
application.  

6 Summary and Conclusions 
This paper promotes ontology-based software 
development with a focus on methodologies for MAS 
development. The paper first provides a conceptual 
analysis bridging software engineering concepts (models, 
modelling, metamodels etc.) and existing ontology 
research emanating largely from the knowledge 
engineering community. This provides a grounded 
position on what an ontology can do to the SDLC and to 
launch a methodological sketch of an ontology-based 
multi agent system methodology. Key concepts and roles 
of an ontology in a SDLC are illustrated in an 
application, which is amenable to both the deployment of 
agents and ontologies. Whilst this is a preliminary 
illustration, it does clearly argue for enhanced reuse by 
using ontologies as a central software workproduct.  

Much work remains to refine the concepts presented in 
this and to ensure that they are applicable to areas where 
the use of ontologies is less obvious than the domain 
discussed in this paper. Towards this, the first step is to 
develop required ontological techniques. These include 
ontology-based techniques for consistency checking 
across products and processes, and ontology-based 
techniques for testing completeness of products and 
processes within and across methodologies. Underlying 
complex issues need to be resolved, e.g. as how to 
reconcile requirements from multiple sources and 
multiple versions of ontologies. Another issue is how do 
candidate Problem Solving Methods get identified to be 
reused. Moreover, if new Problem Solving Methods are 
needed for the system and if creating these is too 
cumbersome, then this could certainly lead to the 
ontology-based approach to be abandoned (as one 
reviewer pointed out). It may well turn out that  an 
ontology-based approach is most suited to areas of 
applications where the set of possible agent actions are 
well specified in advance e.g. in modelling service 
oriented systems.   
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Abstract 
To speed up creation of personalized requirements models 
for users, it is necessary to systematically model domain 
knowledge and specify a reuse mechanism to customize 
personalized requirements models. Based on a unified 
framework for requirements metamodeling named RGPS 
(Role-Goal-Process-Service), a goal oriented and ontology 
based approach is proposed in this paper to customization 
of requirements goal models based on domain knowledge. 
Particularly, Metamodel for ontology registration is 
introduced as a common facility to register goal models 
and promote semantic interoperation between them.  
Accordingly, a series of rules are designed to construct, 
refine and ultimately confirm requirement goal models. In 
order to demonstrate how our approach works, a case study 
in urban transportation domain is illustrated step by step to 
provide details of how to customize requirements goal 
models for users. In this way, well-modeled and registered 
domain goal models will be the foundation for constructing 
high-quality requirements goal models in a normative way. 

Keywords:  Domain modeling, requirements customization, 
goal-oriented requirements analysis, ontology 

1 Introduction 
With the rapid growth of Internet, the software 
development environment is shifting from centralized and 
closed local network to open, dynamic, complex, and 
evolving Internet (Fuqing 2005), software development is 
now facing challenges of providing better products and 
services to discriminating customers by reusing existing 
information resources，which leaves two key problems to 
be resolve. One is to promote interoperation between 
heterogeneous resources; the other is to fill in the gap 
between users’ requirements described from different 
viewpoints and those resources.  

Goals are often used as descriptive statements of users’ 
intention, or objectives the system under consideration 
should achieve (Lamsweerde 2001). Thus, goal models 
satisfying specific requirements are capable of carrying 
users’ intention to describe functional and non-functional 
requirements at different levels of granularity. As an active 
branch of requirements engineering, famous goal-oriented 
approaches to requirements description and analysis, such 
as KAOS (Lamsweerde 2001, Dardenne 2003) and i*(Yu 
1997), can a) characterize and classify requirements that 
are viewed as goals, and help developers capture real 
motivation and intention of users in an accurate and 
precise way; b) generate operational goals for developers 
by decomposing and refining abstract goals. Goal-oriented 
approaches enable a smooth transition from users’s 
abstract descriptions to specified softwares, but rare 
effective mechanisms for non-functional requirements 
have been issued. Tropos (Castro 2002) and NFR 
(Non-Functional Requirements Framework) (Chung 2000, 
Mylopoulos 1992) define “softgoal” to express 
nonfunctional requirements. Yet, it differs from 
non-functional goals in that it can express both 
nonfunctional requirements and extra functional 
expectations, which brings difficulty for technicians to 
analyse and process requirements described by softgoals. 
On the other hand, ontology is able to capture the 
semantics of information from various sources and give 
them a concise, uniform and declarative description, 
therefore have brought up significant attention in 
academia and industry (Fensel 2001). So it offers a 
common semantic foundation to support consistent 
expression of both user’s requirements and information 
resources.  

To perform requirements modeling in a comprehensive 
and user-friendly way, a framework for requirements 
metamodeling named RGPS was proposed (Jian 2007, 
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Jian 2008). It supports requirements modeling from four 
aspects, namely, role, goal, process and service, so that 
interweaved requirements in a specific domain can be 
organized into orderly and structured requirements 
specifications. Compared with the requirements modeling 
methods motioned above, Goal metamodel in RGPS is a 
suitable choice for goal-oriented requirements modeling 
because a) it makes a clear distinction between functional 
goals, nonfunctional goals and operational goals as well as 
defines respective description facilities for them; b) in 
RGPS, four decomposition manners and two constraints 
are designed to help goal modeling more flexible for users 
to perform goal decomposition; c) it specifies relationships 
among goal, role and process respectively to facilitate 
reuse of domain knowledge of multi-granularity. In this 
paper, we will take goal metamodel in RGPS as the 
foundation and the cases in urban transportation domain as 
an example to demonstrate how to customize requirements 
goal model(RGM) from RGPS-based domain goal models 
(DGM). In RGPS, DGM is described with OWL. So 
Metamodel for Ontology Registration (MOR) is 
introduced in this paper, which can register and manage 
goal models in a specific domain. On one hand, MOR is 
able to promote interoperation between heterogeneous 
domain assets. On the other hand, customization of RGM 
will be addressed as how to create local ontologies based 
on a given reference ontology. Meanwhile, in terms of 
internal relationships between local ontology and the 
reference ontology in MOR, which part of a DGM is 
reused and how frequently it is reused can be summarized 
to benefit the process of merging individual requirements 
into requirements of a specific user group. 

The rest of this paper is organized as follows: section 2 
gives a brief introduction of MOR; section 3 explains the 
details of the Goal metamodel in RGPS and shows how to 
perform goal modeling in the urban transportation domain 
with the modeling tool we developed; section 4 proposes a 
solution to customize requirements goal model based on 
domain goal model created in section 3 and its registration 
information based on MOR; section 5 is the related work, 
followed by the summary and future work. 

2 Brief Introduction of MOR 
MOR is a key member of Metamodel Framework for 
Interoperability (ISO/IEC 19763) (ISO 2007), whose main 
objective is to register and manage administrative 
information with respect to the structure and semantics of 

ontologies. Since the differences in ontology descriptive 
languages and ontology development techniques add 
difficulties in promoting semantic interoperations between 
ontologies, MOR illustrates a comprehensive solution for 
this problem (Yangfan 2005, Chong 2006). The overall 
structure of MOR is depicted in Fig. 1. 

Fig.1. Overall structure of MOR 
Examining Fig. 1 from the top down, MOR defines 

“Ontology_Whole-Ontology_Component-Ontology_Atom
ic_Construct” to register common information of 
ontologies. This three-layer structure implies that an 
ontology consists of ontology components and each 
ontology component is composed of ontology atomic 
constructs, the smallest component of an ontology. 
Moreover, it only emphasizes the language-independent 
information of ontologies and ignores their differences 
caused by representative notations. So for any ontology to 
be registered, ontology components and ontology atomic 
constructs will respectively represent sentences and 
non-logical symbols (such as concepts, instances) of the 
ontology. 

Viewing Fig. 1 from left to right, MOR also specifies 
ontologies of two different types, Reference 
_Ontology_Whole (RO) and Local_Ontology_Whole (LO) 
to distinguish different roles that ontology plays in 
different cases. RO is responsible of representing common 
ontologies in domains, which is in usual created and 
maintained by authorities and/or relevant domain experts 
to guarantee its suitability. Different from RO, LO is 
designed for particular information systems, which reuses 
some elements of ROs and adopts changes to meet 
different needs. As a result, two LOs derived from the 
same RO suggest there is some inherent semantic 
relationship between them. Thus, the information systems 
adopting these two LOs can interoperate with each other 
on the basis of the parent RO. In addition, LO can also 
reuse some parts of RO, modify the reused part and add 
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new elements in MOR. This idea is illustrated where 
Reference_Ontology_Component(ROC) forms RO but LO 
is composed of two ontology components, i.e. ROC that 
comes from RO directly and 
Local_Ontology_Component(LOC) that is special for LO 
and generated by modifying or adding operations. 
Likewise, Reference_Ontology_Atomic_Construct(ROAC) 
forms ROC while LOC consists of both 
Local_Ontology_Atomic_Construct(LOAC) and ROAC. 

3 Domain Goal Modeling based on RGPS 

3.1 Goal Metamodel in RGPS 
RGPS is designed for service-oriented requirements 
metamodeling. It consists of four metamodels which are 
interconnected with each other. Role Metamodel describes 
organizations, roles and the interactions between them in a 
given requirements problem space. Goal Metamodel is to 
perform goal decomposition by specifying constraints 
between them. Process Metamodel defines basic 
constructs of a Process and the connections between them. 
Service Metamodel provides available services and is in 
general bound zero-to-many with a process. 

Goal Variability

Mandatory

Optional

Alternative

OR

Operational Goal

NFG

FG Constraint
Depend

Exclude0..*source1..*

hasNFG

upper
1..1 lower

0..*

NOTE  Metaclasses whose names are italicized are abstract metaclasses. 

0..*target

Fig. 2. Overall Structure of Goal Metamodel. 
Fig.2 shows Goal Metamodel in RGPS. Considering 

the system functionality that should be achieved and the 
global constraints that have to be followed, goals can be 
classified as Functional Goal(FG) and Nonfunctional 
Goal(NFG). FG describes the functions that a system must 
achieve, and NFG explains how these FGs are exercised 
and will affect or restrict the achievement of which FG to 
some degree. 

As mentioned before, a goal is a high-level and general 
statement. With Goal Metamodel in RGPS, it can be 
refined as a concrete and operational description of the 
software-to-be. Goal refinement is a process in which a 
high-level goal is decomposed into sub-goals, using 

feature decomposition strategies in FODA (Kang 1990). In 
RGPS, Variability decomposition indicates whether a goal 
is variable with respect to its upper-goal during the process 
of goal refinement. In detail, Variability decomposition 
relationships that characterize the relationship between the 
upper goal and lower goal set can be divided into 
Mandatory, Optional, OR and Alternative sub-goals 
during goal decomposition. A Mandatory goal is a goal 
that is common to all the software systems in domain, 
while the other three are dependent on particular systems.  
Optional goals are those whose existence depends on the 
requirements of individual cases. The difference between 
the OR goal and the Alternative goal is that exactly one 
Alternative goal can be chosen from a sub-goal set, while 
more than one OR goals can be selected from the set. 
Additionally, the Constraint among goals is either Depend 
or Exclude. The former means that the realization of a 
certain goal depends on the realization of other ones, and 
the latter implies that two goals cannot be satisfied 
simultaneously. 

3.2 Goal Modeling in Urban Transportation 
Domain 

In this paper, we will take urban transportation domain as 
the typical application domain for modeling DGMs based 
on RGPS. To facilitate domain modeling based on RGPS, 
a domain modeling toolkit named O-RGPS was developed 
to import domain ontologies of a specific domain and 
perform domain knowledge modeling based on RGPS. 
Supposing we want to arrange a trip plan, a corresponding 
domain goal model will be created by the goal modeling 
tool in the toolkit, shown in Fig.3. 

We can find that FG “PrepareTripPlan” is composed of 
four mandatory FGs, i.e. “GenerateTripPreference”, 
“QueryTripInfo”, “ArrangeTrip” and “DisplayTripPlan” 
and one optional goal “PerformBooking”. Moreover, 
“DisplayTripPlan” depends on “ArrangeTrip”, which 
depends on “QueryTripInfo”. FG “PerformBooking” has a 
NFG “AvailabilityisGreaterThan95”. “QueryBusInfo”, 
“QueryHotelInfo” and “QueryParkingInfo” are three OR 
sub-goals of “QueryTripInfo”. “DisplayTripPlan” also has 
two OR subgoals, i.e. “DisplayTripbyVideo” and 
“DisplayTripbySMS”. In addition, operational goal 
“QueryBusInfobyStation” and “QueryBusInfobyRoute” 
are two alternative subgoals of “QueryBusInfo”.  
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4 Customizing Personalized RGM 
The basic idea of RGM customization is to reuse common 
goals from RGPS-based domain goal models and add 
personal goals for user preference. The process of 
customizing RGM includes the following steps: 

Step1: register DGM as an instance of RO according to 
the three-layer structure defined in MOR. 

Step2: select a requested set of goals from registered 
DGM, add relevant goals to the set and supplement 
associations between them, and then organize them as a 
predefined RGM (PreRGM) that is in the form of DGM. 

Step3: simplify the associations between goals in 
PreRGM and convert it into RGM. 

Step4: complete RGM by adding personalized goals 
and detecting potential conflicts between goals, register 
RGM as LO and specify “sameAs” relation from RGM to 
DGM. 

In this way, a unified registration facility is introduced 
to promote sharing of domain assets and interoperation 
between them by registering and managing both common 
and personalized requirements in a domain. Furthermore, 
“sameAs” relations between RGM and DGM states which 
goals are frequently reused by which users. This can help 
requirements evolution from individuals to user group. 

4.1 Goal Metamodel in RGPS 
Before registering DGM based on MOR, we will introduce 
graph theory, a formal description of DGM, in this section. 

Def.. DGM = 〈V, E〉 denotes a domain goal model, in 
which V denotes a set of goals and E denotes relationships 
between them, whereE = V × V and ∀e ∈ E,∃u, v ∈ V →
e = 〈u, v〉 ∩ w(e) = {M, O, A, OR, D, Ex, hasNFG} . M, O, 
A, OR, D and Ex denote Mandatory, Optional, Alternative, 
OR, Depend and Exclude respectively. The domain goal 
model in Fig.2, for example, can be formalized into 
followings: 
DGMprepareTrip = 〈Vprep areTrip , EprepareTrip 〉 
VprepareTrip

= {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14}  
= {PrepareTripPlan, GenerateTripPrefernce,  

QueryTripPlan, ArrangeTrip, DisplayTripPlan, 
PerformBooking, QueryBusInfo, QueryhotelInfo, 
QueryParkingInfo, QueryBusInfobyStation, 
QueryBusInfobyRoute, DisplayTripbyVideo,  
DisplayTripbySMS, AvaliablityisGreaterThan95} 

EprepareTrip

= {〈v1, v2〉, 〈v1, v3〉, 〈v1, v4〉, 〈v1, v5〉, 〈v1, v6〉, 〈v4, v3〉, 
〈v5, v4〉, 〈v5, v14〉,   〈v3, v7〉, 〈v3, v8〉, 〈v3, v9〉, 〈v7, v10〉, 
〈v7, v11〉, 〈v5, v12〉, 〈v5, v13〉} 
Take a further look at EprepareTrip , it is found that 

w(〈v1, v2〉) = w(〈v1, v3〉) = w(〈v1, v4〉) = w(〈v1, v5〉) =
M,  

w(〈v1, v6〉) = Op,  

w(〈v4, v3〉) = w(〈v5, v4〉) = D,  

w(〈v3, v7〉) = w(〈v3, v8〉) = w(〈v3, v9〉) = OR 

Fig. 3 Screenshot of the domain goal model for “Prepare Trip Plan”. 

36



w(〈v7, v10〉) = w(〈v7, v11〉) = w(〈v5, v12〉) =
w(〈v5, v13〉) = A, 

w(〈v5, v14〉) = hasNFG 
After registering DGM, the whole goal model is 

registered as an instance of RO. Individual goals and the 
constraints between them in the goal model is viewed as 
ROAC. The instance of ROC can be any subgraph 
consisting of some goals and the corresponding relations. 

Table 1: Mapping Goal metamodel to MOR. 

Elements in Goal metamodel Metaclasses 
in MOR 

 RO 

 ROC 

 ROAC 

 ROAC 

 

 
(a) 

 
(b) 

Fig. 4 Registration information of (a) ROC and (b) 
ROAC based on the Ontology Registration Platform. 

We have developed a platform for ontology registration 
based on MOR. Following mappings from extended Goal 
metamodel to MOR in Table1, we can get registration 
information of DGM created in section 4.1. Fig.4(a) shows 

registration information of ontology component and 
Fig.4(b) illustrates that of ontology atomic construct. 

4.2 Customizing PreRGM 
Given a set of goals,  is the only input when users try 
to customize a satisfying RGM. It includes  and 

, denoting part of goals within DGM and a set of 
personalized goals beyond DGM, respectively. Actually, 

 is the starting point of customizing PreRGM. The 
basic idea is that for ∀vi ∈ Vcommon , we should find a 
subDGMi = 〈Vi, Ei〉  whose root is vi  and in which 1) Vi 
represents a set of goals that is directly or indirectly related 
to vi  and 2) Ei  denotes a set of associations connecting 
goals in Vi. The algorithm below shows how to customize 
PreRGM. 

// GoalCollection denotes a set of 

selected goals. 

// Boolean Goal.hasRelatedGoal(Goal 

goal) is used as a method to tell 

whether a goal has related goals.  

// GoalCollection 

Goal.listRelatedGoal() is used to list 

all the goals related to a given goal 

GoalCollection 

completeGoals(GoalCollection gc1){  

gc = new GoalCollection (); 

  for(int i=0; i<gc1 ; i++){ 

    gc.add(gc1[i]);  

    if(gc1[i].hasrelatedgoal()){ 

      gc2=gc1[i].listRelatedGoal(); 

 for(int j=0; j<gc2.length(); 

j++){ 

  gc.add(gc2[j]);  

    } 

  } 

} 

Return gc;  

} 

For example, we suppose: 
Vuser = {ArrangeTripPlan, DisplayTripPlan, 
 PerformBooking, ReponseTimeisLessThan5sec. } 

By matching Vuser to the registration information of 
RGM, we can get Vcommon = {v4, v5, v6} and Vpersonal =
{"ReponseTime is less than 5 sec. "} 

After applying the improvement algorithm above, goals 
and relevant associations contained in  subDGMarrange , 
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subDGMdisplay  and subDGMperform  are generated as 
follows. Note that the process of customizing RGM will 
not change the weight of the edges.  

(1) Search goals that are related to Vuser  
subDGMarrange = 〈Varrange ,Earrange 〉 
Varrange = {v4, v3, v7, v8, v9, v10, v11} 
Earrange

= {〈v4, v3〉, 〈v3, v7〉, 〈v3, v8〉, 〈v3, v9〉, 〈v7, v10〉, 〈v7, v11〉} 
subDGMdisplay = 〈Vdisplay ,Edisplay 〉 
Vdispl ay = {v5, v4, v12, v13, v14} 
Edisplay = {〈v5, v4〉, 〈v5, v14〉, 〈v5, v12〉, 〈v5, v13〉} 
subDGMperform = 〈Vperform ,Eperform 〉 
Vperform = {v6}, Eperform = ∅ 

(2) Search goals linking to Vuser  
Varrange
′ = Varrange ∪ {v1, v5},  

Earrange
′ = Earrange ∪ {〈v1, v4〉, 〈v1, v3〉, 〈v5, v4〉}, 

Vdisplay
′ = Vdisplay ∪ {v1}, Edisplay

′ = Earrange ∪ {〈v1, v5〉} 
Vperform
′ = Vperform ∪ {v1}, 

 Eperform
′ = Eperform ∪ {〈v1, v6〉} 

(3) Generate PreRGM 
PreRGM = 〈Vcommon , Ecommon 〉  
Vcommon = Varrange

′ ∪ Vperform
′ ∪ Vdisplay

′                  
= {v4, v3, v7, v8, v9, v10, v11, v5, v12, v13, v14, v6, v1} 
Ecommon = Earrange

′ ∪ Eperform
′ ∪ Edisplay

′

= {〈v4, v3〉, 〈v3, v7〉, 〈v3, v8〉, 〈v3, v9〉, 〈v7, v10〉, 〈v7, v11〉, 
     〈v5, v4〉, 〈v5, v14〉, 〈v5, v12〉, 〈v5, v13〉, 〈v1, v4〉, 〈v1, v3〉, 

       〈v1, v5〉, 〈v1, v6〉}  

4.3 Refining PreRGM to RGM 
Since all the goals involved in RGM will explicitly 
describe user’s requirements, this paper specifies that only 
Mandatory, OR and Depend are allowed in RGM. For this 
purpose, it should expect users not only to further select 
appropriate goals from PreRGM, but refine PreRGM into 
RGM with corresponding transformations on Optional, 
Alternative and Excludel. That is, we need to transform 
Optional and Alternative association into Mandatory as 
well as delete Exclude relation.  

The inference rules of Optional, Alternative and 
Exclude are fundamental for refining PreRGM into RGM. 
To define the SWRL-based rules, we suppose that 
hasGoal denotes a goal set whose elements are selected by 
users; hasNegationGoal presents a goal set whose 
elements are beyond the choice of users; hasMandatory, 
hasOptional, hasAlternative and hasExclude denote four 
kinds of goal sets whose elements are respectively 
connected with Mandatory, Optional, Alternative and 

Exclude; differentFrom implies that the involved goals are 
quite different with each other. The rules are defined as 
follows: 

Optional Rule: hasGoal(?x,?y) ∧ hasOptional(?z,?y) 
→ hasGoal(?x,?z).If user x has a goal y and y is an 
optional goal of z, then goal z is the mandatory goal of 
users. 

Alternative Rule: 
hasGoal(?x,?y)∧hasAlternative(?y,?z)∧hasAlternative(?y
,?a)∧differentFrom(?a,?z)∧ hasGoal (?x,?a) → 
hasNegationGoal(?x,?z). Given user x has a goal y, which 
has two different alternative goals named x and z. If a is 
selected by user x, then z must be contained in the negation 
goal set of x. 

Exclude Rule: hasGoal(?x,?y) ∧ hasExclude(?y,?z) → 
hasNegationGoal(?x,?z). Given user x has a goal y. If goal 
y and z exclude each other, then y resides in the negation 
gal set of x.  
Table 2: Transformation rules for refining PreRGM 
into RGM. 

Rule name Operation 
Change_Op_T

o_M e  

if    

then  
Change_A_To

_M  
if   

then {  

 } 

              else if   

then { w(e13) = M; 
    w(e12): = Ex; 

} 
Delete_Ex e  

if   
then {delete v; 

if  

then { delete e ;  
delete x;  

                  delete  
}   

} 

Accordingly, Table 2 illustrates how to handle Optional, 
Alternative and Exclude to perform transformation from 
PreRGM to RGM. Before refining RGM, we suppose that 
goals in Vcommon

′  are the ultimate choice of users to 
express their personalized requirements. In our case, for 
example, the individualized requirements are expressed in 
Vcommon
′ = {v1, v3, v4, v5, v6, v8, v9, v12, v14}. 
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In this case, only rules of Change_Op_To_M and 
Change_A_To_M will be applied to refine PreRGM. In 
detail, when Rule Change_Op_To_M is implemented, the 
value of 〈v1, v6〉  will be changed to M; when Rule 
Change_A_To_M is applied, the value of 〈v5, v12〉  will be 
changed to M, followed by deleting OG “Display Trip 
Plan by SMS”, its relevant goals and the relations between 
them. In this way, the case in section 4.3 will be 
transformed into the corresponding RGM in Fig.5. 

<<Operational Goal>>
Arrange Trip Plan

<<FR Goal>>
Prepare Trip Plan

<<FR Goal>>
Query Trip Info

<<FR Goal>>
Display Trip Plan

<<NFR Goal>>
Availability is greater than 95

<<Operational Goal>>
Query Parking Info

<<Operational Goal>>
Dispaly Trip Plan by Video

<<Operational Goal>>
Perform Booking

Mandatory

Or
Depend

hasNFG

<<Operational Goal>>
Query Hotel Info  

Fig. 5. RGM in urban transportation domain. 

4.4 Registering RGM 
Till now, only goals matching existing DGM are involved 
in RGM. In order to completely express individualized 
requirements of users, goals in Vpersonal  will also be added 
to RGM by means of specifying dependency between 
goals in  Vpersonal   and then connecting them to the FGs in 
RGM. Meanwhile, to keep the consistency of ultimate 
RGM, it toned to detect potential conflicts between 
original goals and newly added ones. In this paper, we will 
focus on conflicts related to nonfunctional requirements, 
which are further classified into two categories. The first is 
that Manner of FG and NFR type of NFG are likely to 
come into conflicts. Take the case in 4.3 as an example, 
“ResponseTimeisLessThan5sec.” is modeled as an 
instance of NFG beyond the PreRGM. Since information 
exchange must have a huge transmission volume by means 
of video, the FG “DisplayTripbyVideo” might hinder 
realization of “ResponseTimeisLessThan5sec”. The 
second category concentrates on the potential conflicts 
between NFR types of different NFGs. For instance, 
“ResponseTime” might be in conflict with “Reliability”. 

Consequently, it is important to resolve potential 
conflicts mentioned above to keep a robust goal modeling. 
As for conflicts between FG and NFG, it is advisable to 
change the manner of FG or lower expectation of the 
NFGs. Concerning conflicts between NFGs, we need to 
lower expectation of some NFGs to leverage the whole 
quality of experience, which will lead to potential 
modifications on original goals. Then we should negotiate 
with users to clarify how to handle conflicts appropriately. 

In particular, conflicts between FG and NFG should be of 
top priority. 

 

(a) 

 

(b) 

Fig. 6. Screenshot of (a) adding “sameAs” relations to 
map RGM to DGM and (b) querying added “sameAs” 
between them. 

Similar to the process of registering DGM, ontology 
registration platform based on MOR supports registration 
of RGM by importing the corresponding OWL files of 
RGM. Moreover, “sameAs” relationships defined in MOR 
to specify how to customize RGM based on DGM should 
be added manually. For example, Fig.6(a) shows that 
“QueryHotelInfo” in both DGM and RGM are the same. 
After that, the newly added “sameAs” relationship 
becomes visible to query operations. In Fig.6(b), the 
component “DisplayTripbyVideo” in RGM reuses  that of 
DGM. The operation and query of ontology atomic 
construct are similar to that of ontology component. 

This section just exemplifies how to reuse DGM for 
customization of RGM and record inherent relationships 
between RGM and DGM. In this way, the relationships 
between one DGM and many RGMs can act as the 
statistics showing how frequently the DGM is reused by 
which kind of users. That is, it can speed up the process of 
collecting preference of individuals to merge them into 
requirements of a certain user group. 

Adding sameAs” between OC Adding “sameAs” between OAC 

Components from DGM 

Components from RGM 

Query “sameAs” relations between RGM and DGM 
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5 Related work 
Based on software reuse techniques, domain engineering 
proposes a systematic method for mass reuse of domain 
knowledge. In general, users’ requirements are closely 
linked with a certain domain where software engineers 
usually find themselves not familiar with the specified 
domain knowledge. Thus, the collaboration between 
knowledge engineering and domain engineering will 
benefit the process of requirements analysis. Meanwhile, 
ontologies can be adopted to supply formal description of 
domain knowledge, which is fundamental for negotiation 
between users and developers.  

Currently, domain-driven requirements engineering is 
blooming in both academia and industry. In the 1990s, R.Q. 
Lu and Z. Jin proposed a domain ontology based approach 
to requirements analysis and modeling for information 
systems (Ruqian 1995, Ruqian 1996). It performs domain 
modeling based on ontologies, so that domain ontologis 
are able to support requirements elicitation, assist the 
process of requirements modeling and create high-quality 
requirements model, which is the basis of automatic 
requirements analysis (Zhi 2000, Ruqian 2000). MADEM 
(Multi-Agent Domain Engineering Methodology) (Girardi 
2007) is designed as a software development methodology 
for multi-agent requirements modeling. In MADEM, 
GRAMO (Generic Requirement Analysis Method based 
on Ontologies) (Girardi 2004) is proposed as an 
ontology-based approach for requirements modeling and 
analysis from four aspects, i.e. concept modeling, goal 
modeling, role modeling and role interaction modeling. 

However, most of the approaches to domain-driven 
requirements modeling mainly concentrate on functional 
requirements rather than nonfunctional requirements and 
its correlation with a specified domain. Different domains 
and scenarios focus on different aspects of nonfunctional 
requirements. Therefore, domain modeling should include 
not only functional requirements but its integration with 
nonfunctional requirements. Our approach not only takes 
nonfunctional requirements into account, but addresses 
fusion of FG and NFG by defining two types of 
NFG-related conflicts and the corresponding solutions for 
them. In future, those principles used to resolve potential 
conflicts between FG and NFG as well as between NFGs 
will be enhanced to ensure customization of consistent and 
comprehensive requirements for a variety of customers. 

6 Summary and future work 
In this paper, a goal-oriented approach is proposed to 
customize personalized RGM based on ontologies by 
combining RGPS-based domain modeling technique, 
goal-oriented method for requirements refinement and a 
common ontology registration mechanism based on MOR 
as well. Creation of RGM can be implemented by reusing 
RGPS-based DGM and the registration information based 
on MOR, while the refinement of initial RGM is processed 
by the goal model improvement algorithm and checking 
rules derived from Goal metamodel in RGPS. The ultimate 
RGM is confirmed by merging FG and NFG requirements. 
As for MOR, it is responsible for registering RGM and 
explicitly specifying the relationship between RGM and 
DGM, so that it can help generate a required RGM based 
on modeled domain knowledge. And the corresponding 
registration information will be fundamental for counting 
the reusing rate of domain knowledge and acting as hints 
to deduce the requirements of user groups from individual 
requirements. 

In the near future, how to detect and resolve potential 
conflicts between FG and NFG as well as between NFGs 
will be the focus of our research. In addition, the platform 
for ontology registration will be further enhanced by 
statistically deducing the requirements of a specified user 
group from the registration information that describes 
which atomic constructs or components of a DGM are 
reused by which RGMs. 
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Abstract

As the demand for environmental sensing grows, there
is an urgent need to improve access to observation
data collected by sensor systems. However, sensing
devices and the platforms on which they are deployed
are highly heterogeneous in their capabilities as well
as in their method for control and for retrieval of ob-
servation data. In this paper we propose to employ se-
mantic technologies, in particular descriptions in the
OWL-DL ontology language coupled with ontology
editors and reasoners to control the heterogeneity.

Through a case study developed for a pro-
grammable automatic weather station, we show how
an ontological concept description can be translated
to an active query or command to a sensor device,
coupling interpretation of a declarative ontology with
device-specific wrapper code. Our method relies on a
single extensible ontological model to describe the ca-
pability of sensor devices, and thereby support their
discovery, and also to support their programming.
This manages the heterogeneity to enable widespread
access to sensor programming languages by naive
users.

Keywords: Semantic Sensor Networks, Sensor Task-
ing

1 Introduction

Many of the challenges facing mankind in the 21st
Century, such as climate change, biodiversity conser-
vation, food security, water security and sustainable
energy require improved data through remote and in-
situ environmental sensing services at lower spatial
and temporal scales. Currently, sensor devices and
their communication networks are both highly hetero-
geneous and closed: we must find ways to make sensor
deployments more widely accessible and re-usable in
order to achieve the density of measurement in space
and time that is needed.

This issue has been recognised by the Open
Geospatial Consortium (OGC), a standards organ-
isation that has been developing a suite of XML-
service based standards for Sensor Web Enablement
(SWE). However, while the standards specify an in-
teraction protocol and XML markup languages for
querying and tasking sensor devices, they do not ad-
dress the representation of element content, so vital
information, for example, the physical property being
observed, is generally free text. Recent work in the

Copyright c©2009, Commonwealth of Australia. This paper
appeared at the The Fifth Australasian Ontology Workshop
(AOW 2009), Melbourne, Australia. Conferences in Research
and Practice in Information Technology (CRPIT), Vol. ??,
Thomas Meyer and Kerry Taylor, Ed. Reproduction for aca-
demic, not-for profit purposes permitted provided this text is
included.

OGC and the W3C has begun to extend the SWE
frameworks by adding ontology-based annotation to
the XML content to improve precision and interoper-
ability in this respect (Duchesne et al. 2008).

However, formal ontology languages such as OWL-
DL and the emerging OWL 2 DL offer much more
than an ability to represent a controlled vocabulary—
where the meaning of the terms in the vocabulary is
interpreted by human understanding—they offer for-
mal inference available through reasoners for the un-
derlying formal logic. We propose that this mecha-
nism can be used as part of a comprehensive software
framework to discover, program and query sensor de-
vices, to retrieve measurements made by sensors; and
to integrate the historical and real-time measurement
data into broader software systems for analysis and
decision support (Li & Taylor 2008).

In this paper, we specifically address the prob-
lem of querying and programming sensor devices.
Although sensor network architectures vary widely,
many sensor platforms permit programmable control
over sensor selection, timing and persistent memory
management. Querying may be a two-step process of
firstly instructing the sensor platform to make the
desired measurements, and secondly retrieving the
measurements from the sensor platform’s memory. In
other architectures, sensed data is forwarded to a cen-
tral Web-connected service from which it may be re-
trieved through some kind of query. Because of this
typical design, unless where specifically stated oth-
erwise in this paper, we do not distinguish between
programming, tasking, commanding and querying a
sensor network.

Generally, a sensor platform offers a special-
purpose programming language for querying and
tasking. Although NesC (Gay et al. 2003) is widely
used for mote-based Wireless Sensor Networks, there
are also many other emerging languages and higher-
level programming abstractions are keenly sought, in-
cluding declarative languages like SNlog (Chu et al.
2007). Typically, commercial sensor platforms em-
ploy manufacturer-specific line-based command lan-
guages, sometimes intended to be used through a
manufacturer-specific client GUI tool. The Environ-
data Weathermaster Series automatic weather sta-
tion exemplifies these sensor systems. In our work,
unlike the OGC SWE approach for example, we do
not attempt to standardise the query interface to sen-
sor systems, but instead to reflect the command and
query interface that is offered with a semantic model
represented in the OWL-DL language. The seman-
tic model is loaded as configuration data into a client
interface tool and thereby a user may work with a
common look and feel to discover and interact with
multiple sensor networks. Due to the expressive se-
mantic modelling, it is not necessary to constrain the
flexibility of the native capability of the sensor sys-
tems offered through the common interface, although
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it may be desirable to repackage it in order to im-
prove usability. We propose a client interface tool
embedded in an architecture for linking multiple het-
erogeneous sensor platforms. Server-side components
support retrieval of shared domain and sensor-specific
ontologies, a server-side back end for translation be-
tween client-originated queries and sensor network-
specific code, and a communication layer for dealing
at a low level with heterogeneity in the communica-
tion architectures of sensor networks. As a case study,
we have implemented our proposal in a prototype that
is used for programming or retrieving data from an
automatic weather station.

Outline of the paper In the next section we in-
troduce our architecture for ontology-enabled sensor
network programming, then we introduce the sensor
system that we have used as the basis for the proto-
type in Section 3. Then we describe the client tool
and how it employs description logic classification to
assist in programming the sensor network in Section
4. In Section 5 we describe the query translation and
communication process, and the retrieval of sensor
network data. In Section 6 we discuss related work
and we conclude in Section 7 with an analysis of the
benefits of our work in a wider context.

2 Architecture Sketch

In Figure 1 we show the structure of the software
prototype we have developed. A GUI client tool, the
semantic query client loads relevant ontologies and
permits querying over those ontologies for sensor dis-
covery, analysis and programming. The client tool is
built as a plug-in for the well-known editor for OWL
DL, Protégé (v3.3.1)1, and is backed by a description
logic reasoner (in our case, Pellet 1.5.12). After pro-
cessing by the client tool, a query developed by the
user is directed to the ontology transformer respon-
sible for the intended sensor network. The ontology
transformer translates the query to a sensor-device
specific form and hands it over to a communication
controller configured for the sensor device. The de-
vice returns a response which is directed back to the
ontology transformer for further processing before be-
ing returned to the requesting client. In Figure 2 we
show the message flow amongst the architectural com-
ponents during query processing.

Figure 1: Transformer interacting with the Weather
Station and providing functionality to a client

1The Protég’é Ontology editor and knowledge acquisition sys-
tem, http://Protege.stanford.edu/

2Pellet OWL DL reasoner, http://clarkparsia.com/pellet/

3 Automatic Weather Station Sensor Plat-
form

In this section we outline the design of the weather
station we have used for the case study, concentrat-
ing on the command language structure, which will
be used to exemplify the presentation of the query
processing method later.

Environdata’s Weather Station WeatherMaster
1600 3 is an industrial self-contained instrument with
a built-in battery and attached solar panel. Com-
munication with a host computer uses a proprietary
command-line language of about 50 commands in a
request-response interaction style over a serial port.
It has four sensors which measure air temperature,
relative humidity, wind speed, and wind direction,
and three other simulated sensors to measure the volt-
ages of the battery and the solar panel and the activ-
ity of the serial port.

Measured data can be saved for a limited period
in one of four memories, in a FIFO log scheme. The
stored data consists of a time stamp and a data value
for each of the four sensors at the time. The total
memory of 104 kilobytes can be split amongst the
four memories according to need. The intention be-
hind this splitting support is to avoid logging mea-
surements with the value 0, corresponding to a sensor
whose measurement is not recorded. For example, if
the Weather Station is programmed to measure the
temperature every 30 seconds as well as the relative
humidity at 6pm every day, then it will log a data
set every 30 seconds, containing the time stamp, the
measured value of the air temperature and a 0 for
the humidity, since it hasn’t been measured yet. An
efficient memory management scheme would allocate
all commands recording at the same frequency to the
same memory, thereby using the space allocated to
each sensor efficiently.

To retrieve logged data a command gives the num-
ber of the memory to be queried. There is no support
to access all measured data from a particular sensor
directly, but all memories need to be inspected and
unwanted data discarded. This may be data for other
sensors, or data summarised undesirably, or zero-data
indicating that the desired sensor measurement was
not recorded.

3.1 Programming the weather station

The weather station takes measurements according
to a program comprising a sequence of STORAGE
commands, each of which takes nine or ten arguments
as follows:

No command line number (1–64)
Command summary function: either

AVERAGE, MAXIMUM,
MINIMUM or CURRENT

Mem memory for storage (1–4)
Sensor sensor number (1–6)
Format 1 unless Command is CURRENT,

in which case it is 0
LimitValue always 0
Param always 1
Timetype one of HOUR, EHOUR, EMIN

or ESEC
Time1 counting number
Time2 number: only used when

Timetype is HOUR
The Command values mean respectively to com-

pute the average, maximum or minimum over the
3Environdata Weather Master 1600 - http://www.environdata.

com.au/Product/Weather_Stations/WeatherMaster_1600.html
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Figure 2: Message flow amongst components in the architecture for ontology-driven querying and programming
of the weather station

time period given by Timetype, or to log an instan-
taneous measurement at the time given by Timetype.
The Timetype values mean respectively to log every
day at times given by Time1 and (optionally) Time2;
every Time1 hours; every Time1 minutes, and every
Time1 seconds.

For example, “STORAGE 1 AVERAGE 1 1 1 0
1 HOUR 9” means that command 1 logs the aver-
age air temperature (sensor 1) in memory 1 at 9am
daily. “STORAGE 13 CURRENT 2 3 0 0 1 EHOUR
1 0” means that command 13 logs the current wind
direction in memory 2 every hour. In general, every
storage command should be bracketed by MEMOFF
and MEMON commands; otherwise it also causes the
memories of logged data to be cleared.

3.2 Querying the weather station

There are two weather station commands to retrieve
measurements from the sensors: the simplest is the
parameter-free R command which simply returns the
current value for each sensor and its respective unit
of measurement.

Measurements are retrieved from memory by a
MEM command with a parameter corresponding to
the memory number to inspect (1–4) and optionally
a parameter to select a time period from the memory.
This parameter may take the values ALL, for every-
thing, UPDATE for data not previously retrieved, or
SPECIFIC from-time to-time for data time-stamped

within the given range (the times here are written in
the form YYYY MM DD HH MM SS).

4 Ontology-Driven Client Tool for Program-
ming

The major part of the device-independent query pro-
cessing is performed within the client tool. The goal
of the ontology-driven user interface is threefold: to
support a common user interface to widely ranging
sensor devices; to support the discovery and interac-
tion with a sensor service by modelling the service ca-
pability in an accessible manner; and to offer the full
capability of the sensor platform’s native interface.
We have chosen to offer an explicitly ontology-driven
interface for this—as an experiment in stretching the
applications of ontologies into new ground, and also
in preparation for integration with other sensor sys-
tems enabled through the ontology development work
of the W3C’s SSN-XG (see Section 6). We have de-
veloped our interface as a plug-in to Protégé v3.3.1,
although we plan to change to the new version 4.0
which has more features and is more convenient for
working with OWL ontologies. Our ontology is suf-
ficient for our case study purposes and its simplicity
makes it possible to explain here, but we recognise
that a much larger and differently-structured ontol-
ogy would be needed for wider deployment.
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4.1 Ontology modelling

We started our ontology by importing NASA’s
SWEET domain ontology4 and extending it with
classes and properties that model the command lan-
guage of the Environdata weather station. The mod-
elling is not complete, so we do not offer the full
capability of the sensor platform for this prototype.
However, our use of the ontology capability is exten-
sive: it may be used for sensor discovery through the
browsing and classification ability; it is used for phras-
ing queries—as definitions of ontology concepts (and
thereby also supporting multiple syntaxes for a query
function); it is used to detect redundancy in queries
and so to improve efficiency, and it is used for vali-
dating queries and directing them to the appropriate
sensors.

The sensors of the weather stations are de-
scribed by disjoint subclasses of SWEET’s mate-
rial thing:Sensor. We introduce the object prop-
erty measures with domain material thing:Sensor,
and define each sensor through both a universal and
an existential restriction on measures (for example,
the temperature sensor measures SWEET’s prop-
erty:Temperature). This modelling enables the dis-
covery of sensor platforms within the ontology by
reference to the physical property measured. In ad-
dition, for each weather station sensor class we use
datatype properties to represent parameters required
for the weather station, such as hasSensorNo with do-
main material thing:Sensor and an integer value. We
create an instance of each sensor and initialise each
hasSensorNo property value with the corresponding
weather station-defined sensor number.

To model time commands, we create subclasses
for each of the four SWEET time units: so we have
a new Day, Hour, Minute and Second which are in-
tended to refer to periods of time for measurement.
Each of these classes we existentially restrict with the
hasSubPeriod property over each of the smaller peri-
ods, and add a closure axiom for hasSubPeriod—the
purpose of this is given later in the paper. Now we
allocate a weather station memory to each period—
in order to manage the memory efficiently according
to the memory management scheme described ear-
lier. To do this, we create the datatype property us-
esMemory, create an instance of each time period,
and instantiate it’s usesMemory value with each of
the four memory numbers (1–4). We also create a
timeTypeCmd datatype property of the time period
classes, and instantiate each with the corresponding
weather station timetype string: HOUR, EHOUR,
EMIN, or ESEC. Further, to support retrieval queries
over a time range, we create a Date as a subclass of
SWEET’s time:Instant, with integer datatype prop-
erties atYear, atMonth, atDay, atHour, atMinute and
atSecond to describe a time instant.

We model the summary function part of the
weather station capability as subclasses of a new class
Statistic: Average, Maximum, Minimum and Cur-
rent, with a datatype property statCmd instantiated
with the value of the corresponding command string,
as before.

With these basic concepts in place, now we
turn to modelling general schemas for the com-
mands of the weather station. Grouped under a
WM1600Capabilities class, we provide (complete) de-
scriptions of three capability classes as described in
figures 3 and 4 in the form of Protégé screen copies.
These capability classes correspond respectively to
the weather station’s commands R for current sen-
sor readings, MEM for logged data, and STORAGE

4Semantic Web for Earth and Environmental Terminology,
(SWEET) v1.0 at http://sweet.jpl.nasa.gov/index.html

for reprogramming, as described in Section 3.

Figure 3: Hierarchy of Functions, Queries and Capa-
bilities in the capability ontology

Finally, we also create a class to describe the func-
tions of our sensor platform. This serves as documen-
tation for the device, by grouping its functions, can
be used to discover which devices can perform cer-
tain functions. We define the property hasFunction
(which may be used for all such sensor definitions)
and the class WM1600 as in Figure 5. Note that
other sensors, especially other models from the same
manufacturer, may have a similar definition, reusing
some of the capability classes we have defined for the
WM1600.

Now we show how these descriptions of weather
station capabilities can be used to compose queries
for the weather station.

4.2 Querying the weather station

Our Protégé plug-in provides a query interface for the
weather station, loading up the sensor ontology, sup-
porting browsing of the ontology and query formu-
lation, and communicating with the ontology trans-
former. A user defines a query as a new class defini-
tion in the context of the sensor ontology described
above. The query is classified, using the services of
the connected reasoner. The query must be subsumed
by a weather station capability class in order to be a
valid weather station command. We use the power of
the DL classification in this way to admit alternative
syntaxes for the same query by, for example, allowing
the definition and use of classes as subqueries in more
complex queries. The same method can also be used
to assign queries to multiple devices capable of han-
dling the query in which case such a query would have
multiple capability class parents (although in our case
study we use only one device).

Figure 6 shows the plug-in window for compos-
ing queries as class definitions: in this case the query
screen has been generated at run-time specifically for
the WM1600 by inspecting its definition in the ontol-
ogy. Next, the plug-in prompts the user to instanti-
ate the query class just created, and this gathers the
predefined datatype property values described earlier,
and permits further refinement such as the entry of
dates for range queries.

Figure 7 shows the form of two simple queries
(displayed in Protégé) after entry through the query
screen. The first, curFunc, requests the current data
for the temperature sensor only. The second, per-
Func, is a more complex query for raw temperature
data from storage for a given period. The figure
also shows the instance data attached to the sec-
ond query (displayed under the “Individual” tab of
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Figure 4: Definitions of the queryCurrentData, queryPeriodData, and setStorageFunction capabilities, respec-
tively

Figure 6: Screenshot of the Plug-In window to create
a query

Protégé) connecting the query instance to properties
identifying the sensor and the selected time range pa-
rameters. This individual view is no longer available
in Protégé v4.0.

Finally, the plug-in invokes the ontology trans-
former that is configured for the selected device, pass-
ing on both the name of the new query class and the
query instance.

5 Query Translation and Execution

Each different sensor platform is configured with a
dedicated “ontology transformer” which, in our case
is written in Java code. It communicates with the
Protégé plug-in via sockets and with the weather sta-
tion, via a communication handler, over a serial port
on its host. The same transformer may be used for
multiple deployments of the same device, but a dif-
ferent one is needed for devices that have different
modelled capabilities in the ontology. A detailed de-
scription of the ontology transformer is out of scope
for this paper: although we note that it is responsible
for dealing with device-specific issues such as corre-
lating the device commands with responses, applying
error checking and correction as required and adding
or filtering unwanted device-specific characters in the
command and response dialogue.

The main role of the ontology transformer is to
manage the state of the sensor device (through config-
uration and status commands), to translate the class
and instance form of the query to the required com-
mand line form, and to filter response data to match
the query where necessary. The transformer classifies
the query in the context of the ontology (as before in
the client) and traverses the ancestor paths to match
the name of a capability class known to the trans-
former. In Figure 8 we illustrate the classification
of the example queries given previously (plus several
others), with respect to the capability classes of the
weather station.

The ontology transformer for the weather station
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Figure 5: Definition of the WM1600 class defining its capabilities

then passes the query instance to a handler specialised
for that capability class that can retrieve the param-
eters from the instance and generate the appropri-
ate command strings for the weather station. For
some query classes it generates multiple commands:
for example the STORAGE command is bracketed by
MEMOFF and MEMON commands.

When the corresponding response is received from
the weather station, the capability class handler may
also filter the response data to match the query. For
example, although our queryPeriodData capability
class supports selection of sensors, this capability is
not matched in the corresponding weather station
“R” command, so the capability class handler uses
the hasSensorNo property value in the individual to
select only those columns of data corresponding to
the desired sensors from the full response, and only
those rows with non-zero values for that sensor read-
ing, since a zero value indicates a non-measurement.
Similarly, the logged rows with a different summary
function to that requested in the query must be re-
moved.

For the reprogramming queries, we also use the
classification of the query to perform a query optimi-
sation step to reduce the load on the weather station.
Taking advantage of our semantic model for time cor-
responding to the weather station’s EHOUR, EMIN
and ESEC parameters, we detect when a reprogram-
ming query is subsumed by an earlier (already ex-
ecuting) reprogramming query. In such a case, the
ontology transformer does not submit the query to
the weather station, because the corresponding data
can already be retrieved from the log due to the pre-
existing query.

Finally, the filtered data is returned to the client
for display to the user, as in Figure 9.

6 Related Work

This is the first time ontological descriptions and for-
mal description logic reasoning has been used to as-
sist in sensor network programming and querying,
although other“semantic” representations have been
used for similar purposes.

For example, in (Liu & Zhao 2005) and (White-
house et al. 2006) an ontology of sensors, compris-
ing just a simple, explicit, taxonomy of sensor types
and represented in restricted prolog is used in con-
junction with expressive prolog rules and associated
Horn clause reasoning to derive and represent higher-
order sensor network services, including composition
of multiple sensors to deliver targeted sensor services.
However, there is no mechanism for sensor tasking
in this framework and the query model corresponds
to simply accessing named attributes from a named
sensor data stream.

More commonly, formal OWL ontologies have
been used for describing sensors and their capabili-

ties. In early work, (Eid et al. 2007) propose a simple
taxonomy of sensors and their measurements which
is used with an RDF query language for discovery of
sensors via their descriptions. DL reasoning is pro-
posed for validation during ontology development (as
is customary for OWL ontologies), but there is no
support for sensor querying or tasking in this work.

In (de Mel et al. 2009) an OWL-DL ontology and
a reasoner is used as part of an algorithm for dis-
covery of sensors suitable for tasks. The ontology of
sensors and platforms includes information on sensor
capabilities. Platforms (comprising multiple sensors)
with any sensor capability that subsumes any of those
required for the task are suggested as candidates. A
covering algorithm is then used to select platforms
for the task from the candidates. In our work, the
same kind of subsumption reasoning for discovery of
sensors (e.g. discovery of sensors that can measure
temperature) is also a valuable feature of the ontol-
ogy modelling we employ and is quite straightforward.
However, in our work we extend the ontology model
to support querying and programming of the sensors
too.

In (Ha et al. 2007), the services ontology OWL-S is
used to represent compositions of sensor instructions
and an hierarchical task network planning algorithm
is used to discover new compositions. Although this
work focuses on tasking sensors, and can generate in-
struction sequences for sensor devices, it relies on a
procedural programming model and procedural rea-
soning; the ontology is otherwise only used for infor-
mal partial matching of input and output datatypes.

In recent work, (Compton et al. 2009) propose
rich ontological descriptions of sensors coupled with
a number of reasoning services, including sensor clas-
sification for discovery and also composition of sen-
sors. This work does not address a mechanism for
querying or programming sensors in their native de-
vice languages, although it might be possible to en-
code a procedural sensor program to perform a task
within its OWL-S-like process model.

One of the OGC’s Sensor Web Enablement stan-
dards, the Sensor Planning Service (Simonis 2005),
aims to provide a web service interface to program
sensor devices, although another service is used to
retrieve the data. However, in its current form the
service does not use descriptive semantics. Although
it provides an operation (“DescribetaskingRequest”)
to retrieve a description of the commands from the
sensor service, the response encodes a list of (uncon-
strained) parameter names and their types with nat-
ural language descriptions for each. Although this
description may be sufficient for a user to compose a
query to the service, relying on the predefined syn-
tax pattern, there is no support for contextual mod-
elling of the meaning of the parameter names, nor
of the commands and functions overall as is offered
in our approach. Further, it is aimed at human in-
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Figure 7: Definitions of queries: curFunc to retrieve
current temperature data, perFunc for temperature
data over a period of time, and the instance data for
the perfunc query, respectively

terpretation and does not facilitate machine inference
that could otherwise automate high-level tasks, such
as sensor substitution, composition and integration.
It does address communication heterogeneity through
its standard service protocol, but does not address
heterogeneity at the device level.

Finally, under the auspices of the W3C, the SSN-
XG5 is currently developing an expressive device on-
tology aimed at supporting a number of use cases.
This includes acting as a source of terminology for
markup of OGC Sensor Web Enablement Web ser-
vices, but may also include more direct sensor net-
work tasking. Although the ontology will certainly
not be developed to the extent of capturing individual
sensor network programming languages, as is done in
the case study for this paper, it will certainly provide
a richer context ontology for embedding such pro-
gramming concepts than is offered by SWEET that is
used in this paper. Employing such a well-developed
context ontology will improve the user experience and
value of the semantic representation and processing
that is demonstrated in this paper.

5W3C Semantic Sensor Network Incubator Group, http://www.
w3.org/2005/Incubator/ssn/

Figure 8: Subsumption of valid queries by capability
classes of the weather station

7 Discussion and Conclusion

We have described a case study application of formal
ontologies to the problem of programming and query-
ing sensor networks. Like many other approaches to
managing heterogeneity, our approach wraps the na-
tive interface in a customised device-specific compo-
nent to manage heterogeneity in the native commu-
nication protocol and, to some extent, in the interac-
tion paradigm, command language, and response en-
coding. However, atypically, our approach also uses
a high-level semantic description of the domain and
the command language to offer a common user in-
terface for access. This description amounts to con-
figuration data in the client tool—enabling user or
application customisation and evolution without re-
programming.

Through our model employing DL descriptions of
sensor devices we have shown how DL classification
can offer more than just sensor description and discov-
ery. It can also be used to assist in programming and
querying heterogeneous sensor networks. We have
concentrated on a declarative model for sensor net-
work commands, rather than an alternative process
model. This design may make our approach easier
to use, but it may be unwieldy and insufficiently ex-
pressive for heavily state-based devices, such as those
that are programmed to move in space prior to taking
a measurement.

Although our case study has been applied to only
one sensor device, it is easy to see that the approach
can extend to other sensor devices, and to incorporate
them all within the same client environment. One
such extension might, for example, provide an ontol-
ogy transformer for the OGC Sensor Planning Ser-
vice (together with a chosen data retrieval service)
to enable modelling of the non-standardised param-
eter names and sensor capabilities within a seman-
tic framework. Another extension might develop an
ontology transfomer for sensors mounted on motes
in sensor networks: the transformer would need to
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translate the semantic commands to code fragments,
embed the fragments within a complete sensor net-
work program in NesC, for example, and distribute
the program to the nodes using an over-the-air pro-
gramming tool.

In this case of a widely distributed and heteroge-
neous network, it would also be necessary to manage
the ontology more carefully at run time: an ontology
server could be used to retrieve a desired domain on-
tology and a set of relevant device ontologies (where
relevance may be defined by user context, such as
location or access rights). The relevant device and
domain ontologies would be merged and delivered to
both the client tool and the required ontology trans-
formers on demand.

Our pure-semantics approach to managing the het-
erogeneity offers a number of other benefits over more
conventional architectures for similar problems of het-
erogeneity in distributed systems. Our ontology of-
fers a data-driven (i.e not pre-programmed) context
model to assist in the discovery and querying of sen-
sors suitable for a user task. This enables modelling
of sensors by location, type, observable properties, ac-
curacy, availability, platform, mobility, or any other
aspects relevant to discovery and application. In
our prototype, we have used a simple extension to
the well-known ontology-independent Protégé tool to
achieve this, although a deployable implementation
would use a specialised client tool for better ease-of-
use targeted to user expectations.

The ontology modelling offers other benefits in
querying. For example, the same device capability
may be offered through multiple syntaxes, or via mul-
tiple concepts, through careful ontology design. Pro-
vided that a query can be mapped to a supported
capability class by subsumption computed by the rea-
soner, verifying that the query is semantically correct,
no programming is needed to support such alternative
query syntaxes. The ontology transformer, already
designed to handle the capability class, will therefore
also handle the subsumed query. Further, the verifi-
cation function can assist a developer to present the
device capabilities in a convenient (but correct) way
and can also assist a user to understand the device
capabilities. As noted by (Compton et al. 2009) in-
tegration with inference mechanisms other than DL
alone could also help here, for example, reasoners for
spatial modelling could help when access to multiple
sensors is required for the desired result. Similarly,
spatial reasoning may assist with modelling of mobile
devices in a declarative manner, so that sequential
locator commands may be unnecessary.

The ontology modelling also enables, at least in
our case study of the weather station command lan-
guage, the use of subsumption reasoning to infer when
a command to the weather station is redundant be-
cause the answers may be retrieved from data pro-
duced by an already-executing command, after filter-
ing. In a multi-user sensor network environment, this
may offer significant gains in efficiency.

An OWL 2 DL implementation (Motik et al. 2009)
of this work would improve the benefit of the verifi-
cation by subsumption test further: the data ranges
capability, for example, would offer tighter modelling
of sensor device specifications and identification of re-
dundant commands.

In the longer term, we envisage our work con-
tributing to a highly distributed, multi-organisational
sensor networked, computation environment. This is
needed for the emerging transdisciplinary science that
is required to address the big questions in our shared
future.

Figure 9: Result window with the answer from the
Weather Station
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Abstract 
Networks of sensors are increasingly used to monitor 
essential environmental variables for biodiversity, water, 
and climate change research. Such multidisciplinary 
scientific projects require more flexible ways to publish 
and aggregate sensor observations from different 
networks as mashable web resources. Semantically-
enabled and linkable descriptions of sensors and sensors 
services can simplify the integration of legacy backend 
sensor web services and make it easier for mashup 
developers to opportunistically combine these resources.  

This paper reviews linking and annotation techniques 
applicable to the development of geospatial mashups 
services. It describes how approaches based on RDFa 
could supersede existing techniques for the semantic 
annotation of RESTful services. It highlights specific 
issues linked to the hybrid nature of mashups combining 
solutions based on XML, RDF and HTML standards and 
the failure risks attached to such multi-standards 
knowledge systems.  It points out the pending technical 
issues, especially the ones where more coherent 
approaches are needed e.g. the upgrade of existing 
standards like XLink and SAWSDL or the integration of 
validation tools developed for each family of standards. 

Keywords:  semantic web, sensor web, geospatial 
standards, mashup, XLink, RDFa. . 

 

1 Introduction 
As networks of sensors are increasingly used to monitor 
essential environmental variables for biodiversity, water, 
and climate change research, we need innovative 
approaches to simplify the integration of sensor 
observations from different networks into mashable web 
resources. Pairing geospatial standards developed by the 
Open Geospatial Consortium (OGC) and semantic web 
standards developed by the World Wide Web Consortium 
(W3C) can foster new approaches for applications that 
are not (or not yet) clear candidates as web standards. 

Apart from the Keyhole Markup Language (KML), 
most OGC standards have been developed prior to the 
appearance of modern mashup techniques. The W3C 
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Semantic Sensor Network Incubator Activity1 (SSN-XG) 
develops semantic descriptions of sensors and sensors 
services to semantically enable services based on Sensor 
Web Enablement (SWE) standards like the Sensor 
Markup Language (SensorML) and the Sensor 
Observation Service (SOS). This review focuses on 
linking and annotation techniques which can support the 
discovery and composition of these services and their 
integration into web mashups (Le Phuoc and Hauswirth 
2009).  

This paper is structured in four main parts. Section 2 
defines legacy and opportunistic mashups and how they 
can be combined in a multi-layered integration scheme. It 
also discusses how this scheme may evolve with the 
introduction of new mashup engines and technologies 
based on existing and actively developed semantic web 
standards. Section 3 reviews the XML, HTML and RDF-
based linking, and annotation methods and their 
applicability in this context. Two practical examples are 
used in Section 4 to compare the available approaches 
and to identify the innovative features of RDFa which are 
applicable to the semantic annotation of RESTful 
services. The discussion in Section 5 identifies failure 
risks which are specific to knowledge systems including 
sources of interfaces problems likely to occur in such 
multi-standard setups. It also points out the pending 
technical issues, especially the ones where more coherent 
approaches are needed e.g. the upgrade of existing 
standards like XLink and SAWSDL or the integration of 
validation tools developed for each family of standards. 

2  Typology of mashups  

2.1 Multi-layered mashup framework 
The Model for layered integration tools proposed by 
Gamble and Gamble (2008) groups pre-Web, Web 1.0 
and Web 2.0 technologies into three separate integration 
zones with decreasing level of integration effort and 
increasing readiness for opportunistic development. In 
this framework, legacy mashups require more work 
because the integration of pre-Web and Web 1.0 
resources generally requires the development of custom-
made wrappers. First generation mashup engines such as 
Damia, Yahoo Pipes, Popfly, or Google Mashup Editor 
(Di Lorenzo et al. 2009, Koschmider et al. 2009) enable 
the creation of opportunistic mashups based on the most 
popular Web 2.0 service API (Application Programmable 
Interfaces). These mashup engines have been very 
successful even if they are often tied to proprietary APIs 
or platforms.  
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Figure 1 illustrates the layered model defined by 
Gamble and Gamble (2008) where the two types of 
integration approaches cohabit. Legacy services are 
integrated in the first integration layer as legacy mashups. 
The resulting services are exploited in the second 
integration layer with more lightweight mashup methods.  

 

 

Figure 1: Multi-layered mashups 

2.2 Non-semantic mashups  
Geospatial and Sensor web service-oriented platforms can 
combine Web 2.0 technologies like Ajax to global 
geospatial data resources like Google to enable the online 
publication of geospatial and sensor datasets and services. 
Mashable APIs are now available for geospatial and 
sensor web resources like Google Maps2 or Pachube3 and 
from popular GIS tools like ArcGIS4.  

Figure 2 presents a simple example of multi-layered 
geospatial mashup. ArcGIS can be used to integrate data 
from OGC web services and expose it through proprietary 
Javascript APIs5 which can be further mashed up in Web 
2.0 tools like Google maps.   
 

 

Figure 2: A simple geo-mashup based on Arc GIS  

2.3 Semantic mashups 
The lack of extensibility of existing APIs is driving the 
development of the next generation of semantic mashup 
engines based on semantic web standards developed by 
W3C. SAWSDL (Kopecký et al. 2007) uses semantic 
descriptions to enable the composition of web services for 
legacy semantic mashups. These rich semantic 
descriptions help to compose geospatial services 
(Lemmens et al. 2007, Vaccari et al. 2009). Custom-made 
operators are often developed to transform the data from 
XML to RDF (Henson et al. 2009) and to better manage 
its provenance (Sahoo et al. 2008). 

Opportunistic semantic mashups generally use RDF 
(triple stores) resources applying the Linking Open Data 
conventions (Bizer et al. 2007) via standard APIs based 
on SPARQL (Prud'hommeaux et al. 2008, Clark et al. 
2008) or via proprietary query languages offered by Web-
based development environments such as Metaweb 

                                                           
2 http://code.google.com/apis/maps/ 
3 http://www.pachube.com/  
4 http://www.esri.com/software/arcgis/  
5 http://www.esri.com/javascript  

ACRE6 or Yahoo Pipes7 designed to offer the possibility 
for end users to develop and share their mashups.  

Opportunistic semantic mashups can also source data 
from HTML pages, especially from RDFa (Adida et al. 
2008) snippets embedded in web pages. RDFa, originally 
designed as an extension of XHTML2 and now ported8 to 
HTML59 is a hybrid method devised to sprinkle RDF 
data or metadata in a web page and make it available for 
further content aggregation down the track, e.g. at the 
level of search engines (Benjamins et al. 2008). Search 
platforms like Google and Yahoo SearchMonkey10 
exploit RDFa content to improve search results and use it 
in search engine results as richer snippets (Goel et al. 
2009).  

DERI Pipes (Le Phuoc et al. 2009), MashQL (Jarrar 
and Dikaiakos 2009) and TopQuadrant’s SparqlMotion11 
are three examples of semantic mashup engines which 
allow end users to chain (or pipe) simple URI-based data 
integration operators. DERI Pipes users can fetch data 
from XML using XQuery, from RDF using SPARQL and 
extract embedded RDFa and microformat data from 
HTML using purpose-built operators. Figure 3 presents a 
semantic mashup architecture implemented by Le Phuoc 
and Hauswirth (2009) which combines a semantic 
wrapper for Sensor Observation Service similar to 
SemSOS (Henson et al. 2009) with a SensorMasher 
application based on DERI pipes. In this implementation, 
SPARQL is used to query data from the sensor ontologies 
and from the sensor data streams.  

 

 

Figure 3: A multi-layered semantic mashup  

2.4 Semantic enablement methods 
There are four basic semantic enablement methods for 
legacy and opportunistic mashups applicable at different 
levels of the multi-layered scheme described in Figure 1: 

• Inclusion of remote RDF (or SKOS/OWL) 
resources in XML using XLink, 

• Annotation of web services with SAWSDL, 

• Annotation of RESTful web services using 
hRESTs (or SA-REST, MicroWSMO), 

• Inclusion of remote RDF (or SKOS/OWL) 
resources in HTML using RDFa. 

                                                           
6 http://www.freebase.com/apps/ 
7 http://pipes.yahoo.com/  
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The next section reviews the basic XML, HTML and 
RDF-based linking and annotation standards and their 
relevance to the four semantic enablement methods 
defined above. For this purpose, the following 
terminology is used. Mashable content corresponds to 
any type of remotely managed resources which can be 
used in a mashup. Links specifies the inclusion of 
remotely managed resources. Semantic annotations 
define how to map service capabilities to semantic 
definitions to enable the discovery or composition of web 
services. The transition from XML-based services to 
RDF-based services is called a lifting operation (Farrell 
and Lausen 2007) and the inverse one, from RDF to 
XML is called a lowering operation.  

3 Linking and annotation methods  

3.1 Handling mashable content with javascript 
Mashable content can be extracted from XML, RDF 
(OWL) and HTML resources, and from RDFa snippets 
included in web pages. Different javascript libraries (see 
Table 1) can be used to process data sourced from 
different origins. 

  
Mashed up 

content 
Javascript library  

XML resource  JQuery http://jquery.com/ 

RDF resource  JSON http://www.json.org/ used to 
serialise SPARQL results 

http://www.w3.org/TR/rdf-sparql-json-res/ 

OWL resource JOWL (JQuery extension) 
http://jowl.ontologyonline.org/ 

HTML snippet  JQuery http://jquery.com/ 

RDFa snippet  rdfQuery (JQuery extension) 
http://code.google.com/p/rdfquery 

Microformat 
snippets 

A custom-made javascript library is 
needed for each different microformat 

Table 1: Types of mashable content 

Interest for RDFa is growing fast because the prospect for 
being able to extend documents without having recourse 
to standards organisations is enormous and because the 
addition of RDFa content to already published web pages 
can be done without forcing the web site designers to 
change the look of their sites.  

Microformats are available for a number of specific 
applications with various levels of popularity and support. 
The HTML5 Microdata proposal is an attempt to offer a 
generic alternative to the existing Microformat coding 
conventions. It is not reviewed here because this set of 
requirements (Hickson 2009) can be considered as a 
subset of the requirements addressed by RDFa.   

3.2 Linking methods  
Links are defined here as mechanisms used to extend 
available content from any type of resources with 
information sourced from remotely managed content 
(type or instance). Links are possible between two 
documents of the same type or between documents of 
different types. Table 2 lists the techniques used to link 
documents to each other on a range of use cases which 
can occur in mashups. 

Linked 
resource 

type 

Linking method  Type of link 

XML XLink XML to XML 

XML XLink XML to URNs 

XML XLink XML to RDF 

XML RDFa XML to RDF 

RDF OWL mapping properties 
or weaker alternatives like 

umbel:isLike  

RDF to RDF 

SKOS SKOS mapping properties SKOS to 
SKOS 

OWL OWL mapping properties OWL to OWL 

HTML Microformats  HTML to 
“data” 

HTML RDFa or  
Common Tag 

 HTML to 
RDF  

Table 2: Linking methods 

The XML Linking language or XLink (DeRose et al. 
2001) is a W3C standard which allows the creation of 
links between XML resources. It is commonly used in 
OGC standards to include references to external 
vocabularies managed with URNs.  

To link RDF-based vocabularies, ontologies or 
Linking Open Datasets (LOD) content, the most common 
approach is to use the basic relationships defined in the 
Web Ontology Language OWL: owl:sameAs, 
owl:equivalentClass, owl:equivalentProperty although for 
plain LOD content, weaker alternatives may be preferable 
like the one proposed by the UMBEL12 developers. 
SKOS13 offers a richer range of properties (exactMatch, 
closeMatch, broaderMatch, narrowerMatch) to specify 
the relationships between concepts. 

3.3 Semantic annotation methods 
Different semantic annotations methods are needed for 
WSDL web services and RESTful web services.   

Upgrading WSDL web services into semantically 
enabled services can be done with the help of SAWSDL 
(Kopecký et al. 2007), now a W3C Recommendation 
(Farrell and Lausen 2007). The SAWSDL specification 
has three main features: 

• Semantic definitions (in a RDF-based format 
like OWL) may be included in the WSDL file.  

• A small set of elements and attributes can be 
added in different parts of the WSDL service 
description to create links from XML schemas 
elements and attributes to their model references 
which are semantic definitions.  

• And finally, additional attributes can be used to 
associate a schema type or element with a 
mapping script describing lifting transformation 
from XML to RDF and lowering transformation 
from RDF to XML.  

Upgrading REST web services into semantically enabled 
services requires different tools because the service 

                                                           
12 http://www.umbel.org/  
13 http://www.w3.org/TR/skos-reference/  
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declaration is generally made within a HTML web page 
and does not use an XML-based description format. SA-
REST (Lathem et al. 2007, Sheth et al. 2007) and 
MicroWSMO (Kopecký et al. 2009) are two related 
efforts which use the same semantic annotation 
microformat, hRESTs (Kopecký 2008). The SA-REST 
approach is more closely related to the SAWSDL 
standard while MicroWSMO uses a different ontology: 
WSMO-Lite. 

3.4 Types of lifting operations 
GRDDL (Connolly 2007) defines the syntax to embed the 
reference to a lifting script in any type of well-formed 
XML format. The file to which the GRDDL annotation 
has been added is used as the input of the specified lifting 
operation. The RDF output depends on the location of the 
GRDDL markup. If the corresponding transformation is 
available, any HTML files containing microformat-based 
annotations can use this mechanism to be transformed 
into RDF. 

SAWSDL, SA-REST and MicroWSMO also require 
the development of custom-made scripts. A major 
difference is that these scripts specify how to process the 
XML data manipulated by the service, not the content of 
the file containing the annotations.  

RDFa defines a generic lifting mechanism to 
transform the annotations included in an HTML file into 
RDF. In this case, there is no need for user-developed 
scripts.  

Lifting scripts may use languages like XSL 
transformations14 (XSLT) or XQuery15. Lowering scripts 
may use hybrid approaches like XSPARQL (Akthar et al. 
2008), a W3C Member Submission16 which mixes 
XQuery and SPARQL. RDFa users can also use 
alternative implementations such as the ones available in 
javascript (Table 1).  

4 Comparison of key linking methods 
A short summary of the key features of each method is 
provided below. A more direct comparison is also done 
on two examples to complete this analysis in relation to 
two critical issues:  

• Choice between the hRESTs microformat and 
RDFa for the semantic annotations of REST-
based services and consistency of these 
approaches with existing ones (SAWSDL),  

• Choice between XLink and RDFa as the linking 
technique used for XML content. 

The first example focuses on semantic annotation 
requirements to guide the future work on REST services 
and also bridge the gap between these new methods and 
what can currently be used for WSDL.  

The second example illustrates the differences 
between the XML-friendly solution based on XLink and 
the alternative approach based on RDFa.  

                                                           
14 http://www.w3.org/TR/xslt20/  
15 http://www.w3.org/TR/xquery/ 
16 http://www.w3.org/Submission/2009/01/ 

4.1 Key attributes for each approach 
RDFa: for the purpose of this review, we use the W3C 
Recommendation version of RDFa (Adida et al. 2008).   

 

Attribute Description Intended 
RDF 

about The identification of the 
resource (to state what 
the data is about) 

rdf:about of 
domain 
resource  

typeof RDF type(s) to associate 
with a resource 

rdf:about of 
class of a 
resource 

href Partner resource of a 
relationship ('resource 
object') 

rdf:about of 
range resource  

property Relationship between a 
subject and some literal 
text ('predicate') 

rdf:about of 
datatype 
property 

rel Relationship between 
two resources 
('predicate') 

rdf:about of 
object property 

rev Reverse relationship 
between two resources 
('predicate') 

rdf:about of 
(inverse) 
object property 

src Base resource of a 
relationship when the 
resource is embedded 
'resource object') 

rdf:about of 
domain 
resource  

resource Partner resource of a 
relationship that is not 
intended to be 'clickable' 
('object')  

rdf:about of 
range resource 

datatype Datatype of a property XML type 
range of 
datatype 
property 

content Machine-readable 
content ('plain literal 
object') 

Value for 
datatype 
property 

Table 3: RDFa attributes 

In RDFa, the about and resource attributes plays the role 
of rdf:about and rdf:resource attributes in RDF. They can 
be encoded as compact URIs or CURIES (Birbeck and 
McCarron 2009), a syntax inspired by the prefix 
management conventions used in SPARQL. The content 
of a datatype property can be included as an extra 
attribute (content) or retrieved from the element content. 

 

hRESTs: hRESTs focuses on the capture of mapping 
information between the service description and a 
reference ontology. The additional information is 
provided through the coding of the lifting script 
applicable to the service outputs. The hRESTs 
microformat specification used here is the one published 
by Kopecký et al. (2009) and the associated examples.  
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Attribute Description Intended RDF  

class Type of XML or 
WSDL element  
(service, operation, 
address, method, 
input, output, label) 

rdf:about of 
class of domain 
resource 

 

href  next to 
rel=”model” 

association between a 
WSDL or XML 
schema component 
and a concept in 
some semantic model 

rdf:about of 
range class =  
modelReference 

href next to 
rel=”lifting” 

Lifting script URL N/A 

href next to 
rel=”lowering” 

Lowering script URL N/A 

id  Locally declared id 
of WSDL element (to 
be combined with the 
document URL) 

rdf:about of 
domain resource 

 

Table 4: hRESTs Microformat attributes 

 
The HRESTs microformat mandates the use of blocks 

with class elements in a rigid parent-child hierarchy (e.g. 
service contains operation) which will be implicitly 
transposed in the resulting RDF file.  

 
XLink: For the purpose of this review, we will use the 
XLink guidelines documented for the Geography Markup 
Language standard (Portele 2007) rather than the original 
W3C specification Xlink (DeRose et al. 2001). Table 5 
summarises the attributes defined by this specification. 

 

Attribute Description Intended RDF 

xlink:href Identifier of the 
resource which is 
the target of the 
association, given 
as a URI 

rdf:about of range 
resource  

xlink:role Nature of the target 
resource, given as a 
URI 

rdf:about of class 
of range resource  

xlink:arcrole Role or purpose of 
the target resource 
in relation to the 
present resource, 
given as a URI 

rdf:about of object 
property linking 
domain element to 
range resource  

xlink:title Text describing the 
association or the 
target resource 

rdfs:comment  

Table 5: XLink attributes  

 

4.2 Feature comparison: hRESTs  and RDFa 
Kopecký et al. (2009) also specify how hRESTs can be 
expressed in RDFa. Table 6 is based on this input. The 
main difference is that hRESTs in RDFa allows the user 
to specify the target ontology through the definitions of 
the typeof, rel, property and datatype attributes.  

 

RDF mapping hRESTs in 
Microformats 

hRESTs in 
RDFa  

Domain instance id (URL-
prefixed) 

about  

Domain class class (closed 
list) 

typeof   

Object property  ref=”model” rel   

Inverse object property  rev  

Range instance   href or resource 

rdf:about of range class  href typeof   

Datatype property   property 

Datatype property type  datatype 

Range value  content or 
element content 

Table 6: Comparison of RDFa and hRESTs 

4.3 Feature comparison: XLink and RDFa  
The direct comparison done in Table 7 can help to locate 
the major difference between XLink and RDFa which is 
that the two specifications cover different types of RDF 
triples:  

• XLink: predicate (role) and object (href) for 
object properties  

• RDFa: subject (about), predicate (rel) and object 
(href) for object properties and subject (about), 
predicate (property) and object (content or 
element content) for datatype properties 

 

RDF mapping Xlink RDFa 

Domain instance  about or src 

Domain class  typeof  

Object property  arc role rel  

Inverse object 
property 

 rev 

Range instance  href href or resource 

Range class role typeof 

Datatype 
property  

 property 

Datatype 
property type 

role datatype 

Range value  content or 
element content 

Table 7: Comparison of XLink and RDFa 

4.4 Examples of semantic annotations  
The National Digital Forecast Database is a web service17 
developed by the U.S. National Weather Service to test 
the Digital Weather Markup Language (DWML). This 
forecast service (see also Al-Muhammed et al. 2007) is 
used here because it is simultaneously implemented as a 
WSDL service and as a REST service. Figure 4 shows an 
example of SAWSDL annotation in the WSDL file.  

 

                                                           
17 http://www.nws.noaa.gov/ndfd/technical.htm 
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<wsdl:part name="endTime" 
sawsdl:modelReference="http://sweet.jpl.nasa.gov/2.0/time.owl#End
”  type="xsd:dateTime "/> 

Figure 4: WSDL file with SAWSDL annotations (extract) 

Table 8 lists the concepts defined in the SWEET 2.0 
ontologies18 which can be used as model references for 
the message parts of the NFDGen operation. Model 
references for service parameters like the product type 
(Time series or “glance”) and the output type are specific 
to DWML and are not available in SWEET 2.0. 

 
wsdl:part SWEET 2 ontologies  Class 
latitude spaceCoordinates.owl Latitude 

longitude spaceCoordinates.owl Longitude 

startTime time.owl Start 

endTime time.owl End 

Table 8: Types of mashable content 

Many REST services are only documented through a web 
page. This is why semantic annotation methods like SA-
REST or MicroWSMO can use any type of web page 
describing a service. The two options are to annotate the 
HTML page (or form) used to run the service (Figure 5) 
or a “WSDL-inspired” documentation page (Figure 6).  

 

 

Figure 5: HTML form for a REST service (simplified)  

In the first case, the HTML form can host the semantic 
annotations for the input data and for other elements used 
to run the service. An advantage of this approach is that 
the annotated form (Figure 5) can still be used to test that 
the service works. But additional content is required to 
annotate the output data (representations and faults).  

The alternative is to have a documentation page in 
HTML which describes hierarchically the service, its 
operations, and the input and output format for each 
operation. This style of web page is comparable to what 

                                                           
18 http://sweet.jpl.nasa.gov/ontology/ 

could be generated out of a WSDL file (when such a file 
is available). Figure 6 illustrates this approach with an 
HTML file generated out of (an extract of) the WSDL file 
with an existing XSL transformation19.   

 

Figure 6: HTML service description derived from WSDL 

The two following examples present two types of 
annotations: hRESTs Microformat (Figure 7), and RDFa 
(Figure 8) applicable to the HTML form. 

The hRESTs example (Figure 7) only includes 
semantic references for the sawsdl:modelReference 
attributes in SAWSDL. While the hRESTs solution may 
seem easier to use, it also requires extra effort for the end 
user to learn how the mapping between the class 
annotations used in the microformat (operation, action, 
input …) and the ontology used for the generated RDF 
content. This mapping may depend on the hRESTs 
toolset and on the availability of custom-made lifting and 
lowering scripts. 

 
<FORM method="get" name="NDFDgenForm" 
action="http://www.weather.gov/forecasts/xml/sample_products/bro
wser_interface/ndfdXMLclient.php" 
class="operation"> 
  <DIV id="GmlTimePeriod" style="display: block; "> 
     <P>Valid Time Range ?</P> 
     <OL> 
        <TABLE border="1" cellpadding="4" width="60%"> 
           <TBODY class=“ input”> 
             <TR rel=”model”  
href="http://sweet.jpl.nasa.gov/2.0/time.owl#End”> 
              <TD><span class="label">End Time</span>: <INPUT 
type="text" name="endTime"> 
size="40" maxlength="80" value="" 
onfocus="document.NDFDgenForm.endTime.value = &#39;2010-
01-01T00:00:00&#39;;">2010-01-01T00:00:00</TD> 
           </TR></TBODY></TABLE> 
     </OL>  </DIV> 
</FORM> 

Figure 7: hRESTs example 

                                                           
19 http://tomi.vanek.sk/index.php?page=wsdl-viewer 
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The RDFa example (Figure 8) includes semantic 
references defining the type of annotations (e.g. 
sarest:operation). This approach gives more control to the 
end user for the choice of the service ontology and 
simplifies the task for the programming of tools which 
interprets the annotations. The RDFa specification (Adiba 
et al. 2008) defines processing rules which helps to 
combine these two types of semantic references 
seamlessly.  

 
<FORM method="get" name="NDFDgenForm" 
typeof="[sarest:action]" 
action="http://www.weather.gov/forecasts/xml/sample_products/bro
wser_interface/ndfdXMLclient.php" 
about="http://www.weather.gov/forecasts/xml/sample_products/bro
wser_interface/ndfdXMLclient.php">> 
  <DIV id="GmlTimePeriod" style="display: block; "> 
     <P>Valid Time Range ?</P> 
     <OL> 
        <TABLE border="1" cellpadding="4" width="60%"> 
           <TBODY rel="[sarest:input]”> 
             <TR 
about="http://www.weather.gov/forecasts/xml/sample_products/bro
wser_interface/ndfdXML.htm#GmlTimePeriod.endTime” 
typeOf="[sweet20:End]” > 
              <TD><span property="[rdfs:label]">End Time</span>: 
<INPUT type="text" name="endTime"> 
size="40" maxlength="80" value="" 
onfocus="document.NDFDgenForm.endTime.value = &#39;2010-
01-01T00:00:00&#39;;">2010-01-01T00:00:00</TD> 
           </TR> 
        </TBODY></TABLE> 
     </OL>  </DIV> 
</FORM> 

Figure 8: hRESTs in RDFa example 

4.5 Examples of semantic links 
OGC standards like GML (Portele 2007) define the use of 
XLink to add annotations in XML files. These 
annotations can point to extra sources of information (e.g. 
a file) or to Uniform Resource Name (URN).  

The first use case is described in the GML 
specification as “composition by inclusion of remote 
resources”: in this case, the XLink annotation use the 
xlink:href attribute to reference an external file containing 
additional data (Figure 9). 

 
<component name="weatherStation" 
xlink:href="http://vast.uah.edu/downloads/sensorML/v1.0/examples/
sensors/DavisWeather/DavisMonitorII-WeatherStation.xml"/>  

Figure 9: XLink used in SensorML to include extra data 

 

Transposing this example to RDFa requires the inclusion 
of an annotation which identifies the concept in a 
repository of sensor descriptions with an about attribute:  
the URI would then point to an individual or instance 
(Figure 10) providing access to the data to be included. 

 
<component 
name="weatherStation"about="http://vast.uah.edu/downloads/sensor
ML/v1.0/examples/sensors/DavisWeather/DavisMonitorII-
WeatherStation"/>  

Figure 10: RDFa example: additional data 

 

The second use case corresponds to the inclusion of a 
“model reference to an ontological description”. In this 
case, the XLink annotation use the xlink:arcrole attribute 
to define the type of the referenced object (Figure 11).  
The definition attribute in the SWE schemas and the 
descriptionReference in the GML schemas are scoped for 
this particular usage. 

 
<member xlink:arcrole="urn:ogc:def:process:OGC:SensorInstance"> 

Figure 11: XLink used in SensorML to define a type  

 

In RDFa, the typeof attribute can be used for the same 
purpose (Figure 12). A URN pointing to a type definition 
(or class) is then used  

 
<member typeof=="urn:ogc:def:process:OGC:SensorInstance"> 

Figure 12: RDFa example: reference to ontological def.  

 

The example above shows that the current use of Xlink in 
OGC schemas can be mirrored in RDFa.  

In our generalised mashup approach, the semantic 
annotations should be exploitable by generic or user-
defined lifting operators to create the corresponding RDF 
statements. When this RDF is lowered back into XML, 
there is a risk of losing some of the information 
previously available. XLink can be used to maintain some 
of this lowered content.  Table 7 defines the mappings 
between the two approaches which are possible with the 
present XLink specification. It also shows that there are 
other usages which are possible in RDFa but not in the 
“simple” style of XLink.  

5 Directions for future work 

5.1 Guidelines for the application of hRESTs 
For RESTful services, the format of the HTML content 
which should be annotated is not specified by the 
proposed specifications. This is an issue which should be 
addressed. The form-embedded annotation approach is 
preferable to the description-based one in general for the 
part of the description which describes how to run the 
service, because the annotated form can still be used to 
test that the service works. For the part of the description 
which covers the output data (results and error messages), 
a different approach is required, to be based on an 
embedded XML schema (this is what WADL does) or on 
another form of testable content. 

5.2 SAWSDL vs. hRESTs in RDFa 
The relative complexity and rigidness of the SAWSDL 
and of the hRESTs Microformat specification contrasts 
with the flexibility of the approaches based on RDFa (e.g. 
hRESTs in RDFa), where the choice of the service 
ontology can be made by the end user without requiring 
any new developments for the lifting of the semantic 
annotations into semantic web tools.  

This extra flexibility is important not just for RESTful 
services. Further work is required to upgrade SAWSDL 
so that it can also let the end user select the service 
ontology they want if they are not satisfied by the 
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definitions brought by the SA-REST or WSMO-Lite 
ontologies. 

5.3 Ontologies for other types of services  
Other service description languages like WADL (Hadley 
2009) and WSDL 2.020 may provide a better basis for 
RESTful services. The hybrid ontology and rule-base 
framework proposed by Zhao and Doshi (2009) handles 
three categories of composable RESTful services to add 
access and transform resources.  

SensorML (Botts and Robin 2007) is an OGC-
developed markup language for the description of 
sensors. It includes a process model which is comparable 
to the other service ontologies discussed above. The 
challenge for the W3C Semantic Sensor Network 
Incubator Activity is to develop an ontology describing 
sensor services based on SensorML and use it for 
semantic annotations in a context where the boundary 
between the application-specific ontologies and the 
service ontologies and between non-semantic and 
semantic mashups is harder to define.  

5.4 Replacement of custom-made lifting scripts  
Any solution requiring the development of custom-made 
lifting mechanisms should be avoided if alternative 
approaches based on standards which fully specify this 
critical step like RDFa are available. The dependency on 
user-developed transformations for the lifting scripts is 
one of the factors which have slowed down the adoption 
of semantic annotation standards for services like 
SAWSDL and hRESTs/SA-REST/MicroWSMO.  

As discussed above, the hRESTs in RDFa format 
provides a generic approach for the transformation of the 
semantic annotations into a RDF-based format and it 
should be possible to develop a similar approach for 
SAWSDL and to also suppress the requirement to 
develop custom-made scripts for this purpose.  

But, it is not yet possible to automatically derive the 
lifting script for the second type of lifting operation 
discussed in 3.4, where the script goal is to process the 
XML data manipulated by the service and not the file 
containing the annotations. The MyMobileWeb project 
(Berrueta et al. 2009) has been looking at RDFa for a 
similar problem, to describe the bindings to data sources 
and enable multi-device mobile access to semantically 
enriched information portals. 

5.5 Controlled upgrade of legacy standards 
Ad hoc semantic upgrade of legacy standards such as 
XLink should be monitored closely to minimise the risks 
of failure caused by problematic extensions by end users. 

In many cases, techniques bound to one family of 
standards (XML) have been later adapted to a different 
context without any assurance that the new usage respects 
the original intent of the specification. Hybrid ad hoc 
approaches may also import conflicting or ambiguous 
definitions from different standard families.  

Some parts of SensorML uses XLink annotations to 
embed “model reference to an ontological description” in 
the sensor description (e.g. swe:phenomenon). These use 

                                                           
20 http://www.w3.org/TR/wsdl20/ 

cases are a possible source of confusion because they 
answer to requirements which can potentially be better 
addressed through new approaches based on semantic 
web technologies.  

For example, to handle all the annotations 
requirements identified for RDFa in an XML context, a 
simple approach would be to add a new “style” to XLink 
for RDFa as an extension to the current XLink 
specification. For organisations like OGC who already 
use XLink and maintain a large number of XML 
schemas, this approach would have two advantages.  

• To limit the impact on existing schemas to 
changes in the XLink schema, 

• To provide a mechanism to isolate semantic 
XLink snippets from normal ones.  

This upgrade of XLink should not be done without a 
careful consideration of the present usage of XLink in 
OGC standards and also in other standards like SVG21. 

5.6 Failure risk analysis  
Combining legacy and opportunistic mashups will require 
robust and mashable validation tools to prevent and 
diagnose failures. Opportunistic mashups depends on 
external resources which may disappear or evolve 
without notice, especially mashable services and semantic 
resources, so the risks of failure are greater and more 
diverse than in other environments. 

In a multi-layered mashup environment, it is important 
to support validation at every possible step of integration 
and to leverage the validation methods which are specific 
to each family of standards: XML, HTML and RDF 
individually. In this context, it is very important to check 
the availability of validators and their ability to check the 
content (markup validators) as well as the added 
annotations or links to remote resources and also the 
flexibility and robustness of these tools.  

The Unicorn22 (Universal Conformance Observation 
and Report Notation) project at the W3C is a validator 
mashup combining a HTML validator, a CSS validator 
and a HTML link checker. Extending this approach to the 
other families of the W3C23 and OGC standards used in 
the type of mashups discussed above would be very 
useful. 

6 Conclusion 
There are multiple semantic enablement techniques which 
can be used in geospatial and semantic standards for 
legacy and opportunistic mashups. For the insertion of 
semantics links in XML content formatted according to 
OGC standards, the less disruptive approach identified in 
this review may be to add a new style to the existing 
XLink specification transposing all the RDFa attributes 
and processing rules defined for the HTML context.  

The hRESTs-in-RDFa annotation format is preferred 
for the annotation of RESTful services. The arguments 

                                                           
21 http://www.w3.org/Graphics/SVG/ 
22 http://www.w3.org/QA/Tools/Unicorn/ 
23 W3C specifications and validators are listed in 
http://www.w3.org/QA/TheMatrix 

60



formerly raised (Graf 2007) to prefer Microformats to 
RDFa to add semantic annotations or links to HTML 
have been invalidated by the W3C decision to make 
RDFa available in HTML5. The analysis presented above 
shows that solutions based on Microformats prevent the 
implementation of generic lifting services with scripting 
languages such as XSL Transformations, XQuery or 
XSPARQL or with javascript libraries like rdfQuery 
which plays an essential role in opportunistic mashups.  

The SAWSDL specification should also be upgraded 
to offer the same possibility for the user to select the 
service ontology. 

Finally, in complex mashups, the risk of failure is 
greater and the validation methods are different for 
standards belonging to the XML, HTML and RDF 
families. There should be a limited number of methods to 
combine these standards together to lower the cost of 
development of new markup validators and link checkers. 
If possible, these new validation services should also be 
mashable to simplify the creation of more integrated 
validation services.  
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