

ADVANCES IN ONTOLOGIES

Proceedings of the
Australasian Ontology Workshop
Melbourne, Australia, 1 December 2009

Thomas Meyer and Kerry Taylor, Editors

Preprint. To be published as Vol 112 in the Conferences in Research and Practice in Information
Technology Series by the Australian Computer Society Inc. ISBN 978-1-920682-91-0
http://crpit.com/

Preface

The series of Australasian Ontology Workshops, begun in 2005, is now in its fifth year with the Australasian Ontology
Workshop (AOW 2009), to be held at the University of Melbourne, in Melbourne, Australia on the 1st December 2009.
Like most of the previous workshops, AOW 2009 is held in conjunction with the Australasian Joint Conference on
Artificial Intelligence, now in its 22nd year as AI’09.

We expanded the scope of the workshop slightly this year, in line with significant growth in semantic web
technologies. In addition to the traditional ontology and knowledge representation topics, we specifically requested
papers on novel ontology applications, and on linking open data. We also sought papers on contributions of ontologies
to e-research: the latter topic being of major interest in Australia at this time due to the knowledge-sharing emphasis of
the Government’s National Collaborative Research Infrastructure Strategy. Our invited keynote speaker, Professor
Peter Fox of Rensselaer Polytechnic Institute in New York State, USA, will address the e-research topic through his
presentation on experiences in ontology development primarily for the High Altitude Observatory at the National
Center for Atmospheric Research in the US.

Out of ten papers submitted, we accepted six on the basis of three or four reviews each of full papers by our program
committee of international standing. Our papers offer an interesting balance of topics with two on formal ontology
topics, two on applications of ontologies in software engineering, and two relating to ontologies in sensor networks.
Despite being a nationally-titled workshop, located with a national conference, we were very pleased to note the truly
international nature of our submitting authors: from Finland, China, South Africa, and the United Kingdom as well as
Australia.

For the first time this year, the conference offered a modest best paper award. Unfortunately, we are unable to
announce the winner at the time of writing.

Many individuals contributed to this workshop. We thank our contributing authors and our invited speaker, Peter Fox,
who will be travelling to Australia especially for this event. We thank our international Program Committee and
additional reviewers for their careful reviews in a tight time-frame. We appreciated the support of the organising
committee for AI‘09, most especially the workshops chair, Christian Guttmann.

We acknowledge the EasyChair conference management system which was used in all stages of the paper submission
and review process and also in the collection of the final camera-ready papers. We thank Vladimir Estivill-Castro, John
Roddick and Simeon Simoff, the editors of the CRPIT series, for facilitating the formal publication of the AOW 2009
proceedings, and Christian Guttmann for organising pre-prints for the day of the workshop.

We hope that you find this Fifth Australasian Ontology Workshop to be informative, thought-provoking, and most of
all, enjoyable!

Thomas Meyer, Meraka Institute, South Africa

Kerry Taylor, CSIRO ICT Centre, Australia

Organisers of AOW 2009

November, 2009

Conference Organization

Programme Chairs
Thomas Meyer

Kerry Taylor

Programme Committee
Franz Baader

Michael Bain

Richard Booth

Arina Britz

Werner Ceusters

Michael Compton

Oscar Corcho

R. Cenk Erdur

Aurona Gerber

Dennis Hooijmaijers

Bo Hu

Renato Iannella

Ken Kaneiwa

C. Maria Keet

Kevin Lee

Laurent Lefort

Constantine Mantratzis

Lars Moench

Deshendran Moodley

Mehmet Orgun

Maurice Pagnucco

Debbie Richards

Rolf Schwitter

Murat Sensoy

Barry Smith

Markus Stumptner

Boontawee Suntisrivaraporn

Sergio Tessaris

Nwe Ni Tun

Ivan Varzinczak

Kewen Wang

Antoine Zimmermann

External Reviewers
Rinke Hoekstra

Rafael Penaloza
María del Carmen Suárez de Figueroa Baonza

Zhe Wang

Table of Contents

Balancing Expressivity and Implementability in OWL Ontologies for
Semantic Data Frameworks: The Journey from 2004 to 2009 and
Beyond (invited talk) . 1

Peter Fox

Visualizing and Specifying Ontologies using Diagrammatic Logics 3
Ian Oliver, John Howse, Gem Stapleton, Esko Nuutila, Seppo Torma

Finding EL+ justifications using the Earley parsing algorithm 13
Thomas Meyer, Arina Britz, Riku Nortje

Reflecting on Ontologies in Software Engineering: Towards
Ontology-based Agent-oriented Methodologies . 23

Ghassan Beydoun, Brian Henderson-Sellers, Jun Shen, Graham Low

An Approach to Customizing Requirements Goal Model based on
Metamodel for Ontology Registration . 33

Chong Wang

Using Explicit Semantic Representations for User Programming of
Sensor Devices . 43

Kerry Taylor, Patrick Penkala

Review of semantic augmentation techniques used in geospatial and
semantic standards for legacy and opportunistic mashups 53

Laurent Lefort

Balancing Expressivity and Implementability in OWL Ontologies for
Semantic Data Frameworks:

The Journey from 2004 to 2009 and Beyond

Peter Fox
Tetherless World Constellation Chair and Professor of Earth

and Environmental Science and Computer Science,
Rensselaer Polytechnic Institute, Troy, NY, USA

pfox@cs.rpi.edu

Abstract
In 2004, a small team of investigators undertook a prototype development effort to explore how semantics could be
inserted in several existing scientific data systems being supported by the High Altitude Observatory at the National
Center for Atmospheric Research. The problem to be solved was: discovery and access to interdisciplinary and
heteroegeneous data sources without very detailed expert knowledge of the domain which included cryptic jargon
(mnemonics). Ontology development expertise was included in the team but instead of a bottom-up or top-down
approach to ontology development, we used a variant on the use case driven design to formalize vocabulary and
relation requirements. We also had to use much of the existing infrastructures. Instead of a prototype the result was a
production semantic data framework after about the first 9 months of the project. Several successive releases based on
implemented use cases as well as an evaluation study led to some clear lessons in ontology development.
In this talk I will present the setting for this development effort, describe the use cases, experience with the ontology
and language encoding choices, including software tools. Since 2007, we have carried these developments to a wider
range of disciplines and I will also relate these recent experiences and consequences for ontology development
including current and future directions with ontology modularization and OWL-2.

Copyright © 2009, Australian Computer Society, Inc. This paper appeared at the Fifth Australasian Ontology Workshop
(AOW 2009), Melbourne, Australia. Conferences in Research and Practice in Information Technology (CRPIT), Vol. ??.
Thomas Meyer and Kerry Taylor, Eds. Reproduction for academic, not-for-profit purposes permitted provided this text is
included.

1

2

Visualizing and Specifying Ontologies using Diagrammatic Logics

Ian Oliver1 John Howse2 Gem Stapleton2 Esko Nuutila3 Seppo Törmä3

1 Nokia Research, Finland
Email: ian.oliver@nokia.com

2 Visual Modelling Group, University of Brighton, UK
Email: {John.Howse,g.e.stapleton}@brighton.ac.uk

3 Helsinki University of Technology, Finland
Email: {esko.nuutila,seppo.torma}@hut.fi

Abstract

This paper proposes a diagrammatic logic that is suit-
able for specifying ontologies. We take a case study
style approach to presenting the diagrammatic logic,
and draw contrast with RDF graphs and description
logics. We provide specifications of two ontologies and
show how to depict instances. Diagrammatic reason-
ing is used to show that an instance conforms to a
specification. We also include examples to show how
diagrammatic rules can be used to (a) constrain on-
tology specifications and (b) define mappings between
ontologies. The framework also allows the specifica-
tion of queries. The positive features of the diagram-
matic logic are discussed, supporting a claim that the
new logic is intuitive and appropriate for ontology
specification. Finally, we discuss the possibilities for
developing tools to support the use of the diagram-
matic logic, including automated diagram drawing
and reasoning procedures.

1 Introduction

The need to specify ontologies frequently arises, with
a prominent example being the semantic web area.
Specifications can be provided symbolically, but many
people find such notations inaccessible. Added to
that, ontology construction and conceptualization can
be difficult, and is hindered by the inaccessibility of
the symbolic syntax available to the user. There are
three main tasks that must be performed by users
in the context ontology specification: (a) converting
their semantic understanding into a specification in
their chosen notation, (b) interpreting syntactic spec-
ifications created by themselves or others, and (c)
reasoning about that specification to further under-
stand its logical consequences. Of course, one can
break these tasks down in to subtasks and add fur-
ther tasks to this specified list. We argue that making
the syntax more accessible to the user will aid with all
three tasks. Indeed, the provision of a fit-for-purpose,
more widely accessible notation specifically designed

Oliver, Nuutila and Törmä were supported by the TEKES
ICT SHOK DIEM project. Howse and Stapleton acknowl-
edge the support of the EPSRC for the Visualization with Eu-
ler diagrams project (EP/E011160/1 and EP/E010393/1); the
project web site can be found at www.eulerdiagrams.com. Sta-
pleton further acknowledges EPSRC support for the Defining
Regular Languages with Diagrams project (EP/H012311/1).
We thank Sergey Boldyrev, Jukka Honkola and Pekka Luoma
for helpful discussions on this research.
Copyright c©2009, Australian Computer Society, Inc. This pa-
per appeared at the 5th Austrailisian Ontologies Workshop.
Conferences in Research and Practice in Information Technol-
ogy (CRPIT), Vol. xx, Vladimir Estivill-Castro and Gillian
Dobbie, Ed. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

for specifying and reasoning about ontologies may be
helpful to a large community of users.

Diagrammatic notations are potentially a viable
alternative to symbolic notations. In the Descrip-
tion Logic Handbook (Baader et al. 2003), Nardi and
Brachman state that a “major alternative for increas-
ing the usability of description logics as a model-
ing language” is to “implement interfaces where the
user can specify the representation structures through
graphical operations.” Moreover, we argue that us-
ing diagrammatic (graphical) notations for reasoning,
in addition to specification, can bring huge benefits.
Currently, some diagrammatic notations have been
used for representing ontologies, but typically they
are not formalized. For instance, (Brockmams et al.
2004) investigate using the UML for this purpose.
However, the UML is not formal (some regard the
UML as semi-formal) and was not designed for spec-
ifying ontologies. Dau and Ekland proposed using
existential graphs for ontology modelling and estab-
lished that they were capable of representing any DL
statement made in ALC (Dau & Ekland 2008). Ex-
istential graphs have the flavour of a first-order logic
which uses a minimal set of logical operators (∧ and
¬) along with existential quantification. Restricting
to a minimal logic, such as this, can render it hard to
use when formulating constraints that are naturally
phrased using, for instance, disjunction and universal
quantification. Thus, the syntax of existential graphs
is very different from the ontology diagrams proposed
in this paper.

We further note that standard ontology editors of-
ten support a visualization of the specified ontology.
For instance, Protégé includes a plug-in visualiza-
tion package, OWLVis, that provides a visualization
in a graph-based form. This visualization shows de-
rived hierarchical relationships between the concepts
(classes) in the ontology and, thus, is very limited.
We note that automatically generated visualizations
from a given symbolic specification help with task (b)
described above. However, we want to enable the
users to perform the act of specification directly with
a graphical notation.

In this paper, we propose a diagrammatic notation
for specifying and reasoning about ontologies, called
ontology diagrams. We consider various aspects of on-
tology specification, including the need to place con-
straints on ontologies and relate two or more ontolo-
gies. We also consider how ontology diagrams can be
used in reasoning tasks. The design of the notation
has been strongly informed by the tasks to be per-
formed, including the semantic properties that are to
be visualized using them. Of particular note is that
we do not design the notation by aiming to have the
same expressive power of any particular description
logic. In our opinion, it would be inappropriate to de-
sign a graphical notation by aiming for the expressive

3

power of an existing symbolic notation. There is no
reason to suppose that a natural design of any given
notation should necessarily coincide with any other
notation in terms of its expressiveness. Our primary
goal is to obtain an effective notation, not a visual-
ization of a particular description logic. Of course,
it would be very interesting and important, once the
notation has been fully formalized, to identify which
description logic statements can be expressed by on-
tology diagrams.

The notation builds on previous work in the di-
agrams area. In particular, ontology diagrams use
constraint diagrams (Kent 1997) as a basis, but we
extend and modify the syntax to make it appropriate
for the kinds of tasks described. Moreover, our se-
mantic interpretation of ontology diagrams is not the
same as constraint diagrams (Fish et al. 2005, Sta-
pleton & Delaney 2008). We assign semantics that
are appropriate for their use in ontology specification.
Some of the differences between these notations are
mentioned in the paper.

Section 2 illustrates ontology diagrams and how
they can be used to specify information about con-
cepts (concepts) and relationships between concepts
(roles). Their use to visualize instances is discussed in
section 3, where we illustrate how to show an instance
is consistent with the specification using diagram-
matic inference rules. Section 4 presents a schema
for placing constraints on the ontology specification
and queries are discussed in section 5. In section 6
we show how ontology diagrams can be used to re-
late two or more ontologies, allowing agents to reason
about multiple ontologies, taking advantage of any
semantic similarity between their respective concepts
and roles. Further features of ontology diagrams are
demonstrated in section 7 and approaches to formal-
ization are discussed in section 8. Section 9 briefly
discusses the future development tools to support the
use of ontology diagrams. In section 10, we discuss
cognitive theories that identify qualities of good dia-
grammatic notations, from a user perspective, linking
the theories with ontology diagrams; this serves to
justify their utility for ontology specification to some
extent.

2 Ontology Specification

To illustrate our proposed ontology diagrams we
present a case study, adapted from (Oliver et al.
2009), in which the notion of meetings, ontologies sup-
porting those concepts and the interaction and map-
ping between the ontologies and agents were inves-
tigated. We will use this case study throughout this
paper, illustrating a variety of features of the ontology
diagram syntax and semantics.

The case study specifies a meeting ontology, in-
troducing various concepts such as Location and Par-
ticipant. Briefly, this ontology, called nMeeting, com-
prises seven concepts:

1. Meeting: this represents the notion of a meeting,
2. Location: every meeting will have a location (in

this ontology, exactly one location),
3. Topic: every meeting will have at least one topic,
4. AgendaItem: every meeting will at least one item

on its agenda,
5. Participant: every meeting will have at least one

host and a set of participants (including the
host),

6. Document: each agenda item will have a set of
documents (possibly none),

7. Name: each participant will have a name.

Meeting

Name

Participant

Topic

AgendaItem

Location

location

Document

participants

meetingHost

topic

agenda

ParticipantAgendaItem

Document

responsibilityOf

documents

Ont_spec: nMeeting

m

NameParticipant

p

name

a

Figure 1: An ontology diagram specifying nMeetings.

Most of the roles in the ontology are evident from
the description above. The only exception is that we
will require each agenda item to be the responsibility
of some participant. All of the concepts are pairwise
disjoint.

One could produce alternative specifications of a
meetings ontology. The purpose of this paper is to
merely use the case study to illustrate some features
of ontology diagrams, rather than present an ‘ideal’
model of such an ontology. This case study is in-
tentionally simple, so that we can focus on pertinent
features of ontology diagrams. Consequently, it is not
rich enough to exemplify all aspects of the notation.
Thus, section 7 presents further examples with fea-
tures that do not arise from this case study.

The ontology diagram in figure 1 consists of 3 sub-
diagrams and captures relationships between the con-
cepts, represented by labelled closed curves (circles
are examples of closed curves). In each sub-diagram,
the curves form an Euler diagram: an Euler diagram
is a collection of labelled closed curves whose spa-
tial relationships express semantic relationships be-
tween the concepts. Non-overlapping curves assert
that the concepts are disjoint; a curve placed inside
another asserts a subset relationship. We can im-
mediately see from the top sub-diagram that all the
concepts represented are pairwise disjoint since all the
labelled curves have pairwise disjoint interiors; given
that there are 7 concepts, this would require 7C2 = 21
textual assertions (such as MeetinguTopic v ⊥), illus-
trating a certain succinctness of ontology diagrams.
An obvious question asks how well ontology diagrams
specify ontologies where not all of the concepts are
disjoint; examples will be given in section 7.

The unlabelled dots (called unlabelled spiders) as-
sert the existence of elements in the sets represented

4

by the regions of the diagram in which they are placed
(further explanation is given below). The labelled spi-
ders in this diagram are acting as free variables. So,
m is a free variable that is ‘talking’ about meetings.
Later, we will use labelled spiders to represent con-
stants; the cases are distinguished by the use of italics
for free variables. We note here that constraint dia-
grams do not include spiders that act as free variables.

The arrows in the ontology diagram are used to
make statements about binary relationships between
concepts, with their labels being analogous to roles
in description logics. In the context of an ontology
diagram that is specifying an ontology (like that in
figure 1), the arrows are interpreted as providing do-
main and range (codomain) information; this feature
is particular to ontology diagrams in that it is not
part of constraint diagrams. In our nMeetings exam-
ple, the arrow labelled topic informs us that there is
a relation (or role) called topic between the concepts
Meeting and Topic. Since the target of the arrow is
an unlabelled curve that contains an unlabelled spi-
der, we have asserted that each meeting (through the
use of the free variable m) has a non-empty set of
topics; the unlabelled curve represents the image of
the relation topic when the domain is restricted to m.
Using description logic syntax, this arrow, its source
and target (including the spider inside the targeted
curve), tells us:

∃ topic.> v Meeting
∃ topic.¬Topic v ⊥
Meeting ≡ Meeting u ∃ topic.Topic.

The location arrow targets an unlabelled spider and
tells us that each Meeting has exactly one Location;
thus, location is a function with domain Meeting and
range Location. We observe that the ontology dia-
gram specifies that (the functional role) meetingHost
is a subrole of participants, since the host of the meet-
ing must be one of the meeting participants; equiv-
alently meetingHost v participants. In section 7 we
show how to assert subrole relationships where nei-
ther of the roles are necessarily functional.

We now summarize the semantics of the top sub-
diagram: all represented concepts are pairwise dis-
joint, and every member, m, has exactly one loca-
tion, a non-empty set of topics, a non-empty set of
agenda items, a meeting host, and a set of partic-
ipants which includes the meeting host. The other
two sub-diagrams make further assertions about bi-
nary relations and functions. For instance, the bot-
tom diagram tells us that the function name returns
the Name of each Participant.

Figure 2: Output from Protégé illustrating the nMeet-
ing hierarchy.

As mentioned in the Introduction, Protégé (Pro-
tege web site accessed June 2009) includes some
support for the visualization of ontologies via
OwlViz (Horridge accessed June 2009). Figure 2
illustrates the Protégé output obtained for the
nMeeting hierarchy, but it only shows the concepts
and the fact that they are all Things. The only
semantic information in the output diagram is given
by the names of the concepts and the direction of the
is-a arrows. This diagram includes no information
about the disjointness of these concepts or the
properties between them; the disjointness cannot

be inferred from the diagram at all, though it does
appear so.

3 Instances

An instance of the nMeetings ontology is in figure 3.
Here, the spiders are all labelled and they represent
specific objects (analogous to constants). Notice that
the ontology instance diagram contains shading in the
image of the relation topic. Semantically, the shading
places an upper bound on set cardinality: the Meeting
m1 is related to all and only the elements represented
by the spiders in the unlabelled curve targeted by the
topic arrow. In an ontology instance diagram, the
arrows are providing information about properties of
the relations that their labels represent, and are not
interpreted as providing domain and range informa-
tion (which is their role in an ontology specification
diagram).

Meeting

Location

Participant

Topic

AgendaItem

location

l1

participants

meetingHost

t1
topic

agenda m1

p1

p3

p2
p4

Participant

AgendaItem

Document

p1

p3
a1 a2

responsibilityOf

responsibilityOf

d1 d2

documents

p2
p4

Ont_inst: nMeeting

d3

d4

documents

a1 a2

Participant

p1

p2

Name

p3

p4

Ian

John

Gem

Sergey

name

name

name

name

Document

Name

Figure 3: An instance of the nMeeting ontology.

The given ontology instance diagram tells us that
the meeting m1 has exactly one topic, namely t1. We
can also see that m1 has at least two items on its
agenda, namely a1 and a2 (distinct spiders are taken
to denote distinct objects). The middle sub-diagram
shows that the two agenda items have a document,
d2, in common. Moreover, there is a document d4
that is not in the set of documents associated with a1
or a2. The rest of the diagram is similarly interpreted.

The instance diagram is not entirely shaded, so
there could be more objects than those represented
by the labelled spiders. Consequently, we only have

5

partial information about the ontology instance. For
example, there may be more agenda items than the
two represented. For comparison purposes, an RDF
graph for the same instance can be seen in figure 4.
However, we cannot infer, for instance, from the RDF
graph that a1 and a2 are different agenda items,
whereas the ontology diagram in figure 3 does provide
this information; this is due to the lack of expressive
power of RDF.

m1

Meeting

typet1

Topic

type

a1

AgendaItem

type

a2

l1

Location

type

p1

Participants

type

p2 p3
location

participants

topic

agenda

Document

d1 d2 d3 d4

Name

Ian

type

John Sergey Gem

type

documents

responsibilityOf
responsibilityOf

documents

p4

name name name

name

Figure 4: RDF graph of the nMeeting instance

We can prove that this instance is consistent with
the specification by using diagrammatic inference
rules. To show that it is consistent, we can establish
that each sub-diagram of the instance conforms to
each respective sub-diagram in the specification. We
illustrate how this is done for the top sub-diagram,
which is D1 in figure 5. To do this, we establish that
the meeting, m1, is related to entities as specified in
figure 1. We are showing that the only member we
know about (m1) has the properties that a member
should have according to the specification.

We first observe that, since shading provides an
upper bound on set cardinality, a sound inference rule
allows us to delete shading (thus ‘forgetting’ the up-
per bound). This is shown as the first step in the
proof shown in figure 5, where we derive D2 from D1.
Next, we notice that if we have a labelled spider, s,
placed in a region of the diagram then we can delete
that spider (provided the region is not shaded); this
is because a labelled spider placed in a region tells
us that the represented object (or individual) is in
the set represented by that region and, thus, deleting
the spider forgets this information. Therefore, we can
delete spiders from D2 to give D3. Finally, we turn
the remaining labelled spiders (except m1), into un-
labelled spiders, giving D4. This is sound since if we
know a specific object has a particular set of proper-
ties then there exists an object with those properties.
We see that m1 in D4 now has all the properties that
a member is specified to have in figure 1.

Similar proofs can be constructed for the other two
sub-diagrams. Notice that the middle sub-diagram
has two AgendaItems and we are required to show
each of them has the necessary properties; similarly
the bottom sub-diagram has four Participants. In
any case, we can use these types of inference rules to
prove that the instance conforms to the specification.
Inference rules similar to those described here have
been defined for constraint diagrams (Stapleton et al.
2005); their formalisation should extend to ontology
diagrams but, since the semantics are not identical,
we would be obliged to prove their soundness when
applied to ontology diagrams.

We can also use diagrammatic inference rules to
explore properties of our instance. In addition to be-

Meeting

Location

Participant

Topic

AgendaItem

location

l1

participants

meetingHost

t1
topic

agenda m1

p1

p3

p2
p4

a1 a2 Document

Name

Meeting

Location

Participant

Topic

AgendaItem

location

l1

participants

meetingHost

t1
topic

agenda m1

p1

p3

p2
p4

a1 a2 Document

Name

Meeting

Location

Participant

Topic

AgendaItem

location

l1

participants

meetingHost

t1
topic

agenda m1

p1
Document

Name

Meeting

Location

Participant

Topic

AgendaItem

location

participants

meetingHost

topic

agenda m1

Document

Name

D1

D2

D3

D4

Figure 5: Proving that the instance is consistent with
the specification.

ing able to delete shading and spiders, we can also
delete labelled curves and arrows without increasing
the informational content of a diagram (that is, such
inference rules are sound). In figure 6, we can deduce
D6 from D5 (which is the top sub-diagram in figure 3)
by deleting syntax. Next, we can use the information
from the middle sub-diagram in figure 3 to add pieces
of syntax as follows. We can add documents d1, d2,
d3 and d4 to D6, since the middle sub-diagram tells us
that they are Documents, giving D7. Finally, we can
add arrows, again using information in the middle
sub-diagram, to yield D8. Alternative proofs could
be constructed to achieve the same outcome; for in-
stance, deleting the shading from D5 could be delayed
until the last step of the proof.

This type of reasoning provides a way for users
to explore, and understand, the consequences of an
instance. We can also define similar inference rules
that allow us to explore the consequences of ontology

6

Meeting

Location

Participant

Topic

AgendaItem

location

l1

participants

meetingHost

t1
topic

agenda m1

p1

p3

p2
p4

a1 a2 Document

Name

D5

Meeting

Participant
AgendaItem

participants

meetingHost

agenda m1

p1

p3

p2
p4

a1 a2 Document

D6

Meeting

Participant

participants

meetingHost
agenda

m1

p1

p3

p2
p4

responsibilityOf

responsibilityOf

AgendaItem

Document

a1 a2

d1 d2

documents

d3

d4

documents

Meeting

Participant

participants

meetingHost
agenda

m1

p1

p3

p2
p4

AgendaItem

Document

a1 a2

d1 d2 d3

d4

D7

D8

Figure 6: Deductions from an instance.

specification diagrams (like that in figure 1) which is
important: understanding the consequences can re-
veal inconsistencies or unintended consequences. This
understanding can lead to refinements or improve-
ments to the specification which is clearly desirable.
Of course, we can always convert a reasoning task
into a problem stated symbolically, and reason at the
symbolic level (provided we have a mechanism to con-
struct an appropriate translation). We believe that
applying diagrammatic inference rules to construct
reasoned arguments will facilitate a greater under-
standing in users of why inferences hold (or, even, why
intended consequences do not follow). Thus, the mo-
tivation for developing diagrammatic inference rules
is primarily driven by users.

4 Constraints on Ontologies

In addition to specifying an ontology, we may want to
enforce constraints on that ontology. In the nMeeting
example, we probably want to assert that if a Par-
ticipant is responsible for an AgendaItem then that
Participant is one of the Meeting participants; this in-
formation is not deducible from the ontology specifi-

cation diagram in figure 1 and must be enforced by a
constraint. In order to allow this type of constraint to
be imposed on ontologies, we introduce a constraint
rule schema.

Meeting ParticipantAgendaItem

a

agenda

m p

Meeting Participant

m p

participants

Ont_Constraint: nMeeting ParticipantRule

responsibilityOf

Figure 7: The constraint rule schema.

Figure 7 illustrates the schema (which is following
the presentation style of a natural deduction rule),
with a constraint called ParticipantRule. The diagram
asserts that if a is an AgendaItem, on the agenda of
Meeting m and a is the responsibilityOf Participant p
(above the line) then it must be the case that the set
of m’s participants includes p (below the line). In this
example, the labelled spiders are acting as free vari-
ables, not constants. We may want to use constants
in a constraint rule schema. When formalizing the
logic, one would know which spider labels are vari-
ables and which are constant since these sets would
be pre-defined. Recall that, in order to differentiate
them in drawn diagrams, we have adopted the con-
vention that free variables, unlike constants, are in
italics. Further investigations are needed to establish
any relationship between the rules that can be defined
in this type of schema and role chains and role sub-
sumption in OWL 2 and any relationship that may
exist with OWL with SWRL.

5 Querying Ontologies

It is useful to be able to specify queries over ontolo-
gies. Ontology diagrams can also be used for this
purpose. As an example, we may want to obtain the
set of documents associated with the agenda items
for some given meeting. Such a query, called getDoc-

Meeting DocumentAgendaItem

agenda

m

documents

Ont_Query: nMeeting getDocuments(m) D

D

Figure 8: Query.

uments is defined in figure 8; the notation getDocu-
ments(m)→ D provides the name of the query, the
required inputs (in this case, m), and the output (in
this case D). Notice here that the source of the doc-
uments arrow is an unlabelled curve. This unlabelled
curve represents the set of agenda items associated
with the meeting m; more formally, it represents the
image, I, of the relation agenda when its domain is
restricted to m. Continuing in this manner, the set
D is the image of the relation documents when the
domain is restricted to I; the query returns the set
D. We show how to represent more complex queries

7

in section 7. Future work will involve establishing
the relationship between these query diagrams and
SPARQL (Perez et al. 2006).

6 Ontology Mapping

There are likely to be times when multiple ontologies
have been defined that contain similar or identical
concepts and roles. If we want agents to be able to
reason about these ontologies, taking into account the
similar concepts and roles, then we need to be able to
specify the commonality. Typically, this is done via
ontology mapping: providing a layer from which we
can access multiple ontologies. That is, we can take
advantage of semantic similarity to enable interop-
erability between the various ontologies (Budanitsky
& Hirst 2006, Lindsey et al. 2007). This is possible
by (a) specifying how the concepts and roles in the
ontologies relate, and (b) by providing additional con-
straints that ‘tie up’ the two ontologies more precisely.
Here, we show how ontology mapping is possible us-
ing ontology diagrams and, to this end, we introduce
a second ontology specification for devices and pre-
sentations; see figure 9.

Meeting

PresentationController

AVDevice

MultipagePres

m

presentationscontrollers

Paper

Meeting
Presentation

belongsTo
Paper

p
papers

MeetingController

c

participatesIn

PresentationPresentationCont

pc

controlsP

PresentationAVDeviceCont

dc

controlsD

PresentationAVDevice

d

shows

Ont_spec: devAndPres

SKIM

PresentationCont

AVDeviceCont

Figure 9: An ontology diagram for devices and pre-
sentations.

The concept AVDevice represents things that are
able to present audiovisual content, such as a video
projector, a display of a laptop, a loudspeaker, a win-
dow on a computer desktop, and so forth. The con-
cept AVDeviceController represents a software com-
ponent that can render output to an AVDevice.
The concept SKIM is an example subconcept of
AVDeviceController. It represents a software compo-
nent that uses the SKIM viewer (Skim, PDF reader
and note-taker for OS X. n.d.) to show a PDF doc-
ument on a display. The concept Controller is just

an abstraction of the controller components (i.e. it
is an abstract concept), hence the shading inside the
respective curve but outside the labelled curves which
it contains.

When considering two (or more) ontologies, in or-
der to distinguish the use of common names for con-
cepts or roles (which we may or may not intend to
have a common or similar interpretation), we prefix
them by the name of the ontology from which they
are derived. So, in the case of Meeting, which oc-
curs in both of our example ontology specifications,
we write nMeeting:Meeting and devAndPres:Meeting,
to differentiate between the two uses of the com-
mon concept name. Similarly, we can choose to write
nMeeting:AgendaItem, nMeeting:agenda, and so forth,
to identify the ontology from which the concept or
role derived even though the names do not appear in
both of the original ontologies, should this be deemed
helpful to us.

Meeting

Ont_spec: meetingSetUp

Document

Papers

nMeeting:Meeting

devAndPres:Meeting

Ont_spec: nMeetingOnt_Link Ont_spec: devAndPres

Figure 10: Relating ontologies.

When relating the two ontologies, we may in-
tend for nMeeting:Meeting and devAndPres:Meeting
to be interpreted as the same concept. In addition,
we may want to assert that Paper (from devAnd-
Pres) is a sub-concept of Document (from nMeeting).
These two relationships are illustrated in figure 10
which specifies the ontology meetingSetUp which re-
lates the nMeeting and devAndPres ontologies. The
‘equality’ of nMeeting:Meeting and devicesAndPresen-
tations:Meeting is asserted by drawing their respec-
tive curves on top of one another. Notice that we
have drawn a curve labelled Meeting (with shading),
so that we can simply use Meeting in place of either
nMeeting:Meeting or devAndPres:Meeting to simplify
matters. We could also choose to express further in-
formation about the relationships between other con-
cepts, but for space reasons we have chosen only to de-
fine the relationships shown in figure 10. We can also
use this framework to specify relationships between
roles in the Ont Link diagram (using the sub-diagram
style) where appropriate.

Notice that figure 10 includes tabs, showing that
our ‘super-ontology’ meetingSetUP includes links be-
tween ontologies (the diagram shown), and relates the
nMeeting and devAndPres ontologies (the tabs with
hidden diagrams). With appropriate tool support,
one could click on the tab to reveal the original on-
tologies, since these form part of the meetingSetUp
ontology.

Our framework further allows the specification of
constraints on the super-ontology, like that in fig-
ure 11. The diagram asserts that if m is a meeting
whose agenda items are associated with set of docu-
ments D then the papers associated with m’s presen-
tations form a subset of D. This constraint uses con-
cepts and roles from both of the original ontologies.
We can go on to define additional queries, visualize
instances, and reason about the specification and in-
stances, using the same approaches as illustrated for
the nMeetings ontology.

8

Ont_Constraint: meetingSetUp DocumentRule

Meeting DocumentsAgendaItem

agenda

m

documents D

Meeting
D

Presentation

presentations

m

papers

Figure 11: Constraints on the super-ontology.

7 Further Features of Ontology Diagrams

Ontology diagrams include additional syntax not yet
demonstrated in the paper. For instance, they include
syntax to assert equality between elements, which
could be named individuals (i.e. constants), existen-
tially quantified elements, or those elements repre-
sented by spiders acting free variables. The syntax
used looks very much like an equals sign, which was
chosen since people are generally very familiar with
this symbol. An example is given in figure 12 which
asserts that the functional role f is injective using the
constraint rule schema: if x is related to a and y is
related to a then x = y.

A

f

x

Ont_Constraint: myOntology Injective

a

A

f

y aand

x

A

y

Figure 12: Asserting equality.

We note that description logics have a unique
name assumption, that is different names imply dif-
ferent entities. In ontology diagrams different names
imply different entities unless connected by an equals
sign. By contrast, first order predicate logic assumes
that entities may or may not be equal and one must
assert either equality or distinctness whenever one
or the other is intended. Similarly, OWL does not
make the unique name assumption, but includes con-
structs to express equality or distinctness, namely
OWL:sameAs and OWL:differentFrom.

A further feature of ontology diagrams can be seen
in figure 13. The spider is placed in more than one
(minimal) region of the diagram. Here, x represents
an element in A ∪B and, therefore, conveys disjunc-
tive information: x ∈ A−B ∨x ∈ A∩B ∨x ∈ B−A.
Disjunctive statements can also be made using logi-
cal connectives between diagrams. We have already
seen the use of conjunction between diagrams: fig-
ure 1 contains three sub-diagrams whose semantics
are taking in conjunction. An example of how to
represent disjunction, essentially following the style
used in (Shin 1994), can be seen in figure 14. In
this constraint rule, the two subdiagrams above the
line are taken in disjunction. Other logical operators
can be used in a similar fashion, although in fact we

A B

f S

x

Ont_Query: myOntology f(x) S

Figure 13: Making disjunctive statements within di-
agrams.

have been using juxtaposition to assert conjunction
between subdiagrams such as in figure 1. The dia-
gram in figure 14 also shows how subrole assertions
can be made when the roles are not necessarily func-
tional: the subdiagram below the line asserts that f
is a subrole of g, when its domain is restricted to x.

A

f

x

Ont_Constraint: myOntology MyRule

B

g

xor

f

g

x

Figure 14: Making disjunctive statements between di-
agrams.

Figure 15 shows an example of a specification
where none of the concepts are disjoint. The arrow
between the two sub-diagrams allows us to asserts
that there is a relation, g, with domain A and range
B∩C. Having arrows between sub-diagrams was first
explored in (Howse & Stapleton 2008) precisely to al-
low less cluttered diagrams to be produced. Figure 16
shows an alternative representation of the same in-
formation that does not utilize arrows between sub-
diagrams. As with any notation, semantically equiv-
alent statements exist and some are more effective at
conveying information than others.

A C

x

Ont_Spec: myOntology

g B

Figure 15: Non-disjoint concepts: arrows between
sub-diagrams.

8 Approaches to Formalization

There has been considerable progress, over the last
decade or so, on approaches to formalizing visual lan-
guages. With respect to formalizing the syntax, we
advocate the distinction between concrete and ab-
stract syntax. The concrete syntax captures the phys-
ical representation of the diagram whereas the ab-
stract syntax is a mathematical description of the di-
agram that captures the pertinent (semantically im-
portant) features and disregards semantically irrele-

9

A

x

Ont_Spec: myOntology

g

B

C

Figure 16: Non-disjoint concepts: a single diagram.

vant geometric properties. One can think of the con-
crete syntax as being the physical diagram itself and
the advantages of this two-tiered approach are dis-
cussed in (Howse et al. 2001). The remainder of this
section presents preliminary work on the formaliza-
tion of ontology diagrams for the interested reader
and is not necessary for the following sections.

First, we present the abstract syntax for so-called
’unitary’ sub-diagrams. These are the diagrams that
form the building blocks of more complex diagrams.
For space reasons, we do not include a formalization
of the syntax of the entire notation. We start by
defining various sets:

1. LC is a set whose elements are used to label
curves in concrete diagrams.

2. UC is a set whose elements correspond to unla-
belled curves in concrete diagrams (note that the
elements are not themselves curves).

3. Z is the set of zones defined by

Z =
(
P(LC ∪ UC))2

.

4. CS is a set whose elements are used to label con-
stant spiders in concrete diagrams.

5. US is a set whose elements correspond to unla-
belled spiders in concrete diagrams.

6. FS is a set whose elements are used to label free
spiders (those acting as free variables) in concrete
diagrams.

7. S = CS ∪ US ∪ FS.

8. AL is a set whose elements are used to label ar-
rows in concrete diagrams.

9. A is the set of arrows defined by

A = {(s, l, t) : s, t ∈ LC ∪ UC ∪ S ∧ l ∈ AL}.

We assume that all of the above sets are pairwise
disjoint. The definition of a unitary diagram draws its
components from these sets; we explain the definition
via an example immediately below.

Definition 8.1 An abstract unitary
ontology sub-diagram is a tuple
(LC, UC,Z, SZ,CS,US, FS, η, δ, A) whose com-
ponents are all finite sets defined as follows.

1. LC ⊆ LC and UC ⊆ UC
2. Z ⊂ Z such that each zone (in, out) ∈ Z satisfies

in ∪ out = LC ∪ UC.

3. SZ ⊆ Z is a set of shaded zones.

4. CS ⊆ CS, US ⊆ US and FS ⊆ FS

5. η is a function with domain S, where S = CS ∪
US ∪ FS, and range PZ − {∅}.

6. δ is a partial function which identifies whether
two spiders are joined by =. It has domain
(S × S) and codomain {0, 1} and is defined pre-
cisely for the pairs (s1, s2) where s1 6= s2 and it
is symmetric.

7. A ⊆ A such that for each (s, l, t) ∈ A, s and t
are both in LC ∪ UC ∪ CS ∪ US ∪ FS.

For example, figure 12 contains three unitary sub-
diagram. The top left sub-diagram has abstract syn-
tax comprising (the omitted components of the tuple
are all empty):

1. LC = {A},
2. Z = {({A}, ∅), (∅, {A}),
3. FS = {x, a},
4. η(x) = {({A}, ∅)} and η(a) = {(∅, {A})},
5. δ(x, a) = δ(a, x) = 0 (the spiders are not joined

by =), and

6. A = (x, f, a).
Turning to the semantics, typical approaches in

diagrammatic logics mirror those found in more tra-
ditional symbolic logics. We start by defining a struc-
ture, (U,Ψ0,Ψ1, Ψ2) where U is a universal set,

1. Ψ0 maps elements of CS to elements of U ,

2. Ψ1 maps elements of LC to subsets of U , and

3. Ψ2 maps elements of AL to binary relations on
U .

Given a structure, one can then define when the struc-
ture satisfies a diagram as has been done for con-
straint diagrams (Fish et al. 2005, Stapleton & De-
laney 2008).

A complete formalization of the syntax and seman-
tics of ontology diagrams remains the subject of fu-
ture work. The initial ideas presented here are based
on over a decade of work formalizing Euler, spider
and constraint diagrams on which ontology diagrams
build. For examples, see (Stapleton et al. 2007), (Gil
et al. 1999, Howse et al. 2005, Stapleton, Taylor,
Howse & Thompson 2009), and (Stapleton et al. 2005,
Stapleton & Delaney 2008, Fish et al. 2005) for for-
malizations of Euler diagrams, spider diagrams and
constraint diagrams respectively.

9 Tool Support

Significant tool support has been developed for using
symbolic notations to specify and reason about on-
tologies, such as (FaCT++ accessed June 2009, Pro-
tege web site accessed June 2009), including function-
ality for visualizing aspects of the ontologies (Hor-
ridge accessed June 2009). However, the visualiza-
tions available to the users are not as sophisticated as
those possible with the notations proposed in this pa-
per. It is possible to provide tool support for ontology
diagrams. Key pieces of functionality include:

1. The ability to input ontology diagrams via an
editor or sketch recognition system.

2. The ability to automatically translate ontology
diagrams into symbolic forms (such as OWL or
Description Logics) to enable us to take advan-
tage of the significant tool support that has been
developed to date, including highly efficient rea-
soners. Moreover, it is desirable to support the
translation of symbolic statements into ontology
diagrams, permitting their visualization.

10

3. The provision of a proof assistant or automated
theorem prover which can be used to allow users
to explore the logical consequences of their on-
tology diagrams.

4. The ability to automatically generate ontology
diagrams, in particular to support automated
reasoning and visualization of symbolic state-
ments.

In the latter case above, significant research has been
directed towards the automated generation and lay-
out of Euler diagrams, which form the basis of on-
tology diagrams, including (Chow & Ruskey 2003,
Flower & Howse 2002, Stapleton, Rodgers, Howse &
Zhang 2009, Stapleton, Howse & Rodgers 2009, Ver-
roust & Viaud 2004). These diagram generation tools
typically take as input the abstract syntax of the to-
be-generated diagram. Already, theorem provers have
been developed for Euler diagram (Stapleton et al.
2007) and spider diagrams (Flower et al. 2004). Thus,
whilst significant work is required to develop tool sup-
port for ontology diagrams, there is already a firm ba-
sis on which we can build. We plan to develop tools
as part of our future work, possibly as a plug-in for
Protégé.

10 Free-rides and Well-matchedness

Some of the benefits of diagrammatic notations are
evident in figure 9, where both set intersection, dis-
jointness and containment are represented visually:
for example, Meeting and Controller assert the dis-
jointness of the represented concepts since these two
curves do not overlap, and PresentationCont repre-
sents a subset of Controller asserted by the inclusion
of the former curve inside the latter. This diagram
has properties that are thought to correlate with ar-
eas where diagrams are superior to symbolic nota-
tions, from a user interpretation perspective, because
it is well-matched to its set-theoretic semantics (Gurr
2001). Extending this observation, using containment
to represent set inclusion has the added benefit that
the transitive property of the (semantic) subset rela-
tion is mirrored by the transitive property of (syn-
tactic) containment. Any notation that is based on
Euler diagrams to make such statements about sets is
well-matched to its semantics. Thus, Euler diagrams
are a good basis for ontology diagrams.

The economy of syntax afforded by diagrams over
symbolic notations is also sometimes an advantage.
In Fig. 9, the relative placement of the Meeting, Pre-
sentationCont and Controller curves gives, for free,
that ‘PresentationCont is disjoint from Meeting’. This
example of a free ride, the theory of which is devel-
oped by Shimojima (Shimojima 2004), is an instance
of where the explicit information in a diagram in-
cludes facts that would need to be inferred in the
symbolic case. Other types of free rides arise and
are not solely an advantage of Euler diagrams; for
example, see the discussions on various types of free
rides in constraint diagrams that relate to their ar-
rows (Howse & Stapleton 2008); many of the free rides
exhibited by constraint diagrams extend to ontology
diagrams due to the similarity of their syntax. This
type of inferential advantage of diagrams has been
noted by several researchers, including (Barwise &
Etchemendy 1990, Stenning & Lemon 2001), and is
backed up by empirical evidence provided in (Shimo-
jima & Katagiri 2008). The advantages of diagrams
in numerous reasoning contexts are further discussed
in (Larkin & Simon 1987).

11 Conclusion

In this paper we have proposed a new diagrammatic
logic, ontology diagrams, for specifying and reason-
ing about ontologies. We have argued that these dia-
grams are well-matched to their semantics and, there-
fore, have advantages over symbolic notations that
are currently on offer. The visual nature of the syn-
tax may make ontology diagrams more appealing to
non-mathematically minded people who have a need
to specify ontologies. Moreover, they may provide
a more accessible means of communicating an ontol-
ogy specification to a variety of stakeholders (not just
those who are familiar with current mechanisms to
define ontologies).

The expressiveness required of the description
logic capable of specifying the two ontologies pre-
sented here is relatively simple: in the meeting on-
tology it is ALCHQ(D) and the device/presentation
ontology it is ALCF(D). This level of expressiveness
means that any reasoning that is required to be made
over these ontologies is reasonably simple and does
not require the power of OWL1 reasoner. We note
that most current business information models have
been specified using entity-relationship models which
are easily mapped to simple description logics of much
less complexity than OWL (Baader et al. 2003). We
note here that, without the arrows present, ontology
diagrams are essentially spider diagrams (Howse et al.
2005), a notation which is equivalent in expressiveness
to monadic first order logic with equality (Stapleton
et al. 2004). For ontology diagrams, it remains the
subject of future work to establish their expressive
power relative to description logics.

In the future, we plan to formalize the syntax and
semantics of ontology diagrams, following the style
used for constraint diagrams (Stapleton & Delaney
2008). This formalization will then allow us to define
inference rules for ontology diagrams and prove their
soundness and, ideally, completeness. We will care-
fully design the inference rules, using a wide variety
of case studies to inform us of the kinds of reasoning
that takes place. We would aim to define rules that
are intuitive to human users, so that people can better
understand why entailments hold. This complements
current work on computing justifications (Horridge
et al. 2009) which aims to produce minimal sets of
axioms from which an entailment holds; finding mini-
mal sets allows users to focus on the information that
is relevant to the deduction in question which is im-
portant when dealing with ontologies containing very
many concepts. Using a visual syntax with which to
communicate why the entailment holds (i.e. provid-
ing a diagrammatic proof) may allow significant in-
sight beyond merely knowing the axioms from which
a statement can be deduced.

References

Baader, F., Calvanese, D., McGuinness, D., Nadi,
D. & (eds), P. P.-S. (2003), The Description Logic
Handbook, CUP.

Barwise, J. & Etchemendy, J. (1990), Logical Reason-
ing with Diagrams, OUP, chapter Visual Informa-
tion and Valid Reasoning.

Brockmams, S., Volz, R., Eberhart, A. & Löffler, P.
(2004), Visual modeling of owl dl ontologies using
UML, in ‘International Semantic Web Conference’,
Springer, pp. 198–213.
1http://www.w3.org/TR/owl-features/

11

Budanitsky, A. & Hirst, G. (2006), ‘Evaluating
wordnet-based measures of lexical semantic relat-
edness’, Computational Linguistics 32(1), 13–47.

Chow, S. & Ruskey, F. (2003), Drawing area-
proportional Venn and Euler diagrams, in ‘Pro-
ceedings of Graph Drawing 2003, Perugia, Italy’,
Vol. 2912 of LNCS, Springer-Verlag, pp. 466–477.

Dau, F. & Ekland, P. (2008), ‘A diagrammatic
reasoning system for the description logic ACL’,
Journal of Visual Languages and Computing
19(5), 539–573.

FaCT++ (accessed June
2009)http://owl.man.ac.uk/factplusplus/.

Fish, A., Flower, J. & Howse, J. (2005), ‘The seman-
tics of augmented constraint diagrams’, Journal of
Visual Languages and Computing 16, 541–573.

Flower, J. & Howse, J. (2002), Generating Euler dia-
grams, in ‘Proceedings of 2nd International Confer-
ence on the Theory and Application of Diagrams’,
Springer, Georgia, USA, pp. 61–75.

Flower, J., Masthoff, J. & Stapleton, G. (2004), Gen-
erating readable proofs: A heuristic approach to
theorem proving with spider diagrams, in ‘Proceed-
ings of 3rd International Conference on the Theory
and Application of Diagrams’, Vol. 2980 of LNAI,
Springer, Cambridge, UK, pp. 166–181.

Gil, J., Howse, J. & Kent, S. (1999), Formalising spi-
der diagrams, in ‘Proceedings of IEEE Symposium
on Visual Languages (VL99), Tokyo’, IEEE Com-
puter Society Press, pp. 130–137.

Gurr, C. (2001), Aligning syntax and semantics in
formalisations of visual languages, in ‘Proceedings
of IEEE Symposia on Human-Centric Computing
Languages and Environments’, IEEE Computer
Society Press, pp. 60–61.

Horridge, M. (accessed June 2009), ‘Owlviz’, www.co-
ode.org/downloads/owlviz/.

Horridge, M., Parsia, B. & Sattler, U. (2009), Com-
puting explanations for entailments in description
logic based ontologies, in ‘16th Automated Reason-
ing Workshop’.

Howse, J., Molina, F., Shin, S.-J. & Taylor, J.
(2001), Type-syntax and token-syntax in diagram-
matic systems, in ‘Proceedings FOIS-2001: 2nd
International Conference on Formal Ontology in
Information Systems, Maine, USA’, ACM Press,
pp. 174–185.

Howse, J. & Stapleton, G. (2008), Visual mathe-
matics: Diagrammatic formalization and proof, in
‘International Conference on Mathematical Knowl-
edge Management’, Springer, pp. 478–493.

Howse, J., Stapleton, G. & Taylor., J. (2005), ‘Spi-
der diagrams’, LMS Journal of Computation and
Mathematics 8, 145–194.

Kent, S. (1997), Constraint diagrams: Visualizing in-
variants in object oriented modelling, in ‘Proceed-
ings of OOPSLA97’, ACM Press, pp. 327–341.

Larkin, J. & Simon, H. (1987), ‘Why a diagram is
(sometimes) worth ten thousand words’, Journal
of Cognitive Science 11, 65–99.

Lindsey, R., Veksler, V., Grintsvayg, A. & Gray, W.
(2007), Be wary of what your computer reads: The
effects of corpus selection on measuring semantic
relatedness, in ‘8th International Conference on
Cognitive Modeling’.

Oliver, I., Nuutila, E. & Törmä, S. (2009), Con-
text gathering in meetings: Business processes
meet the agents and the semantic web, in
‘The 4th International Workshop on Technologies
for Context-Aware Business Process Management
(TCoB 2009)’.

Perez, J., Arenas, M. & Gutierrez, C. (2006), Seman-
tics and complexity of sparql, in ‘International Se-
mantic Web Conference’, Springer, pp. 30–43.

Protege web site (accessed June 2009),
http://protege.stanford.edu/.

Shimojima, A. (2004), Inferential and expressive ca-
pacities of graphical representations: Survey and
some generalizations, in ‘Proceedings of 3rd Inter-
national Conference on the Theory and Application
of Diagrams’, Vol. 2980 of LNAI, Springer, Cam-
bridge, UK, pp. 18–21.

Shimojima, A. & Katagiri, Y. (2008), An eye track-
ing study of spatial constraints in diagrammatic
reasoning, in ‘5th International Conference on the
Theory and Application of Diagrams’, Springer,
pp. 64–88.

Shin, S.-J. (1994), The Logical Status of Diagrams,
Cambridge University Press.

Skim, PDF reader and note-taker for OS X. (n.d.).
http://skim-app.sourceforge.net/.

Stapleton, G. & Delaney, A. (2008), ‘Evaluating and
generalizing constraint diagrams’, Journal of Vi-
sual Languages and Computing 19(4), 499–521.

Stapleton, G., Howse, J. & Rodgers, P. (2009), ‘A
graph theoretic approach to general Euler diagram
drawing’, Accepted for Theoretical Computer Sci-
ence .

Stapleton, G., Howse, J. & Taylor, J. (2005), ‘A decid-
able constraint diagram reasoning system’, Journal
of Logic and Computation 15(6), 975–1008.

Stapleton, G., Masthoff, J., Flower, J., Fish, A. &
Southern, J. (2007), ‘Automated theorem proving
in Euler diagrams systems’, Journal of Automated
Reasoning 39, 431–470.

Stapleton, G., Rodgers, P., Howse, J. & Zhang, L.
(2009), ‘Inductively generating Euler diagrams’,
accepted for IEEE Transactions on Visualization
and Computer Graphics .

Stapleton, G., Taylor, J., Howse, J. & Thompson,
S. (2009), ‘The expressiveness of spider diagrams
augmented with constants’, Journal of Visual Lan-
guages and Computing 20, 30–49.

Stapleton, G., Thompson, S., Howse, J. & Taylor,
J. (2004), ‘The expressiveness of spider diagrams’,
Journal of Logic and Computation 14(6), 857–880.

Stenning, K. & Lemon, O. (2001), ‘Aligning log-
ical and psychological perspectives on diagram-
matic reasoning’, Artificial Intelligence Review
15(1-2), 29–62.

Verroust, A. & Viaud, M.-L. (2004), Ensuring the
drawability of Euler diagrams for up to eight sets,
in ‘Proceedings of 3rd International Conference on
the Theory and Application of Diagrams’, Vol. 2980
of LNAI, Springer, Cambridge, UK, pp. 128–141.

12

Finding EL+ justifications using the Earley parsing algorithm

Riku Nortje1,2 Katarina Britz1,2 Thomas Meyer1,2

1 Knowledge Systems Group, Meraka, CSIR,
PO Box 395, Pretoria 0001, South Africa

2 School of Computing, University of South Africa,
PO Box 392, UNISA 0003, South Africa

Email: nortjeriku@gmail.com; {arina.britz;tommie.meyer}@meraka.org.za

Abstract

Module extraction plays an important role in the
reuse of ontologies as well as in the simplification and
optimization of some reasoning tasks such as finding
justifications for entailments. In this paper we fo-
cus on the problem of extracting small modules for
EL+ entailment based on reachability. We extend
the current notion of (forward) reachability to ob-
tain a bi-directional version, and show that the bi-
directional reachability algorithm allows us to trans-
form an EL+ ontology into a reachability preserving
context free grammar (CFG). The well known Ear-
ley algorithm for parsing strings, given some CFG,
is then applied to the problem of extracting mini-
mal reachability-based axioms sets for subsumption
entailments. We show that each reachability-based
axiom set produced by the Earley algorithm corre-
sponds to a possible Minimal Axiom Set (MinA) that
preserves the given entailment. This approach has
two advantages – it has the potential to reduce the
number of subsumption tests performed during MinA
extraction, as well to minimize the number of axioms
for each such test.

1 Introduction

Reasoning tasks such as finding all justifications for
an entailment are inherently hard, having at least an
exponential worst case complexity. Even for descrip-
tion logics (DLs) such as EL+ (Suntisrivaraporn 2009)
for which many reasoning tasks can be performed in
polynomial time, the exponential nature of finding all
justifications for an entailment is inescapable. Mod-
ule extraction is one of the methods that aims to op-
timize the performance of this process by reducing
the size of the ontology to a smaller subset of axioms
that contains only the relevant axioms required for
the entailment, thereby reducing the search space.

Extracting a minimal module is closely related to
computing a deductive conservative extension of an
ontology, which has been shown by Grau et al. (2007,
2008) to be intractable. They introduce syntactic
locality-based modules, an approximation of minimal
modules, that are more tractable and can be com-
puted in polynomial time, whilst preserving all en-
tailments.

Suntisrivaraporn (2009) introduced the notion of
reachability-based modules for the DL EL+. Though
the reachability-based module extraction algorithm
differs from the syntactic locality-based algorithm, he
proves that the modules extracted correspond to min-
imal syntactic locality-based modules.

The main criticism against reachability-based
modules, as raised by Jianfeng Du & Ji (2009), is
that, given an entailment O |= A v B, these meth-
ods extract a module for A and all concepts reachable

from it without considering the super-concept B, re-
sulting in large modules that in some cases do not
reduce the size of the ontology at all. They propose a
goal-directed algorithm for extracting just-preserving
modules. The algorithm proceeds in two phases; the
first, the off-line phase, transforms the ontology into
a propositional program which preserves all logical
relationships. The second phase, the on-line phase,
utilizes the idea of maximally connected components,
as used in SAT problem optimization, to extract a
justification-preserving module. Experimental results
show that modules obtained this way are smaller by
an order of magnitude than their locality-based mod-
ule counterparts.

Once a module has been extracted, various meth-
ods are used to find all justifications. A common ap-
proach is to systematically remove axioms that do
not play a role in the entailment. After every itera-
tion of the axiom removal procedure, a subsumption
test determines if the entailment still holds in the re-
sulting axiom set. This process continues until no
more axioms can be removed. The resulting axiom
set then constitutes a MinA. Subsumption testing is
a computationally expensive procedure, even for EL+.
Minimizing the number of subsumption tests during
MinA extraction is therefore a primary concern when
developing MinA extraction algorithms.

Our approach extends the reachability heuris-
tic as introduced by Suntisrivaraporn (2009) to in-
clude backward reachability, thereby obtaining a
bi-directional version of reachability. The heuris-
tic allows us to make use of the well known Ear-
ley algorithm (Earley 1970) for parsing context free
grammars (Jurafsky & Martin 2009) to compute all
reachability-based paths between the sub- and super-
concepts for an entailment. Each such path consti-
tutes a minimal set of axioms such that reachabil-
ity is preserved. Every reachability preserving axiom
set does not guarantee entailment in itself, and there-
fore does not necessarily constitute a MinA. We focus
on extracting all such minimal reachability preserving
axiom sets. A standard subsumption test can then be
employed in order to determine if the set constitutes a
valid MinA. In this way we hope to reduce the number
of subsumption tests performed during MinA extrac-
tion, as well as to minimize the number of axioms for
each such test.

The Earley algorithm has been studied extensively
in the literature and highly optimized software and
hardware implementations exists (Chiang & Fu 1984,
Pavlatos et al. 2003). At present we restrict our fo-
cus to EL+ which, because of its particular structure,
allows us to transform any axiom into reachability
preserving CFG production rules. The original Ear-
ley algorithm can then be used to extract all parse
trees.

The rest of the paper is structured as follows. Sec-
tion 2 contains the relevant background information

13

Name Syntax Semantics
top > ∆I

bottom ⊥ ∅
conjunction C uD CI ∩DI

existential restriction ∃r.C {x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ rI ∧ r ∈ CI}
general concept inclusion (GCI) C v D CI ⊆ DI

role inclusion (RI) r1 ◦ . . . ◦ rk v r rI
1 ◦ . . . ◦ rI

k ⊆ rI

transitivity transitive(r) ∀d, e, f ∈ ∆I : (d, e), (e, f) ∈ rI → (d, f) ∈ rI

reflexivity reflexive(r) ∀d ∈ ∆I : (d, d) ⊆ rI

range restriction range(r)v C {e ∈ ∆I | ∃d : (d, e) ∈ rI} ⊆ CI

domain restriction domain(r)v C {d ∈ ∆I | ∃e : (d, e) ∈ rI} ⊆ CI

role hierarchy (RH) r v s rI ⊆ sI

Table 1: EL+ syntax and semantics

on description logics, context free grammars, the Ear-
ley algorithm, and existing versions of reachability. In
Section 3 we introduce a notion of backward (top-
down) reachability. We show that a bi-directional
reachability-based approach may be used to extract
small modules that considers the sub-concept as well
as the super-concept in an entailment. We show
that modules obtained in this way may be smaller
than reachability-based modules that consider only
the sub-concept. In Section 4 we provide an algorithm
for transforming any EL+ ontology into a reachability
preserving CFG and show how the Earley algorithm
can be used to extract a small strong subsumption
module for a given entailment. Furthermore, in sec-
tion 5 we show that the Earley algorithm simultane-
ously computes all parse trees, where each parse tree
corresponds to a possible MinA. Section 6 is a discus-
sion on work in progress, where we discuss possible
changes to the standard Earley algorithm specifically
aimed at optimizing the MinA discovery process. Sec-
tion 7 briefly concludes and discusses future work.

2 Preliminaries

2.1 DL terminology

In the standard set-theoretic semantics of concept de-
scriptions, concepts are interpreted as subsets of a
domain of interest, and roles as binary relations over
this domain. An interpretation I consists of a non-
empty set ∆I (the domain of I) and a function ·I (the
interpretation function of I) which maps each atomic
concept A to a subset AI of ∆I , and each atomic
role R to a subset RI of ∆I × ∆I . The interpre-
tation function is extended to arbitrary concept and
role descriptions, with the specifics depending on the
particular description logic under consideration. We
provide the details for EL+ in Definition 1 below.

A DL knowledge base consists of a TBox which
contains terminological axioms, and an ABox which
contains assertions, i.e. facts about specific named
objects and relationships between objects in the do-
main. For the purposes of this paper we concern our-
selves only with Tbox statements.

TBox statements are general concept inclusions of
the form C v D, where C and D are (possibly com-
plex) concept descriptions. C v D is also called a sub-
sumption statement, read “C is subsumed by D”. An
interpretation I satisfies C v D, written I
 C v D,
iff CI ⊆ DI . C v D is valid, written |= C v D, iff it
is satisfied by all interpretations.

An interpretation I satisfies a DL knowledge base
K iff it satisfies every statement in K. A DL knowl-
edge base K entails a DL statement φ, written as
K |= φ, iff every interpretation that satisfies K also

satisfies φ.
Roughly speaking, DLs are defined by the con-

structors they provide. There exists a correlation be-
tween the expressivity of the DL and the complexity
of reasoning over it. We consider the DL EL+ which
is defined as follows:

Definition 1 (EL+ syntax and semantics) The
syntax and semantics of EL+ constructors are defined
in Table 1.

We further require that an EL+ ontology conform
to the following syntactic restriction (Suntisrivara-
porn 2009): For an ontology O and role names r,s,
we write O |= r v s if and only if r = s or O con-
tains role inclusions r1 v r2, . . . , rk−1 v rk with r =
r1 and s = rk. Also, we write O |= range(r) v C
if there is a role name s such that O |= r v s and
range(s) v C ∈ O. The EL+ syntactic restriction is
as follows: If r1 ◦ . . . ◦ rk v s ∈ O with k ≥ 1 and
O |= range(s) v C, then O |= range(rk) v C.

Intuitively, the restriction ensures that a role in-
clusion r1 ◦· · ·◦rk v s does not induce any new range
constraints on the role composition r1 ◦ · · · ◦ rk. For-
mally, it ensures that if the role inclusion implies a
role relationship (d, e)∈ sI in the model, then the
range restrictions on s do not impose new concept
memberships on e. Without this restriction reasoning
in EL+ becomes intractable (Suntisrivaraporn 2009,
Baader et al. 2008).

Given an ontology O and an entailment O |= σ
with σ a statement of interest, a justification for σ
is a set of axioms from O such that the entailment
is preserved. A minimal axiom set (MinA) is the
smallest set of axioms that preserves the entailment.

Definition 2 (Minimal Axiom set) Let O be an
ontology, and σ a subsumption statement such that
O |= σ. A subset S ⊆ O is a minimal axiom set
(MinA) for σ w.r.t. O, also written as “S is a MinA
for O |= σ”, if and only if

1. S |= σ, and

2. for every S′ ⊂ S, S′ 6|= σ.

Definition 3 (Signature of O) Let CN(O) repre-
sent the set of all concept names in O, RN(O) the
set of all role names in O. We define the signature of
O, denoted as Sig(O), as the union of all concept and
role names occurring in O i.e., Sig(O) = CN(O) ∪
RN(O). Similarly for any EL+ statement σ, Sig(σ)
is the union of all concept and role names occurring
in σ.

14

2.2 The Earley algorithm for parsing CFG
languages

Context free grammars (CFGs) provide a well-known
method for modeling the structure of English and
other natural languages. A grammar consists of a
set of productions or rules, each of which expresses
the ways the symbols (strings) in a language can be
grouped together, as well as a lexicon of words or
symbols.

Definition 4 (CFG production rules) Given
that X represents a single non-terminal, the symbol
“a” represents a single terminal and α and σ repre-
sent mixed strings of terminals and non-terminals,
including the null string. CFG production rules have
the form:

X → ασ (1)
X → a (2)

Parsing a CFG string results in a parse tree, assign-
ing syntactic structure to it. The Earley parsing al-
gorithm (Earley 1970) uses a dynamic programming
approach applying a single left-to-right, top-down,
depth-first parallel search strategy to compute a chart
that contains all possible parses for a given input. It
accomplishes this in polynomial worst case time (n3),
where n is the size of the input string.

Example 1 Consider the sample CFG for a sub-
set of English grammar below. The set of symbols
{that, book, flight} represent terminal symbols and
all other symbols represent non-terminals.

S → V P

S → NP V P

V P → V P NP

NP → Det Noun

V P → V erb

Det → that

V erb → book

Noun → flight

During execution the Earley algorithm generates
a state entry for each production rule it operates on.
The purpose of the state is to record the progress
made during the parsing process.

Definition 5 (Parse states) Let X and Y repre-
sent single non-terminal symbols, let a represent a
single terminal symbol, and let α, β and σ represent
mixed strings of terminal and non-terminal symbols,
including the null string. Then for each token (word)
in the input string, the Earley algorithm creates a set
of states, called a chart. A chart at position k of the
input is represented by Ck. Each state consists of a
tuple (X → α • β, i) where

1. X → αβ is the current production rule,

2. • indicates the dot rule which represents the cur-
rent parsing position in the state, with α • β in-
dicating that α has previously been parsed and β
is expected next, and

3. i indicates the starting index of the substring
where parsing of this production began.

The parser consists of three sub-parts, the predic-
tor, scanner and completer. For each state in chart
Ci, the tuple (X → α • β, j) is evaluated and the
appropriate sub-part executed:

1. Predictor: If state = (X → α • Y β, j) , then
for every production Y → σ, if (Y → •σ) /∈ Ci
then Ci := Ci + (Y → •σ, i),

2. Scanner: If state = (X → α •aβ, j), with a the
next symbol in the input stream, and if (X →
αa•β, j) /∈ Ci+1 then Ci+1 := Ci+1 + (X → αa•β,
j),

3. Completer: If state = (X → γ•, j), then for
every (Y → α • Xβ, k) ∈ Cj , Ci := Ci + (Y →
αX • β, k).

The algorithm executes all states iteratively in a top-
down manner until no new states are available for
processing, and no state may appear more than once
in a given chart (Jurafsky & Martin 2009).

Example 2 Table 2 shows the output of the Earley
algorithm given the input string ‘book that flight’ and
the CFG in Example 1. The state

20. S → V P•

in chart 3 represents a successful parse of the string.

Table 2: Parse for ‘book that flight’
Chart 0: • book that flight
1. S → • NP VP j = 0 : Inital State
2. S → • VP j = 0 : Inital State
3. NP → • Det Noun j = 0 : Predictor 1
4. VP → • VP NP j = 0 : Predictor 2
5. VP → • Verb j = 0 : Predictor 2
6. Det → • that j = 0 : Predictor 3
7. Verb → • book j = 0 : Predictor 5
Chart 1: book • that flight
8. Verb → book • j = 0 : Scanner 7
9. VP → Verb • j = 0 : Completer 5, 8
10. VP → VP • NP j = 0 : Completer 4, 8
11. NP → • Det Noun j = 1 : Predictor 10
12. Det → • that j = 1 : Predictor 11
Chart 2: book that • flight
13. Det → that • j = 1 : Scanner 12
14. NP → Det • Noun j = 1 : Completer 11, 13
15. Noun → • flight j = 2 : Predictor 14
Chart 3: book that flight •
16. Noun → flight • j = 2 : Scanner 15
17. NP → Det Noun • j = 1 : Completer 14, 16
18. VP → VP NP • j = 0 : Completer 10, 17
19. VP → VP • NP j = 0 : Completer 4, 18
20. S → VP • j = 0 : Completer 2, 18

2.3 Reachability-based module extraction

Given an ontology O and an entailment O |= σ with
σ a statement of interest, extracting a module aims to
obtain a small subset O′ of O, such that entailment
of σ is preserved, where Sig(σ) is defined as in Defi-
nition 3. For the purposes of this paper σ is always a
subsumption statement.

Definition 6 (Module for EL+) Let O be an EL+

ontology, and σ a statement formulated in EL+.
Then, O′ ⊆ O is a module for σ in O(a σ-module
in O) whenever: O |= σ if and only if O′ |= σ. We
say that O′ is a module for a signature S in O (an
S-module in O) if, for every EL+ statement σ with
Sig(σ) ⊆ S, O′ is a σ-module in O.

Definition 7 (Reachability-based modules)
Let O be an EL+ ontology and S ⊆ Sig(O) a signa-
ture. The set of S-reachable names in O is defined
inductively as:

15

• x is S-reachable in O, for every x ∈ S;

• for all inclusion axioms αL v αR, if x is S-
reachable in O for every x ∈ Sig(αL), then y
is S-reachable in O for every y ∈ Sig(αR).

We call an axiom αL v αR S-reachable in O if ev-
ery element of Sig(αL) is S-reachable in O. The
reachability-based module for S in O, denoted by
Oreach

S , consists of all S-reachable axioms from O.

When S is the single concept A, we write A-
reachable and Oreach

A . An interesting result of reach-
ability is that it can be used to test negative sub-
sumption. That is, if B is not A-reachable in O, then
O 6|= A v B, unless A is unsatisfiable w.r.t O (Sun-
tisrivaraporn 2009).

Definition 8 (Subsumption module) Let O be
an ontology, and A a concept name occurring in O.
Then, O′ ⊆ O is a subsumption module for A in O
whenever: O |= A v B if and only if O′ |= A v B
holds for every concept name B occurring in O.

A subsumption module O′ for A in O is called
strong if the following holds for every concept name
B occurring in O: if O |= A v B, then every MinA
for O |= A v B is a subset of O′.

Theorem 1 (Suntisrivaraporn 2009). The module
Oreach

A is a strong subsumption module for A in O.

We require that an EL+ ontology O be in normal
form. We use the same form as Brandt (2004) and
Suntisrivaraporn (2009). Any EL+ ontology O can
be converted to an ontology O′ in normal form in
linear time, with at most a linear increase in the size
of the ontology.

Let CN (O) represent the set of all concept names
in O, RN (O) the set of all role names in O,
CN (O)> = CN (O) ∪ {>} and CN (O)⊥ = CN (O) ∪
{⊥}.

Definition 9 (Normal Form) An EL+ ontology O
is in normal form if the following conditions are sat-
isfied:

1. all concept inclusions in O have one of the fol-
lowing forms:
A1 u . . . uAn v B,

A1 v ∃r.A2,
∃r.A1 v B

where Ai ∈ CN>(O) and B ∈ CN⊥(O);

2. all role inclusions in O have one of the following
forms:

ε v r,
r v s,

r ◦ s v t,
where r, s, t ∈ RN(O) and ε is the identity ele-
ment;

3. there are no reflexivity statements, transitivity
statements or domain restrictions, and all range
restrictions are of the form range(r) v A with
A a concept name.

3 Bi-directional reachability-based module

Given an EL+ ontology O and entailment O |= A v
B, as well as the module Oreach

A , we have that O |=
A v B if and only if Oreach

A |= A v B, where A and

B are concepts names. Oreach
A preserves entailments

for all concept names α such that O |= A v α.
A criticism raised against reachability-based mod-

ules, in terms of finding justifications, is that they
contain many irrelevant axioms, and in some cases do
not reduce the size of the ontology at all (Jianfeng Du
& Ji 2009). This stems from the fact that Oreach

A con-
siders only the sub-concept A in O |= A v B; the
super-concept B is never used to elimate unwanted
axioms.

Example 3 Given the small ontology O below, as
well as O |= A v B, Oreach

A will consist of axioms
1, 2 and 4. Axiom 4 is irrelevant in terms of finding
justifications for O |= A v B, yet it is included in
Oreach

A .

A v ∃r.D (1)
∃r.D v B (2)

E v B (3)
A v F (4)

Given the entailment O |= A v B, reachability can
be applied in two directions: The standard bottom-
up approach, which extracts Oreach

A , and a top-down
approach, which extracts Oreach

←
B

, and is defined as
follows:

Definition 10 (Top-down reachability-based
module) Let O be an EL+ ontology and S ⊆ Sig(O)
a signature. The set of ←S -reachable names in O is
defined inductively as:

• x is ←S -reachable in O, for every x ∈ S;

• for all inclusion axioms αL v αR, if x is ←S -
reachable in O for some x ∈ Sig(αR), or if αR =
⊥, then y is ←S -reachable in O for every y ∈
Sig(αL).

We call an axiom αL v αR
←S -reachable in O if some

element of Sig(αR) is ←S -reachable or if αR = ⊥. The
top-down reachability-based module for S in O, de-
noted by Oreach

←
S

, consists of all ←S -reachable axioms
from O.

Besides the direction of application, there is a
fundamental difference between the two approaches.
When extracting Oreach

A , the axiom αL v αR be-
comes A-reachable only when all xi ∈ Sig(αL) are
A-reachable. When extracting Oreach

←
B

, the axiom
αL v αR is ←B-reachable whenever any xi ∈ Sig(αR)
is ←B-reachable.

By definition of reachability, axioms of the form
> v αR and ε v r are A-reachable, since Sig(>)
= Sig(ε) = ∅, and form part of any module Oreach

A
extracted (Suntisrivaraporn 2009).

Further by definition of top-down reachability, ax-
ioms of the form αL v ⊥ are ←B-reachable. Therefore
all axioms αL v ⊥ will also always be a part of any
module Oreach

←
B

being extracted.
From Theorem 1 we have that Oreach

A preserves all
entailments in terms of the sub-concept A. We show
in Theorem 2 that a similar result holds for Oreach

←
B

with respect to the super-concept B.

Definition 11 (Top-down subsumption module)
Let O be an ontology, and B a concept name occur-
ring in O. Then, O′ ⊆ O is a top-down subsumption
module for B in O whenever: O |= A v B if and
only if O′ |= A v B holds for every concept name A
occurring in O.

16

A top-down subsumption module O′ for B in O is
called strong if the following holds for every concept
name A occurring in O: if O |= A v B, then every
MinA for O |= A v B is a subset of O′.

We show that top-down reachability modules
preserves all subsumption relationships i.t.o super-
concepts.

Lemma 1 Let O be an EL+ ontology and S ⊆ Sig(O)
a signature. Then, O |= C v D if and only if
Oreach
←
S

|= C v D for arbitrary EL+ concept descrip-
tions C and D such that Sig(D) ⊆ S.

Proof: We have to prove two parts. First: If
Oreach
←
S

|= C v D then O |= C v D. This follows
directly from the fact that Oreach

←
S
⊆ O and that EL+

is monotonic.
Second, we show that, if O |= C v D then

Oreach
←
S

|= C v D: Assume the contrary, that is,
assume O |= C v D but that Oreach

←
S

6|= C v D.
Then there must exist an interpretation I and an
individual w ∈ ∆I such that I is a model of Oreach

←
S

and w ∈ CI \DI . Modify I to I ′ by setting xI′ := ∆I

for all concept names x ∈ Sig(O) \ (S∪ Sig(Oreach
←
S

)),
and rI′ := ∆I × ∆I for all roles names r ∈ Sig(O)
\ (S∪ Sig(Oreach

←
S

)). I ′ is a model of Oreach
←
S

since it
does not change the interpretation of any symbol in
its signature. For each α = (αL v αR) ∈ O \ Oreach

←
S

,
we have αI′

L ⊆ αI′

R since α is not ←S -reachable and
thus αI′

R = ∆I . Therefore I ′ is a model for O. But
I and I ′ correspond on all symbols y ∈ Sig(D) ⊆ S

and CI ⊆ CI′ , therefore we have that w ∈ CI′ \DI′ ,
contradicting the assumption.

In order to show that Oreach
←
B

contains all MinAs
for the entailment O |= A v B, we show that Oreach

←
B

is a strong top-down subsumption module:

Theorem 2 Let O be an EL+ ontology and B a con-
cept name occurring in O. Then Oreach

←
B

is a strong
top-down subsumption module for B in O.

Proof: That Oreach
←
B

is a top-down subsumption mod-
ule follows directly from Lemma 1 above. To show
that it is strong, assume that O |= A v B, but there
is a MinA S for O |= A v B that is not contained in
Oreach
←
B

. Thus, there must be an axiom α ∈ S\Oreach
←
B

.
Define S1 := S ∩ Oreach

←
B

. S1 is a strict subset of S
since α 6∈ S1. We claim that S1 |= A v B, which con-
tradicts the fact that S is a MinA for O |= A v B.

We use proof by contradiction to show this. As-
sume that S1 6|= A v B i.e., there is a model I1 of
S1 such that AI1 6⊆ BI1 . We modify I1 to I by set-
ting yI := ∆I1 for all concept names y that are not
←B-reachable, and rI := ∆I1 ×∆I1 for all roles names
r that are not ←B-reachable. We have BI = BI1 since
B is ←B-reachable, and AI = AI1 if A is ←B-reachable,
or AI = ∆I1 otherwise. Therefore AI 6⊆ BI . It re-
mains to be shown that I is indeed a model of S, and
therefore satisfies all axioms β = (βL v βR) in S,
including A v B. There are two possibilities:

• β ∈ S1. Since S1 ⊆ Oreach
←
B

, all symbols in
Sig(βL) and one or more symbols in Sig(βR) are←B-reachable. Consequently, I1 and I coincide on
the names occurring in βL and since I1 is a model
of S1, we have that (βL)I = (βL)I1 and (βR)I1 ⊆
(βR)I . Therefore (βL)I ⊆ (βR)I .

• β 6∈ S1. Since S1 = S \ Oreach
←
B

, we have that β
is not ←B-reachable. Thus no x ∈Sig(βR) is ←B-
reachable. By the definition of I, (βR)I = ∆I1 .
Hence (βL)I ⊆(βR)I .

Therefore I is a model for S.

Example 4 Extracting Oreach
←
B

from the sample on-
tology in Example 3, we see that it will consist of ax-
ioms 1, 2 and 3. This correctly differs from Oreach

A in
that axiom 4 is not ←B-reachable. Similar to Oreach

A
though, it contains an axiom that is irrelevant in
terms of finding justifications for O |= A v B, ax-
iom 3 in this case.

It is clear that when extracting modules for finding
justifications, Oreach

←
B

opens itself to the same criticism
as Oreach

A . Given the entailment O |= A v B we see
that where Oreach

A considers only the sub-concept A,
Oreach
←
B

considers only the super-concept B.
Both reachability module extraction methods pre-

serve all entailments; Oreach
A entailments in terms of

the sub-concept A and Oreach
←
B

entailments in terms of
the super-concept B. Given the entailment O |= A v
B, we may now extract the module (Oreach

A)reach←B , or
similarly (Oreach

←
B

)reach
A , such that it considers both

the sub- and super concepts in the entailment. The
resulting module is a bi-directional reachability-based
module denoted by Oreach

A↔B .

Definition 12 (Bi-directional reachability-
based module) A bi-directional reachability-based
module, denoted Oreach

A↔B , is defined as the set of
all axioms αL v αR ∈ O such that for every xi ∈
Sig(αL), xi is A-reachable, and for some yi ∈
Sig(αR), yi is ←B-reachable.

Example 5 Extracting Oreach
A↔B from the sample on-

tology in Example 3, we see that it will consist of ax-
ioms 1 and 2. The previous irrelevant axioms 3 and
4 are no longer present.

From Theorem 1 and Theorem 2 we have that bi-
derectional reachabiliy modules preserves all MinAs
for the entailment O |= A v B.

Corollary 1 Oreach
A↔B preserves all MinAs for O |=

A v B.

4 Reachability preserving CFG

We show how an EL+ ontology O can be transformed
into a reachability preserving CFG. In the discussion
that follows we assume that we have an EL+ ontology
O in normal form, and an entailment O |= A v B,
where A and B are single concept names.

From the definition of Oreach
A↔B above , we have that

every axiom αL v αR ∈ Oreach
A↔B has the following two

properties:

1. every xi ∈ Sig(αL) is A-reachable, and

2. some yi ∈ Sig(αR) is ←B-reachable.

Every CFG production rule we introduce must
preserve bi-directional reachability. By Property 1
above, A-reachability of the axiom αL v αR is solely
dependent on symbols in αL. Similarly, by Property
2, ←B-reachability is solely dependent on symbols in
αR.

From the previous section we know that there ex-
ists special cases in which A- and←B-reachability hold.
For A-reachability these axioms have one of the forms:

17

• > v αR, or

• ε v αR

For ←B-reachability these axioms have the form:

• αL v ⊥
In the steps that follow, all production rules we

introduce have the form yi → σ. Each rule is read
as: any ←B-reachable symbol yi is A-reachable only
if all symbols xi ∈ σ are A-reachable. This clearly
conforms to the definition of bi-directional reachabil-
ity. We further note that the symbols on the rhs of
CFG production rules have a fixed order, whereas the
conjunction of EL+ concepts and roles are symmetric,
i.e. A u B = B u A, and thus order is unimportant.
We therefore place no restrictions on the order of the
symbols on the rhs of production rules and thus con-
sider production rules differing only in the order of
symbols on the rhs as identical.

The conversion process below proceeds in a step
by step manner until all axioms in O have been pro-
cessed.

Step 1: All axioms αL v αR in O such that
Sig(αR) = ∅ are ←B-reachable by definition. By
Property 2 above, in order to preserve both ←B-
reachability as well as bi-directional reachability,←B-reachability depends solely on αR. For each
such axiom the implicit ←B-reachability of αR is
made explicit by introducing the following pro-
duction rule:

B → Sig(αL)

Step 2: All axioms αL v αR in O such that Sig(αL)
= ∅ are (implicitly) A-reachable. By property 1
above, in order to preserve both A-reachability as
well as bi-directional reachability, A-reachability
depends solely on αL. For each such axiom the
implicit A-reachability of αL is made explicit by
introducing the production rule:

yi → A

for each yi ∈ Sig(αR).

Step 3: For each axiom αL v αR in O such that
|Sig(αL)| ≥ 1 and |Sig(αR)| ≥ 1, introduce the
production rule:

yi → Sig(αL)

for each yi ∈ Sig(αR). Axioms of this kind do
not have any implicit reachability concerns like
those in Steps 1 and 2 above, and bi-directional
reachability is preserved trivially.

We note that it follows from the normal form in Defi-
nition 9 that, for every rule introduced in Steps 2 and
3 above where |Sig(αR)| = 2, αR has the form ∃rC.
By property 2 above, ←B-reachability is preserved if
either one of r or C is ←B-reachable. Bi-directional
reachability is therefore preserved by the two rules:

r → Sig(αL)

C → Sig(αL)
in Step 3 above, and similarly for Step 2. We therefore
define the reachability preserving CFG for an EL+

ontology O as:

Definition 13 (Reachability preserving CFG)
Let O be an EL+ ontology in normal form, and
O |= A v B an entailment, then the reachability
preserving CFG, denoted CFGO, is the minimal set
of CFG production rules such that for each axiom
αL v αR ∈ O:

• if Sig(αR) = ∅, the rule B → Sig(αL) ∈ CFGO;

• if Sig(αL) = ∅ the rule xi → A ∈ CFGO for each
xi ∈ Sig(αR);

• for all other axioms the rule xi → Sig(αL) ∈
CFGO for each xi ∈ Sig(αR);

where the symbol A represents the only terminal sym-
bol and the set Sig(O)\A represent the set of non-
terminals.

Example 6 All production rules for CFGO may be
obtained from the ontology in Example 3 above as fol-
lows:

r → A (Step 3 applied to axiom 1)
D → A (Step 3 applied to axiom 1)
B → r D (Step 3 applied to axiom 2)
B → E (Step 3 applied to axiom 3)
F → A (Step 3 applied to axiom 4)

Given an EL+ ontology O, with O′ being O in
normal form, and n the number of axioms in O′,
we see that there can be at most 2 × n production
rules in CFGO′ . This follows directly from the def-
inition of CFGO′ , and the fact that there is a one-
to-one correspondence between all CFG production
rules introduced and axioms in O′, except for axioms
αL v αR ∈ O′ where αR = ∃r.C; for these axioms
two production rules are introduced.

5 Earley as a MinA extraction algorithm

Given an EL+ ontology O, an entailment O |= A v B
and the resulting CFG CFGO, the Earley algorithm
may be applied to extract all possible parse trees.

Before the algorithm is executed we introduce the
start state S → B, where S 6∈ Sig(O). The algorithm
now proceeds in a top-down manner, starting with
this state, and then proceeds to find all production
rules σL → σR such that σL is ←B-reachable and all
xi ∈ σR are A-reachable.

From the definition of CFGO we have that the
symbol A is the only terminal symbol and all other
symbols are considered to be non-terminals. The
standard algorithm requires an input string to parse.
While in terms of reachability there is no explicit in-
put string, it is implicit from the definition of CFGO
that the input string consists of a finite string of As.

The standard Earley algorithm may now be ap-
plied in order to extract all possible reachability paths
between the concepts A and B. However, since the
Earley algorithm is not explicitly bound by an input
string, the situation arises that it may never termi-
nate. The algorithm inherently handles cycles, but
the absence of an explicit input-sentence may lead to
non-termination. This occurs when a cycle is right-
recursive, where the recursive part is not A-reachable.
For example let the rules:

B → C D

C → A

D → B

represent such a cycle. Then D can never be A-
reachable, however since C is A-reachable the Earley
algorithm will go into an infinite loop.

There are a few ways to remedy this. The first is
to introduce a depth bound n, where n is the sum to-
tal of production rulesl symbols appearing on the rhs
of production rules. The choice of n stems from the
fact that the Earley algorithm exhaustively searches

18

for parse trees, each node represented by some pro-
duction rule. In chart k, the Early algorithm searches
trees with the length of the longest branch in the tree
equal to k+1. This branch then represents the longest
chain of bi-directional reachability preserving produc-
tion rules, with each rule appearing at most j times,
where j is the sum total of times the lhs symbols of
the production rule appears on the rhs of other pro-
duction rules. Thus the longest branch of any parse
tree cannot exceed n. The standard Earley algorithm
will in this case run in O(n3) worst case time.

A different approach is to first extract Oreach
A and

running the Earley algorithm on it. This guaran-
tees that all production rules are A-reachable and the
above cycle can never occur, this however does not
gurantee that no other bad cycles exists. A third ap-
proach involves changing the algorithm itself similar
to the method used in Section 6.

Both Oreach
A and Oreach

←
B

can be extracted in linear
time, and hence so can Oreach

A↔B . The standard Earley
algorithm is therefore non-optimal by two orders of
magnitude in terms of module extraction. The benefit
gained from the Earley algorithm however is that all
parse trees are computed simultaneously.

Each parse tree computed by the Earley algo-
rithm corresponds to a set of production rules, start-
ing with the state S → B, such that for each rule
σL → σR, we have that σL is ←B-reachable and σR is
A-reachable. Each branch of a parse tree corresponds
to a minimal set of productions rules such that B
is A-reachable and A is ←B-reachable, removing any
rule from this set would cause reachability to be lost
for that branch, and hence the whole tree would not
preserve bi-directional reahcability. Each parse tree
therefore corresponds to a possible MinA, dependent
only upon a positive subsumption test.

It must be noted that in the worst case, there is an
exponential number of parse trees. The Earley algo-
rithm computes all parse trees in parallel in polyno-
mial time. However, extracting an exponential num-
ber of parse trees will run in exponential time.

6 Work in progress

In this section we outline some modifications to the
Earley algortihm to improve its efficiency in terms of
MinA extraction.

During its search for parse trees, the predictor
procedure expands all production rules for a non-
terminal symbol it encounters. Terminal symbols are
not expanded and are handled by the scanner proce-
dure. We note that, in our case, when a concept C be-
comes A-reachable, future expansions of production
rules for C are unneccesary. When a specific reach-
ability path between the concept A and C has been
found, we never need to traverse that path again, and
the symbol C effectively becomes a terminal symbol.

The algorithm may therefore be improved by in-
troducing a dynamic terminal set. That is, initially
only the symbol A is a terminal symbol. When any
symbol becomes A-reachable we add it to the set of
terminals and remove it from the set of non-terminals.

The completer procedure forms the core of mark-
ing parse trees. It keeps track of the production rules
responsible for completions; for every symbol in a pro-
duction rule, it maintains a list of pointers to other
states responsible for completing it. Having a dy-
namic terminal set complicates this bookkeeping pro-
cess and requires changes to the data-structures used,
as well as the completer and predictor procedures.

1. Data structures: We introduce an array such
that, for each concept/symbol that becomes A-
reachable, we maintain a set of pointers to states,

responsible for completing the symbol. Each
pointer records the state in which the symbol be-
comes A-reachable, i.e. whenever the completer
is run, a pointer to this state entry is recorded in
the array of pointers for the symbol being com-
pleted.

2. Predictor: The predictor procedure normally
expands all relevant production rules for a sym-
bol and adds new states to the current chart. It
never adds the same state more than once to the
current chart. In a different chart however it may
expand the same symbol again. We restrict the
procedure so that it may never introduce a pro-
duction rule more than once, irrespective of the
chart it which it occurs.

3. Completer: For each state completed the com-
pleter stores a pointer to the state in the array
above for the symbol being completed. Every
symbol completed also gets marked as a termi-
nal symbol. The changes in the predictor further
neccesitates that once a new symbol D becomes a
terminal, that the completer completes all states
α→ σ •D in any prior chart, and that the scan-
ner be called for each state α → σ • D in the
current chart.

4. Production states: Production states no
longer require an index to mark their originat-
ing charts, because, for each state, the new com-
pleter procedure will scan all previous charts for
symbols to the right of the dot to complete, and
not only those from the chart the state originated
from.

These optimizations have the potential for a more
efficient algorithm. The problem of non-termination
described earlier is no longer relevant, since every pro-
duction rule can only ever be introduced once by the
predictor. From this we have that the only way a
production rule occurs more than once in any chart
is by virtue of the scanner or completer procedures.
Each of these advances the dot in some way and new
symbols may need to be expanded, but these expan-
sions can only be done by the predictor which would
never expand any production rule more than once.

The proposed modified Early algorithm is listed
in Table 3. Before the algorithm is executed we ob-
tain CFGO. For the entailment O |= A v B the ap-
propriate substitutions have been made and the start
state S → B added to CFGO and chart[0]. The set
TERMINALS represent the set of all terminals, ini-
tialised to {A}, NONTERMINALS the set of non-
terminals initialised to Sig(O)\A, and REF[α] an ini-
tially empty array which will contain pointers to all
states where the symbol α has been completed.

Once the algorithm terminates all MinAs still need
to be extracted. The process is similar to the method
used to extract the parse trees from the original Ear-
ley algorithm. The algorithm proceeds in a standard
depth-first manner. Starting with the completion ref-
erences for the symbol S, select the production rule
referenced. Let this state be S → α. Then for
each symbol xi ∈ α choose a production rule from
REF(xi); this process continues recursively. Once no
new production rules can be added, the set of all
states represent a possible MinA. Mapping back to
the origional axioms in normal form the set can be
tested for subsumption, and if subsumption holds the
MinA is valid. More parse trees may be extracted
by backtracking and making alternate choices where
|REF(xi)|> 1.

We use the standard example in the literature
(Brandt 2004), showing that there exists an ontology
O such that it contains exponentially many MinAs

19

Table 3: Modified Earley algorithm

function EARLY-PARSE returns chart
cIndex = 0
do

for each state in chart[cIndex] do
if next symbol ∈ NONTERMINALS then

PREDICTOR(state, cIndex)
elseif next symbol ∈ TERMINALS then

SCANNER(state, cIndex)
else

COMPLETER(state, cIndex)
end

while(hasNextChart)
return chart

procedure ENQUEUE(state, chart-entry)
if state not in chart-entry then

PUSH(state, chart-entry)

procedure SCANNER((A→ α •Bβ), cIndex)
if B ∈ TERMINALS then

ENQUEUE((A→ αB • β), chart[cIndex+1])

procedure PREDICTOR((A→ α •Bβ), cIndex)
if B ∈ NONTERMINALS and
if no B-productions have been expanded then

ENQUEUE((B → •αβ), chart[cIndex])
for all production rules for B

procedure COMPLETER((B → γ•), cIndex)
REF[B] += Pointer(B → γ•)
TERMINALS += B
NONTERMINALS -= B
for each (A→ α •Bβ) in chart[0 → cIndex-1] do

ENQUEUE((A→ αB • β), cIndex)
if B is a new terminal then

for each (A→ α •Bβ) in chart[cIndex] do
SCANNER((A→ α •Bβ), cIndex)

for an entailment, and show how the improved Earley
algorithm can be used to extract all MinAs.

Example 7 Let O be an EL+ ontology consisting of
the axioms:

α1 : A v P1 uQ1 α4 : P2 v B
α2 : P1 v P2 uQ2 α5 : Q2 v B
α3 : Q1 v P2 uQ2

O in normal form is:
ω1 : A v P1 ω2 : A v Q1 ω3 : P1 v P2
ω4 : P1 v Q2 ω5 : Q1 v P2 ω6 : Q1 v Q2
ω7 : P2 v B ω8 : Q2 v B

Then CFGO for the entailment O |= A v B is:

σ1 : S → B σ4 : B → Q2 σ7 : B → P2
σ2 : Q2 → Q1 σ5 : Q2 → P1 σ8 : P2 → Q1
σ3 : P2 → P1 σ6 : Q1 → A σ9 : P1 → A

The chart returned by the algorithm consist of
only two chart entries for this problem as shown in Ta-
ble 4. With the final completion reference list shown
in Table 5. Extracting all parse trees using a depth
first search results in all the MinAs being extracted
for the problem as shown in Table 6.

Table 4: Solution chart

Chart 0

1. S → •B Initial State
2. B → •Q2 Predictor from 1
3. B → •P2 Predictor from 1
4. Q2 → •P1 Predictor from 2
5. Q2 → •Q1 Predictor from 2
6. P2 → •P1 Predictor from 3
7. P2 → •Q1 Predictor from 3
8. P1 → •A Predictor from 4 and 6
9. Q1 → •A Predictor from 5 and 7

Chart 1

10. P1 → A• Scanner from 8
11. Q1 → A• Scanner from 9
12. P2 → P1• Completer (10-6)
13. Q2 → P1• Completer (10-4)
14. Q2 → Q1• Completer (11-5)
15. P2 → Q1• Completer (11-7)
16. B → P2• Completer (12-3), (15-3)
17. B → Q2• Completer (13-2), (14-2)
18. S → B• Completer (16-1), (17-1)

Table 5: Completed reference list

REF[S] = [18] REF[B] = [16, 17]
REF[Q2] = [13, 14] REF[P2] = [12, 15]
REF[Q1] = [11] REF[P1] = [10]
REF[P1] = [10]

Table 6: Extracted MinAs

MinA1 : 18 16 12 10
MinA2 : 18 16 15 11
MinA3 : 18 17 13 10
MinA4 : 18 17 14 11

Mapping back to the origional axioms we have:

MinA1 : α4 α2 α1
MinA2 : α4 α3 α1
MinA3 : α5 α2 α1
MinA4 : α5 α3 α1

7 Conclusion and future work

The combinatorial nature of MinA extraction makes
it an inherently hard problem, with most approaches
extracting a module based on reachability or syntac-
tic locality. The set of axioms within this module is
then systematically reduced by various methods, af-
ter which subsumption tests determine if the desired
entailment still holds. Though these aproaches work
well, the cost of repetitive subsumption testing is pro-
hibitive. It is therefore desirable to eliminate as many
axioms as possible before each subsumption test is
performed. To this end partition methods can be em-
ployed, with the hope of eliminating large chunks of
axioms that do not play a role in an entailment.

The Earley algorithm presented, based on bi-
directional reachability, aims to extract all reacha-
bility based paths for an entailment directly, with-
out first extracting smaller modules. Each parse tree
extracted by the algorithm corresponds to a mini-
mal axiom set such that reachabilty between the sub-
and super-concepts in an entailment is preserved. A
standard subsumption test is then performed to test

20

whether the axiom set is a valid MinA. This has the
potential to reduce the number of subsumption tests
drastically since for each parse tree the Earley algo-
rithm extracts, the set of axioms extracted is mini-
mal. No additional procedures need to be employed
to further reduce the set of axioms and only a single
subsumption test is neccesary in order to determine
if the set represents a valid MinA.

We require two mapping layers, the first map-
ping between the original axioms in the ontology and
the axioms in the normal form, the second between
the normal form axioms and the production rules.
Though these mappings may seem to introduce a high
memory and computational overhead, in our opinion
they perform an important function in debugging on-
tologies. Consider the axiom A v B uC which forms
part of a MinA for some entailment, where only con-
cept C actually plays a role in the entailment. The
mappings allow us to identify exactly which concepts
play a role in the entailment. Therefore instead of just
presenting whole complex axioms for debugging, we
have the ability to highlight exactly which concepts
within the axioms are relevant to the entailment.

There are two possible problems with our ap-
proach: The first being that parse trees are minimal
bi-directionally preserving axioms sets, and since they
are minimal, it may occur that that all such sets are
only subsets of a MinA. Thus not all MinAs may be
obtained as parse trees. This boils down to the com-
pleteness question of the algorithm i.t.o. finding justi-
fications. The second issue is that there does not exist
a one-one correspondence between the axioms in the
different mapping layers. Therefore when mapping
back from a minimal parse tree to original axioms,
we may find that the set of axioms is not a MinA
anymore, in that it contains extra axioms. Though
we do not directly address these issues in the current
paper, we believe that the ideas presented in this pa-
per, are both interesting and promosing, and as such
warrant further investigation.

For future work we intend to implement the algo-
rithm as a plugin for the widely used ontology editor
Protégé1 in order to test its usefulness in practise on
large scale ontologies, as well as to optimize it as much
as possible. If the algorithm proves useful we will in-
vestigate the possibility of extending it towards more
expressive DLs. We also aim to investigate the pos-
sible link between our appraoch and automata-based
pinpointing approaches (Peñaloza 2008).

References

Baader, F., Brandt, S. & Lutz, C. (2008), Pushing the
EL envelope further., in K. Clark & P. F. Patel-
Schneider, eds, ‘OWLED 2008 DC Workshop on
OWL: Experiences and Directions’.

Brandt, S. (2004), Polynomial time reasoning in a
description logic with existential restrictions, GCI
axioms, and – what else?, in R. L. de Mántaras &
L. Saitta, eds, ‘ECAI-2004: Proceedings of the 16th
European Conference on Artifcial Intelligence’, IOS
Press, pp. 298–302.

Chiang, Y. & Fu, K. (1984), ‘Parallel parsing algo-
rithms and VLSI implementation for syntactic pat-
tern recognition’, IEEE Transactions on Pattern
Analysis and Machine Intelligence 6(3), 302–314.

Earley, J. (1970), ‘An efficient context-free parsing
algorithm’, Communications of the Association for
Computing Machinery 13(2), 94–102.
1http://protege.stanford.edu/

Grau, B. C., Horrocks, I., Kazakov, Y. & Sattler, U.
(2007), Just the right amount: Extracting modules
from ontologies, in C. Williamson & M. Zurko, eds,
‘WWW ’07: Proceedings of the 16th International
Conference on WWW’, ACM, New York NY, USA,
pp. 717–726.

Grau, B. C., Horrocks, I., Kazakov, Y. & Sattler, U.
(2008), ‘Modular reuse of ontologies: Theory and
practice’, Journal of Artifcial Intelligence Research
31, 273–318.

Jianfeng Du, G. Q. & Ji, Q. (2009), Goal-directed
module extraction for explaining OWL DL entail-
ments, in K. Thirunarayan, ed., ‘ISWC’09: Pro-
ceedings of the 18th International Semantic Web
Conference’. To appear.

Jurafsky, D. & Martin, J. (2009), Speech and Lan-
guage Processing: An Introduction to Natural Lan-
guage Processing, Speech Recognition, and Compu-
tational Linguistics, 2 edn, Prentice Hall.

Pavlatos, C., Koulouris, A. & Papakonstantinou, G.
(2003), Hardware implementation of syntactic pat-
tern recognition algorithms, in M. Hamza, ed.,
‘IASTED International Conference on Signal Pro-
cessing and Pattern Analysis’, Acta Press, pp. 360–
365.

Peñaloza, R. (2008), Automata based pinpointing
for DLs, in F. Baader, C. Lutz & B. Motik, eds,
‘21st International Workshop on Description Log-
ics’, CEUR Workshop Proceedings.

Suntisrivaraporn, B. (2009), Polynomial-Time Rea-
soning Support for Design and Maintenance of
Large-Scale Biomedical Ontologies, PhD thesis,
Technical University of Dresden.

21

22

Reflecting on Ontologies Towards Ontology-based Agent-oriented Software
Engineering

G. Beydoun1, B. Henderson-Sellers2, J. Shen1, G. Low3

1{beydoun, jshen} @uow.edu.au, School of Information Systems and Technology, University of Wollongong, Wollongong
2 brian@it.uts.edu.au, School of Software, University of Technology, Sydney

3 g.low@unsw.edu.au, School of Information Systems, Technology and Management, University of New South Wales, Sydney

Abstract
“Ontology” in association with “software engineering” is
becoming commonplace. This paper argues for the need
to place ontologies at the centre of the software
development lifecycle for multi agent systems to enhance
reuse of software workproducts as well as to unify agent-
based software engineering knowledge. The paper
bridges the state-of-the-art of ontologies research from
Knowledge Engineering (KE) within Artificial
Intelligence and Metamodelling within Software
Engineering (SE). It presents a sketch of an ontology-
based Multi Agent System (MAS) methodology
discussing key roles on ontologies and their impact of
workproducts, illustrating these in a MAS software
development project for an important application that
utilizes dynamic web services composition.

Key words: Software Development Lifecycle (SDLC),
Ontologies, Agents, Multi Agent Systems (MAS), Services

1 Introduction
This paper promotes ontology-based software
development with a current focus on methodologies for
building a multi agent1 system (MAS). Substantial
integration between ontologies and software engineering
has been achieved e.g. in ODE of (Falbo et al., 2005) and
Onto (Leppänen, 2007). This paper is part of an ongoing
effort to place ontologies at the centre of the software
development lifecycle (SDLC) for MASs to enhance the
reuse of MAS workproducts as well as to unify agent-
based software engineering knowledge.

In a MAS composed of a heterogeneous collection of
agents with distinct knowledge-bases and capabilities,
coordination and cooperation between agents facilitate
the achievement of global goals that cannot be otherwise
achieved by a single agent working in isolation
(Wooldridge, 2000). The unique characteristics of a MAS
have rendered most standard systems development
methodologies inapplicable, leading to the development
of Agent Oriented Software Engineering (AOSE)
methodologies. Several AOSE methodologies exist
(Henderson-Sellers and Giorgini, 2005). Indeed any one
of the extant methodologies has limited applicability
(Tran and et al, 2005) e.g. to a specific domain or a
specific type of software application. This limits adoption
of AOSE. Furthermore, a review (Tran and Low, 2005) of
sixteen prominent AOSE methodologies revealed that

1 Agents are highly autonomous, situated and interactive software
components. They sense their environment and respond accordingly.

most ignore system extensibility, maintenance,
interoperability and reusability issues. This imposes a
second barrier to the adoption of AOSE. This paper
outlines a path towards resolution of both of these
barriers through the use of ontologies during the software
development lifecycle. Given that the “fixed costs”
associated with learning or configuring methodologies to
suit the requirements of a given project are high, it is
critical to address these concerns and protect the various
facets of investments associated with using a MAS
including: interoperability of systems, reuse of their
components, reuse of human skills acquired and reuse of
designs generated during development.

As a first step towards using ontologies as a central
software engineering construct throughout the whole
development lifecycle of a MAS, this paper reviews the
state-of-the-art of ontology research in two key
communities: the Artificial Intelligence (AI) community
and the Information Systems (IS)/Software Engineering
(SE) community. Much of our understanding of
ontologies has been derived from the AI community; in
contrast, the IS/SE community have focussed on the use
of a systematic relationship and understanding of models
and metamodels. To illustrate how ontologies can be
central to MAS development, we use an example
application that also highlights the power of agents. The
example chosen is a MAS Peer to Peer system
constructed to allow dynamic composition of web
services in highly distributed and heterogeneous
environments.

The rest of the paper is organised as follows: Section 2
provides a conceptual analysis bridging software
engineering concepts and existing ontology research
emanating largely from the knowledge engineering
community. Section 3, using the grounded position on
what an ontology can do to the SDLC, provides an
argument placing ontologies at the heart of SDLC
specifically tailored for Agent Oriented Software
Engineering. Section 4 develops this into a sketch of an
AOSE ontology-based methodology. Section 5 illustrates
key concepts in an application. Section 6 concludes with
a summary and discussion of future work.

2 Background: Bridging Ontologies in KE to Models
and Metamodels in SE
In SE, terms such as model, metamodel and ontology are
often used with disparate meanings across the literature
even within the same sub-domain of SE. To pin down the
appropriate usage of an ontology within the SDLC of a
methodology, it is important to describe how an ontology
may be linked to a model and/or a metamodel and,

23

mailto:beydoun@uow.edu.au
mailto:brian@it.uts.edu.au
mailto:g.low@unsw.edu.au

indeed, how models and metamodels are defined and
inter-related. This leads to the need to understand the
relationship between ontologies and a metamodelling
hierarchy such as that of the (OMG, 2005a) or (ISO/IEC,
2007). (Favre et al., 2007) note the lack of a general,
systematic technique to map between metamodels and
ontologies which is the focus of this section.

In SE, additional characteristics for an ontology are
required. It is widely agreed that it needs to be formal e.g.
(Corcho et al., 2006; OMG, 2005b; Guizzardi, 2005;
Rilling et al., 2007). However the meaning of ‘formal’ is
not very well agreed. For example, (Corcho et al., 2006)
suggests it to mean ‘understandable by a computer’,
OMG suggests it to mean underpinned by a metamodel
and (Guizzardi, 2005) uses “formal” to mean “having
form” rather than precise or mathematical. A second
required characteristic is that it should represent shared
knowledge e.g. (Gruber, 1993; Noy and McGuinness,
2001) and a third characteristic is that an ontology is
represented by a vocabulary (Gruber 1993; Guarino
1998). This last notion is used to differentiate between an
ontology linked to a representation in a specific
vocabulary but with a common conceptualization
(Guarino 1998). Following (Guarino, 1998), (Ruiz and
Hilera, 2006; Guizzardi, 2005) identify four general kinds
of ontologies: high-level ontologies (or upper level
ontologies)2, domain ontologies, task ontologies, and
application ontologies. This is a scheme that will
underpin our ontology-centric SDLC to be detailed in
Section 4. This is in accordance with (Ruiz and Hilera,
2006) as shown in Figure 1 which also compares two
classification schemes (of (Guarino, 1998 and Fensel,
2004)) and differentiates between domain-independent
ontologies and domain-dependent ontologies (a
discrimination also adopted in this paper).

To link ontologies to metamodels in current SE, two
stacked architectures are commonly used. It is worth
noting the OMG architecture based on strict
metamodelling wherein the only inter-level relationship
permitted is “instance of” (in Figure 2). This is not
universally accepted within SE, for instance, the
architecture used in ISO/IEC 24744 (ISO/IEC, 2007)
(Figure 3) uses the powertype pattern (Gonzalez-Perez
and Henderson-Sellers, 2006), which permits both
instance-of and generalization relationships between
levels. Indeed, as observed in several papers summarized
in (Gonzalez-Perez and Henderson-Sellers, 2008)
application of the four layer hierarchy used by the OMG
to methodologies results in several contradictory
situations – hence the creation of the newer architecture
in Figure 3. For our purpose, we can say that a
metamodel describes a domain that is representative of
more than one instance in a less abstract domain and,
importantly, each model/metamodel describes a domain
of discourse, the language used for a metamodel domain
and a model domain (although relative) is distinct.

2 Uschold (2005) suggests that, while an upper-level ontology is

important, it is less important which such ontology is used. In fact, we
omit upper level ontology from our methodological sketch in Section 4.

We can now ask which ‘metamodels’ or ‘models’ (or
both) are useful, both theoretically and pragmatically, to
link our SE-defined “ontology” definition. (Atkinson et
al., 2006) suggest that ontologies and models may be
different technologies since they appear to be derived
from different subfields of computing and knowledge
representation and there appear to be several projects, for
example within the OMG and W3C, aimed at producing a
bridge between the technologies. Their conclusion is that
ontologies are a subset of models since ontologies fulfil
the criteria for being models but have additional
characteristics i.e. they are specializations in the object-
oriented (OO) sense.

Guarino Fensel

of High Level

of Domain

of Applications

of Tasks

Generic

Representational

of Domain

of Methods & Tasks

+
G
e
n
e
r
a
l
i
t
y
-

Domain
independents

Domain
dependents

Guarino Fensel

of High Level

of Domain

of Applications

of Tasks

Generic

Representational

of Domain

of Methods & Tasks

+
G
e
n
e
r
a
l
i
t
y
-

Domain
independents

Domain
dependents

Figure 1 Ontologies by generality level (after (Ruiz and Hilera, 2006))

M3

M2
Metamodel

M1
Model

M0
Data

instance_of

instance_of

instance_of

M3
(MOF) Metametamodel

M2
Metamodel

M1
Model

M0
Data

instance_of

instance_of

instance_of

M3

M2
Metamodel

M1
Model

M0
Data

instance_of

instance_of

instance_of

M3
(MOF) Metametamodel

M2
Metamodel

M1
Model

M0
Data

instance_of

instance_of

instance_of

Figure 2 The 4 layer hierarchy of the OMG- based on (ANSI, 1989)
(after (Henderson-Sellers and Unhelkar, 2000)) ©Pearson Education
Limited

endeavour

method

metamodel
Activity

WorkUnit

Task Technique

* *

methodologies assessment quality tools

endeavourendeavour

methodmethod

metamodelmetamodel
Activity

WorkUnit

Task Technique

* *

methodologies assessment quality toolsmethodologiesmethodologies assessmentassessment qualityquality toolstools

Figure 3 Three layer architecture of ISO/IEC 24744 International
Standard (after (Henderson-Sellers, 2006))

While noting that much of ontology design originated in
OO design, (Noy and McGuinness, 2001) suggest that
OO stresses operational rather than the structural
properties of classes, which are the focus of ontology
design. This suggests an alignment with data models. On
the other hand, the equivalencing of models with
database-focussed models, as is done by (Ruiz and Hilera,
2006), unnecessarily restricts the meaning of model for

24

such a comparison to be useful here. In contrast, (OMG,
2005b) takes a broader meaning to the term “conceptual
model”. It notes some missing concepts in the UML – in
particular, the treatment of disjoint classes, set
intersection and set complement. They argue that
ontology instances may also be required without the prior
defi

del is prescriptive,
belo

ntology Defintion
M

n with the
strict metamodelling architecture of Figure 2.

nition of a class (not permissible using UML).
Many other authors equate ontologies with models

despite noting the difference in intent i.e. that an ontology
is descriptive and a model typically (but not always)
prescriptive e.g. (Wand and Weber, 2005; Ruiz and
Hilera, 2006). For example, (Gruber, 1993) states that
“Ontologies are also like conceptual schemata in database
systems” which “provide a logical description of shared
data”; and (Guarino, 1998) clearly indicates that he
regards an ontology as belonging to the model domain
and not the metamodel domain. (Ruiz and Hilera, 2006)
suggest differences based on arguing that an ontology is
descriptive whereas a metamo

nging to the solution domain.
In the context of agent modelling languages,

(Guizzardi and Wagner, 2005a) propose a unified
foundational ontology (UFO). The UFO is categorized as
an upper level ontology (a.k.a. foundational ontology),
and an application to business modelling is given in
(Guizzardi and Wagner, 2005b). (Guizzardi, 2005) states
that a foundational ontology is a meta-ontology. Since he,
and others, effectively equates “ontology” with “model”,
then we must conclude that a meta-ontology can be
effectively equated with metamodel, at least in the OMG
sense. Indeed, in (Guizzardi and Wagner, 2005a) it is
clearly stated that a foundational ontology can be
represented as a MOF (Metaobject Facility) model, MOF
being a language for defining modelling languages i.e. it
is used as a metamodelling language. In other words, a
foundational ontology is at the metamodel level in that it
is equivalent to the UML or the ER definition. This
means that we need to reassess Figure 1 because “domain
independence” is also seen as a feature of a meta-
ontology whilst, in contrast (see Figure 1) a generic
model is widely recognized as not being at this meta
level. In a section entitled “combining metamodels and
ontologies to achieve semantic interoperability” – words
suggesting that ontologies belong to the metalevel –
(Karagiannis et al., 2008) go on to describe “semantic
mappings between metamodel elements and ontology
concepts”. Arguably this latter statement, at odds with the
former, can be interpreted as ontology concepts being the
classes in the ontology metamodel – as for instance
documented in the OMG’s O

etamodel (ODM) (OMG, 2005b).
Contrasting several chapters from the same book

(Calero et al., 2006), we see that while the software
maintenance ontology of (Anquetil et al., 2006) and the
software development environment ontology of de
(Oliveira et al., 2006) clearly discuss a domain ontology,
the ontology for software measurement of (Bertoa et al.,
2006) and the ontology for software development
methodologies and endeavours are all clearly defined in
terms of a metamodel. Indeed, (OMG, 2005b) clearly
differentiates between the OWL metamodel that allows
users to define ontology models and the ontology that is

“generally specified as a system of classes and properties
(the structure) which is populated by instances (the
extents)”. Hence, the UoD is described by a set of
ontologies where ontologies are used to enhance the
target system and be complementary to UML modelling
artefacts. In other words, ontologies belong to the M1
level (Figure 2) or Method Domain (Figure 3) since an
ontology is a conceptual model (OMG, 2005b), sharing
characteristics with more traditional data models. This
OMG ODM approach suggests a multi-level ontology
architecture (Figure 4). Here, the “M2” level is equivalent
with (Guizzardi and Wagner, 2005a)’s foundational
ontology, with the OMG’s ODM and with the term
“upper level ontology”. The “M1” level includes not only
domain-specific ontologies (such as that for, say, a
banking domain) but also a domain-independent generic
ontology (cf. Figure 1). Instances of elements of a
domain-specific ontology (Figure 4) are discussed in
(Noy and McGuinness, 2001) where it is argued that the
depth in the ontology hierarchy at which this occurs is
context dependent, making no attempt to alig

O n to lo g y m e ta m o d e l
a .k .a . fo u n d a tio n a l o n to lo g y
a .k .a . u p p e r- le v e l o n to lo g y

G e n e ric o n to lo g y ;
D o m a in -s p e c if ic o n to lo g y

= s c h e m a /m o d e l

In s ta n c e s o f d o m a in -
s p e c ific o n to lo g y

e .g . O M G O D M

e .g . h ie ra rc h y fo r b a n k in g

M 2

M 1

M 0

O n to lo g y m e ta m o d e l
a .k .a . fo u n d a tio n a l o n to lo g y
a .k .a . u p p e r- le v e l o n to lo g y

G e n e ric o n to lo g y ;
D o m a in -s p e c if ic o n to lo g y

= s c h e m a /m o d e l

In s ta n c e s o f d o m a in -
s p e c ific o n to lo g y

e .g . O M G O D M

e .g . h ie ra rc h y fo r b a n k in g

O n to lo g y m e ta m o d e l
a .k .a . fo u n d a tio n a l o n to lo g y
a .k .a . u p p e r- le v e l o n to lo g y

G e n e ric o n to lo g y ;
D o m a in -s p e c if ic o n to lo g y

= s c h e m a /m o d e l

In s ta n c e s o f d o m a in -
s p e c ific o n to lo g y

e .g . O M G O D M

e .g . h ie ra rc h y fo r b a n k in g

M 2

M 1

M 0

Fig

ware as opposed to
the ontological usage of knowledge.

3 t Agent-Oriented SE be Ontology-

ure 4. Three level ontology architecture suggested by OMG.

If an ontology refers to a universe of discourse and to
conceptualization, as according to (Gruber, 1993), then
the term “ontology” would appear to be equally
applicable to either M1 or M2 (although not both
simultaneously), in just the same way that the term
“model” can be applied to a M1 UML visualization (e.g.
a system design) or to a M2 visualization (e.g. the UML
metamodel). This may explain the ambiguity regarding
whether an ontology is an M1 or M2 thing. In some
contrast to the notion of ontologies being focussed at their
specification level i.e. the metamodel, most “ontologies”
found by a web search and documented, for example in
Protégé, are hierarchies of terms in a specific (often
commercial) domain. For instance, we have located an
ontology for newspaper publishing containing elements
such as editor, journalist and printing press; an ontology
for health care with concepts including doctor and
patients. Such an ontological hierarchy bears a good
correspondence to a UML model (M1) that might be
constructed if one were building soft

Why Mus
Centric?

Many of the IS/SE focussed application areas are brought
together in (Green and Rosemann, 2005), a volume on
business systems analysis. However, there remain only a
small number of existing MAS methodologies that
include ontologies in their workproducts and processes.
This support is generally confined to the early phases of

25

the development (the analysis phase). For example,
(Girardi and Serra, 2004) specify how a domain model
that includes goal and role analyses is developed from an
initial ontology. Another example (DiLeo et al., 2002)
uses ontologies to mediate the transition between goal
and task analyses. An ontology-based methodological
framework that can be used to build new ontology-centric
AOSE methodologies from scratch, or a repository of
add-on methodological elements that can be added to an
existing AOSE methodology to enhance it with new
support for ontology-based AOSE, would be a significant
in

. We identify the following three

eyond avoiding repetition and

s various

n be used to
ea

ost likely lead
to

this can support its inter-operation
with

novation in the support for ontology-based AOSE.
In addition, while existing methodologies suffer from

other deficiencies (Tran and Low, 2005), there is a
growing realization that some form of consolidation is
needed. To merge this existing body of agent-oriented
software engineering knowledge into a more effective
methodological approach, we consider two key issues:
how easy it is for software developers to actually apply
the outcome (usability) and how feasible is the merging
approach (realisability)
candidate approaches:

Approach 1: An ad-hoc approach consisting of merging
existing methodologies one at a time, with an arbitrary
methodology as a starting point, and without guidance on
attaching methodologies, b
inconsistent use of terms.

Approach 2: A metamodelling method engineering
approach characterised by having a formal unifying
formal language (a metamodel) to expres
methodology fragments from different sources.

Approach 3: A feature-identification-guided approach to
identify AOSE development steps and modelling concepts
from existing AOSE methodologies to produce a unified
methodological framework that in turn ca

sily generate methodologies as required.
Approach 1 does not offer any guide on the scope of

software development lifecycle concepts and can lead to
one of two types of errors: assuming differences of
concern when none exists, or falsely assuming similarity
of concern because of the common use of terms. The first
type of error may lead to repetition and to an
unnecessarily large and cumbersome methodology,
rendering it less accessible to developers. Tolerating
errors of the first type, a successful unification effort
would result in a large methodology with its bulk
concerned with a collection of ‘exceptional cases’
without common structures. We find that this is exactly
what happened with UML (in a slightly different domain
but nevertheless providing a highly relevant parallel). The
second type of error can create inconsistencies because of
inconsistent interpretations of terms. Tolerating such
errors, the resultant methodology would produce
inconsistent models and lower its usability, as software
developers subsequently struggle to deal with problems
resulting from inconsistencies and would m

 its abandonment (Bernon et al., 2004).

Approach 2 requires a formal language, a metamodel,
whose units serve to generate methodology fragments
with similar concerns, but with a different flavour

according to the context of the development project. This
approach has been the focus of (Beydoun et al., 2006b;
Beydoun et al, 2009). In this approach, the development
project decides the concern and the flavour of the
methodology generated rather than subjective
‘interpretations’ skewed towards a forced merging
between methodologies and their fragments (as in
Approach 1). Such interpretations are avoided, preventing
any inconsistencies. However, to avoid inconsistencies
only a select subset of the rewritten components of
methodologies can be integrated at any one time. For
example, in every given object-oriented development
project (Brinkkemper et al., 2001), a customised
integration of selected components is required. For an
emerging area of application such as MASs, development
experience is limited and the criteria of selection are not
yet easily discerned. Hence, the benefit in the
applicability of this approach does not outweigh the
added effort required for assembling selected method
components. Consequently, to balance the work on
Framework Agent Modelling Language (FAML) (e.g.
(Beydoun et al., 2009)), in this paper Approach 3 is
pursued as an alternative, and potentially complementary,
approach to a method engineering approach (Henderson-
Sellers, 2003) with the aim to explore cross fertilisation
between the two approaches. For example, the ontology
techniques developed for Approach 3 will be used to
enhance the method engineering repository of Approach
2. Approach 3, guided by feature-identification, does not
require the cumbersome re-writing of existing
methodologies using a common formal language
(metamodel) as in Approach 2. It is sufficient to validate
and refine the set of candidate steps and modelling
concepts and overlay these on top of existing
methodologies. Hence, this approach requires much less
effort and it is the most realizable as it does not require
the collaboration of the creators of the existing
methodologies. Crucially, this approach rids developers
of the highly specialised and difficult task of the merging
of methodology components on a per project basis. The
approach instead relies on using explicit ontologies as a
focal point during development to facilitate combining
features from different AOSE methodologies. This will
use ontologies as a means for semantic mappings to
convert software work products to suit various
development steps. This can substantially support
integration of processes and products; and, for the finally
implemented MAS,

other systems.

Using off-the-shelf domain ontologies as a starting
point of system development, will become the focus of
our efforts on the applied use of ontologies in an AOSE
methodology (not their actual creation). This will enable
the transfer and adaptation existing techniques for
ontologies (e.g. techniques for mapping and translating
between multiple ontologies) to obtain a more
economical approach to MAS development, addressing
interoperability and work product reuse. Not only will an
ontology-based AOSE methodology be complete and
consistent and produce systems that can easily be evolved
to new contexts but, in addition, it can have a highly
developed maintenance phase to guide developers in

26

reusing existing systems and components previously
developed (using an ontological approach). This will
foster wider deployment of agent-based systems by
industry by focussing on the commercial success of the
te

erability concerns in
eterogeneous environments.

gies in SE to Ontology-based Agent

chnology.
At least three significant contributions to the state-of-

the-art in AOSE are identified: firstly, designers will have
a tested and verified framework to handle interoperability
issues in an heterogeneous environment at design time by
allowing a MAS to be formed from loosely coupled
components connected through ontological mappings.
Thus, they will be inherently flexible and their actual
design and architecture will be reusable across
applications and in different settings. Secondly,
ontological commitments related to a MAS will be
explicitly integrated with its actual design and
development. In exploring the currently overlooked
ontology-related interactions between the analysis and
design phases of software development for MAS,
iterative verification during the design and development
of the system will become possible, increasing the
likelihood of producing a correct system. Thirdly, all key
concerns of AOSE practitioners will be combined into
one methodological framework. The first two
contributions are actually interrelated: The explicit and
extensive support for ontology-based MAS development
will address the interop
h

4 From ontolo
Oriented SE
Inclusion of ontologies into a specific SE methodology
for the development of MAS permits the long term reuse
of software engineering knowledge and effort and can
produce reusable MAS components and designs.
(Beydoun et al., 2006a) argue that using ontologies in
developing a MAS is complicated by having to
simultaneously provide knowledge requirements to
different Problem Solving Methods3 that are still required
to share results using a common terminology. This is
even further complicated because individual PSMs may
operate at different levels of abstraction of the domain,
they may be complementary, and they may have varying
degrees of prescription to the domain requiring various
degrees of adjustment to suit the domain. A set of six
requirements were proposed for developing a MAS using
an ontology-based software engineering approach. In this
section, we present the methodology sketch motivated by
the original drive for using ontologies for reuse (as also
discussed in (Beydoun et al, 2006a)). Specifically, we
propose the unification of and reuse of AOSE knowledge
(as outlined briefly in the previous section). As targeted
by this methodology, the role of ontologies during the
SDLC is detailed. Similar to KBS development, it is
assumed that the choice of PSM may be made
independently of domain analysis. Moreover, it is also
assumed that a domain ontology describing domain
concepts and their relationships is available. Such an
ontology may be available from an existing repository

ld only be to
id

tion of
P

se tasks in the maintenance
p

ntation)
to so e a problem needs to know this ontology. 3 PSMs are high-level structures that describe a reasoning process

employed to solve general problems (Rodríguez et at., 2003)

e.g. (DARPA, 2000) or a domain analysis may be
considered the first stage of developing the system. The
purpose of such a domain analysis wou

entify concepts and their relationships.
There is inter-play between the role of reuse and other

roles of ontologies in a MAS. Various reuse roles cannot
be smoothly accommodated (e.g. interoperability at run-
time) without careful consideration of run-time temporal
requirements. For example, an ontology’s role in
reasoning at run-time is based on fulfilling PSM
knowledge requirements at design time. This requires
scoping domain analysis for each individual agent at
design time. The key to ontology-based design of a MAS
is the appropriate allocation of a PSM to individual
agents in order to match system requirements. Towards
this, we note that goal analysis is the usual way to express
requirements e.g. (Giunchiglia et al, 2003; Wooldridge et
al, 2000) and we suggest associating PSMs (using PSM
libraries) and system goals in the early stages of a MAS
design. The ontologies provides a conceptualization and
the basis upon which a machine accessible defini

SMs may be created (similar to (Fensel, 1997)).
We envisage that the MAS development starts with a

domain ontology, an application ontology and a
collection of task ontologies used to identify goals and
roles of the agents in the system. This in turn is used to
index an appropriate set of problem solving capabilities
from an appropriate existing library of capabilities.
Individual ontologies corresponding to the requirements
of each capability are then extracted from the initial
common ontology in order to provide knowledge
representation and allow reasoning by individual agents.
Those ontologies will form the basis for an iterative
process to develop a common communication ontology
between all agents and verify the knowledge
requirements of chosen capabilities. Individual localised
ontologies may also require incremental refinement
during the iterative process. Appropriate ontology
mappings are needed between local ontologies and the
communication ontology. To be complete, the
methodology needs technical guidelines to develop the
various ontology mappings, operators to extract localized
agent ontologies from the domain ontology, operators for
consistency checking between related ontologies and
support for managing reu

hase of the methodology.
The SDLC requires three related ontologies (shown in

Figure 5): First is a domain ontology to describe the
domain knowledge for the problem and the requirements
for a solution to the problem. Domain ontologies may be
unique to the problem itself or may be adapted from
previous problems in similar domains. Second is
problem-type ontology to describe types of problems to
which PSMs have been developed to solve. The problem-
type ontology is necessary for defining the PSM interface
(capabilities and preconditions). In the construction of a
PSM library, the problem-type ontology is necessary for
indexing suitable PSMs. Third is a PSM ontology to
describes knowledge required for the tasks, control
structure, and PSM dependencies. An agent that seeks to
dynamically select a PSM (or its coded impleme

lv

27

Figure 5 illustrates the role that the ontologies play in PSM

implementations. We omit upper level ontologies, we domain
ontologies, application ontologies (Problem-type), task ontologies (or
PSM ontology)

 e.g. (Giunchiglia et al, 2003; Wooldridge
e

fo

ction towards
im

e individual knowledge
requirement of each agent PSM.

The collection of all PSMs for local goals should also

be verified for completeness against stated system goals.
These goals should also be checked against cooperation
potential. (A form of distributed goal interaction
evaluation could be done using existing approaches e.g.
(van Lamsweerde et al, 1998)). Most current
methodologies view the decision of problem-solving
mechanisms as a low level design step. In our current
view, paralleling KBS development, ontology-based
design and development requires elevating this to an early
design phase and making it central to a later decision on
the communication and interface requirement of each
agent (rather than the other way around as in many other
methodologies
t al, 2000)).
Chosen problem solving capabilities for different agents

in a given MAS do not necessarily have the required
degree of domain dependence. Hence, for a PSM chosen
for some agents, the ontology required may need to be
adapted. For this, the domain ontology and the problem-
type ontology (application ontology) are again the most
convenient reference point. Ontology mapping (between
portions of these two ontologies and the local agent’s
knowledge) is required to ensure that all PSMs have their
knowledge requirement available to their reasoning

rmat (adaptors of (Fensel, 1997) may be useful here).
Agents need to communicate their results and instigate

cooperation using a common language. For this purpose,
we recommend a global communication ontology (as in
(Esteva et al, 2002)), rather than many-to-many
individual mappings between agents. Such a
communication ontology is most conveniently based on
the domain ontology available, and it depends on the
individual ontology of each agent. In some cases, an
ontology mapping may be required between PSM
ontologies and the communication ontology. The same
adaptation between the reasoning and domain ontology
can be used to map the result of reasoning back to a
common communication ontology. Our work so far is
geared towards ‘extendable closed’ systems. In the case
of ‘open systems’, introducing new agents may require
runtime extension of the communication ontology or
some local ontologies to allow cooperation with new
agents. This is currently beyond our current scope. It is

worth noting, that we never assume that local ontologies
for agents are complete from the perspective of the agent.
This is a considerable step in the right dire

plementing completely ‘open systems’.
Hierarchical ontologies are one way to have flexible

domain ontology refinement for agents according to their
PSMs, and to accommodate differences in strength of the
PSM of agents. A common hierarchical domain ontology
can be used as a starting point for verification during
development and for multiple access at multiple
abstraction levels depending on th

Figure 6. 1. Ontology-based MAS development: Domain Ontology

produces Goal Analysis 2. Goal analysis produces a collection of PSMs
(using a PSM bank) 3. Knowledge requirement analysis (4). can then be
used to delineate local ontologies that can be verified against the domain
ontology (step 5). Finally, in step 6 the communication ontology

anguage) can then be derived using appropriate mappings.

may result in further localized
ontology mappings.

(l

Figure 6 provides the methodological sketch
accommodating the observations of this section. The
MAS development process starts with a domain and an
application ontology (domain-type ontology). These are
used to identify goals and roles and to create appropriate
interfaces to index an appropriate set of PSMs from a
bank of PSMs (see Figure 5 in combination with Figure
6). Appropriate individual ontologies for each PSM are
extracted from the initial task ontology. These individual
ontologies are used for reasoning by individual problem
solvers and may be used to represent results
communicated by the individual problem solver. They are
next verified against the knowledge requirement of
chosen PSMs. The collection of the individualised task
ontologies, in combination with the application and
domain ontologies, is then used to develop a common
communication ontology. Appropriate mappings may be
required between individual local ontologies and the
communication ontology, to facilitate communicating
results between individual agents. Verification between
problem solvers and the communication ontology is
undertaken, which

28

5 Case Study of Ontologies in a MAS application:
MAS for Dynamic Web Services Compostion
To illustrate how ontologies can be central to MAS
development, we use an example application that also
highlights the power of cooperative agents. The
application example is a MAS P2P system to allow
dynamic composition of web services in highly
distributed and heterogenous computing environment and
is adapted from (Shen et al, 2007) to highlight how
ontologies can be used4 (using semantically driven
composition of services as is often advocated e.g (Souza
et al, 2009)). The system will provide, to both service
requestors and service providers, Quality of Service
(QoS) evaluation. The system will identify service
providers’ capability and performance so as to enhance
the service composition for service clients over the real
distributed service network. Due to the complexity of
QoS metrics, well-defined QoS service description does
not actually exist. With a P2P architecture the QoS is
gauged by a service client through cooperative
interactions with other peers that can potentially provide
the service. The scope of using ontologies in this MAS
development is available given that most of the current
work focuses on the definition of QoS ontology,
vocabulary or measurements and to a lesser extent on a
uniform evaluation of qualities, however. Furthermore, a
Problem Solving Method unit of analysis nicely
corresponds to a service carried by an agent. In this
application, the agents themselves will dynamically select
PSM implementations that best suit the service or the
QoS required. This selection will be made using a P2P
searching mechanism to locate appropriate services from
other peer agents. Cooperative communication between
agents about their existing services, their past services
requests and their performance will enable service
requesters to locate the service with the most suitable
QoS. An ontology-based approach described here will
complement existing service repositories, which will
provide PSM implementations that may be used in both
the design and implementation phases (Figure 7).

Figure 7. Ontologies can be used to give a dynamic interface to services
to agents within a MAS.

4 As a reviewer noted, existing methodologies for creating PSMs are
often inadequate. In this example, this problem is by-passed as services
do exist and they are typically used to describe atomic tasks within a
business process.

When an agent receives a service request that it cannot
fulfil, it seeks out a service from another agent or
repository of services. This may happen as follows:

1. Identify the corresponding domain of the request
2. Use the domain knowledge to map to the service

interface in order to index the PSM corresponding
to the service requested.

3. Map its domain knowledge to the individual PSM
tasks and perform the tasks to fulfil the service
request.

For example, suppose that an agent is interested in
engaging in a specific negotiation with another opponent
agent. Assuming it is aware of the negotiation protocol,
with limited domain knowledge and information about its
opponent’s preferences, it needs a method to model the
opponent and a method to devise a strategy to act. By
mapping its domain knowledge to the PSM library, it
identifies and employs a suitable coded implementation
for a model and strategy. As the negotiation commences,
the agent feeds information to the PSM model interface,
the model updates, the agent feeds the output of the
model (along with the negotiation protocol) to the
strategy interface, and follows the recommended course
of action. The agent has no fixed automated negotiation
approach but, rather, has the capacity to dynamically
select the approaches that best suit its circumstance.

In this P2P service evaluation and exchange
application, ontologies at various levels of abstractions
and details have been developed. This offers a unique
workbench to test the reuse of ontologies and places them
at the centre of the SDLC. For instance, OWL-S is an
ontology to describe Web services with rich semantics. It
will allow individual software agents to discover, invoke,
compose and monitor Web services with a high degree of
automation under dynamic circumstances. The use of this
ontology has also been delineated to easily identify
problem solving methods of individual agents, bypassing
problems identified in (Beydoun et al, 2006a). In fact,
OWL-S (OWL-S Coalition, 2006) ontology consists of
three main components: the services profile, the process
model and the grounding. The services profile is for
advertising and discovering Web services. The process
model is used to describe detailed operations of services
and define composite Web services. The grounding is
used to map the abstract definition of services to concrete
specifications of how to access the services.

The services profile component of the ontology
(corresponding to Task/PSM ontology in Section 4) can
be detailed and refined to allow detailed services’
description and evaluation. Basically, the service profile
does not mandate any representation of services; rather,
using the OWL subclass it is possible to create
specialised representations of services that can be used as
service profiles. OWL-S provides one possible
representation through the class “Profile”. An OWL-S
“Profile” describes services individually as a combination
of three basic types of information: what organisation
provides each service, what functions each service
computes, and a host of features that specify
characteristics of each service. In this way, the
complementary descriptions about Web services

29

including the QoS can be extended in the services profile,
so that we can improve the automation and reliability of
Web services’ composition in dynamic circumstance.

QoS is an important criterion for e-service selection in
dynamic environment. In general, QoS refers to the
capability of a network to provide better service to
selected network traffic over various technologies. As for
P2P-based network, the dynamic and unpredictable
nature in e-service processes always affects the service’s
composition and performance significantly. In addition,
the dynamic e-business vision calls for a seamless
integration of business processes, applications, and e-
services over the Web space and time. In other words,
QoS properties such as reliability and availability for an
e-service process are in high demand. Furthermore,
changes and delay in traffic patterns, denial-of-service
attacks and the effects of infrastructure failures, low
performance in executions, and other quality issues over
the Web are creating QoS complications in a P2P
network. Quite often, unresolved QoS issues cause
critical transactional applications to suffer from
unacceptable performance degradation. Consequently,
there is a need to distinguish e-services using a set of
well-defined QoS criteria.

With the large number of e-services, consumers
definitely would like to require a means to distinguish
between ‘good’ and ‘bad’ service providers. In such a
case, QoS is the means to select a ‘better’ e-service
among various providers. From another aspect, the
different collaborating e-services applications will
compete for network resources in an unreasonable and
uncontrollable manner if their interactions are not
coordinated by any agreements or specification on QoS
differentiation. Naturally, these factors will force service
providers to understand and achieve QoS-aware services
to meet the demands. Also, a better QoS specification for
e-service will become more significant by being a unique
selling point for a service provider. Fundamentally, the
Web services QoS requirement refers to the quality, both
functional and non-functional, aspects of an e-service.
This includes performance, reliability, integrity,
accessibility, availability, interoperability, and security
(Mani and Nagarajan, 2002). The properties become even
more complex when adding transactional features to e-
services.

How to properly design and integrate QoS criteria in
P2P-based e-service process is an important innovation
for e-business development in decentralised network. It
particularly lends itself to ontology based development,
as services correspond to tasks that can be indexed using
a task ontology. In a dynamic environment, higher level
ontologies (application and domain ontologies) can be
used by agents to locate appropriate providers of services
and undertaking dynamic evaluation through appropriate
communication between agents. (Greco et al., 2004)
present an ontology-driven framework to build complex
process models that can be reused in this application.
More specifically, a web services modelling ontology is
described in detail in (Roman et al., 2005) and a “Generic
Negotiation Ontology (GNO)” in (Ermolayev and
Keberle, 2006) as an upper level negotiation ontology for

software agents. All these can be reused in this
application.

6 Summary and Conclusions
This paper promotes ontology-based software
development with a focus on methodologies for MAS
development. The paper first provides a conceptual
analysis bridging software engineering concepts (models,
modelling, metamodels etc.) and existing ontology
research emanating largely from the knowledge
engineering community. This provides a grounded
position on what an ontology can do to the SDLC and to
launch a methodological sketch of an ontology-based
multi agent system methodology. Key concepts and roles
of an ontology in a SDLC are illustrated in an
application, which is amenable to both the deployment of
agents and ontologies. Whilst this is a preliminary
illustration, it does clearly argue for enhanced reuse by
using ontologies as a central software workproduct.

Much work remains to refine the concepts presented in
this and to ensure that they are applicable to areas where
the use of ontologies is less obvious than the domain
discussed in this paper. Towards this, the first step is to
develop required ontological techniques. These include
ontology-based techniques for consistency checking
across products and processes, and ontology-based
techniques for testing completeness of products and
processes within and across methodologies. Underlying
complex issues need to be resolved, e.g. as how to
reconcile requirements from multiple sources and
multiple versions of ontologies. Another issue is how do
candidate Problem Solving Methods get identified to be
reused. Moreover, if new Problem Solving Methods are
needed for the system and if creating these is too
cumbersome, then this could certainly lead to the
ontology-based approach to be abandoned (as one
reviewer pointed out). It may well turn out that an
ontology-based approach is most suited to areas of
applications where the set of possible agent actions are
well specified in advance e.g. in modelling service
oriented systems.

Acknowledgement
This research is supported by the Australian Research
Council. This is Contribution number 09/07 of the Centre
for Object Technology Applications and Research.

References
Anquetil, N., de Oliveira, K.M. and Dias, M.G.B. (2006):

Software maintenance ontology. In Ontologies for
Software Engineering and Software Technology. 153-
173. Calero, C., Ruiz, F. And Piattini M. (eds). Springer
Berlin Heidelberg.

ANSI (1989): Information Resource Dictionary System
X3.138, American National Standards Institute. New
York.

Atkinson, C., Gutheil, M. and Kiko, K. (2006): On the
relationship of ontologies and models. Proc. WoMM
Workshop on Meta-Modelling, Karlsruhe, Germany,

30

2:47-60, Springer. Lecture Notes in Informatics (LNI) 96
GI 2006.

Bernon, C., Cossentino, M., Gleizes, M., Turci, P. and
Zambonelli, F. (2004): A study of some multi-agent
meta-models. Proc. AOSE 2004 International
Workshop on Agent-Oriented Software Engineering,
New York, USA, 5:62-77, Springer Berlin/Heidelberg.
Lecture Notes in Computer Science (LNCS) 3382.

Bertoa, M.F., Vallecillo, A. and García, F. (2006): An
ontology for software measurement, In Ontologies for
Software Engineering and Software Technology. 175-
196. Calero, C., Ruiz, F. And Piattini M. (eds). Springer
Berlin Heidelberg.

Beydoun, G., Tran, N., Low, G.C. and Henderson-Sellers, B.
(2006a): Foundations of ontology-based MAS
methodologies. Proc. AOIS 2005 International Bi-
Conference Woekshop, Utrecht, Netherland, 7:111-123,
Springer Berlin/Heidelberg. Lecture Notes in Artificial
Intelligence (LNAI) 3529.

Beydoun, G., González-Pérez, C., Henderson-Sellers, B. and
Low, G.C. (2006b): Developing and evaluating a generic
metamodel for MAS work products. In Software
Engineering for Multi-Agent Systems IV: Research
Issues and Practical Applications, 126-142. Garcia, A.,
Choren, R., Lucena, C., Giorgini, P., Holvoet, T. And
Romanovsky, A. (eds). Springer Berlin/Heidelberg.
Lecture Notes in Computer Science (LNCS) 3914.

Beydoun G., Low G.C., Henderson-Sellers B., Mouratidis
H., Gomez-Sanz J.J., Pavón J. and González-Pérez C.
(2009): FAML: A generic metamodel for MAS
development, IEEE Transaction on Software
Engineering, 35 (forthcoming).

Brinkkemper, S., Saeki, M. & Harmsen, F. (2001): A
method engineering language for the description of
systems development methods. Proc. CAiSE’01
International Conference on Advanced Information
Systems Engineering, Interlaken, Switzerland, 13:473-
476, Springer Berlin/Heidelberg. Lecture Notes in
Computer Science (LNCS) 2068.

Calero, C., Ruiz, F. and Piattini, M. (eds) (2006): Ontologies
for Software Engineering and Software Technology,
Berlin Heidelberg, Springer-Verlag.

Corcho, O., Fernández-López, M. and Gómez-Pérez, A.
(2006): Ontological engineering: principles, methods,
tools and languages. In Ontologies for Software
Engineering and Software Technology. 1-48. Calero, C.
Ruiz, F. And Piattini, M. (eds). Springer Berlin
Heidelberg.

DARPA (2000): Ontology Repository,
http://www.daml.org/ontologies/. Accessed 1 July 2009.

DiLeo, J., Jacobs, T. and DeLoach, S. (2002): Integrating
ontologies into multiagnet systems engineering. Proc.
AOIS 2002 at CAiSE’02 International Bi-Conference
Workshop on Agent-Oriented Information Systems,
Toronto, Ontario, Canada, 4:1-15.

Ermolayev, V. and Keberle, N. (2006): A generic ontology
of rational negotiation. Proc. ISTA 2006 International
Conference on Information Systems Technology and its
Applications, Klagenfurt, Austria, 5:51-65. Lecture
Notes in Informatics (LNI) 84 GI 2006.

Esteva, M., de la Cruz, D. and Sierra, C. (2002):
ISLANDER: an electronic institutions editor. Proc.
AAMAS 2002 International Joint Conference on

Autonomous Agents and Multiagent Systems, Bologna,
Italy, 1: 1045-1052, ACM Press.

Falbo, R.A., Ruy, F.B. and Moro, R.D. (2005): Using
ontologies to add semantics to a software engineering
environment. Proc. SEKE 2005 International
Conference on Software Engineering and Knowledge
Engineering, Taipei Taiwan, Republic of China, 17:151-
156.

Favre, J.-M., Gašević, D., Lämmel, R. and Winter, A. (eds),
(2007): 3rd International Workshop on Metamodels,
Schemas, Grammars and Ontologies. In Models in
Software Engineering, 52-55. Kühne, T (ed). Springer
Berlin/Heidelberg.

Fensel, D. (2004): Ontologies: a silver bullet for knowledge
management and electronic commerce, second edition,
Berlin Heidelberg, Springer-Verlag.

Fensel, D. (1997): The tower-of-adaptor method for
developing and reusing problem-solving methods. Proc.
EKAW European Workshop on Knowledge Acquisition,
Modeling and Management, Sant Feliu de Guíxols,
Catalonia, Spain, 10: 97-112. Springer Berlin/Heidelberg.
Lecture Notes in Artificial Intelligence (LNAI) 1319.

Girardi, R. and Serra, I. (2004): Using ontologies for the
specification of domain-specific languages in multi-
agent domain engineering. Proc. AOIS 2004 at
CAiSE’04 International Bi-Conference Workshop on
Agent-Oriented Information Systems, Riga, Latvia, 6:
295-308, Faculty of Computer Science and Information
Technology, Riga Technical University.

Giunchiglia, F., Mylopoulos, J. and Perini, A. (2003): The
tropos software development methodology: processes,
models and diagrams. In Agent-Oriented Software
Engineering III. 162-173. Giunchiglia, F., Odell, J. And
Weiß, Gerhard. (eds). Springer-Verlag.

González-Pérez, C. and Henderson-Sellers, B. (2006): A
powertype-based metamodelling framework, Software
and Systems Modeling, 5(1), 72-90.

González-Pérez, C. and Henderson-Sellers, B. (2008):
Metamodelling for software engineering, Chichester,
UK, John Wiley & Sons.

Greco, G., Guzzo, A., Pontieri, L. and Saccà, D. (2004) An
ontology-driven process modeling framework. Proc.
DEXA International Conference on Database and Expert
Systems Applications, Zaragoza, Spain, 15:13-23,
Springer Berlin/Heidelberg. Lecture Notes in Computer
Science (LNCS) 3180.

Green, P. and Rosemann, M. (2005): Business systems
analysis with ontologies, Hershey, PA, USA, IGI
Publishing.

Gruber T.R. (1993): A translation approach to portable
ontology specifications. Knowledge Acquisition, 5(2):
199-220.

Guarino, N. (1998): Formal ontology and information
systems. Proc. FOIS 2008 International Conference on
Formal Ontology in Information Systems, Trento, Italy,
1:3-15, IOS Press.

Guizzardi, G. (2005). Ontological Foundations for Structural
Conceptual Models. Ph.D. thesis. Centre for Telematics
and Information Technology. Enschede, The
Netherlands. CTIT PhD Thesis Services No. 05-74.
Telematics Instituut Fundamental Research Series No.
015 (TI/FRS/015).

31

Guizzardi, G. and Wagner, G. (2005a): Towards ontological
foundations for agent modelling concepts using the
unified foundational ontology (UFO). Proc. AOIS 2004
International Bi-Conference Workshop, Riga, Latvia, 6:
110-124, Springer Berlin/Heidelberg. Lecture Notes in
Computer Science (LNCS) 3508.

Guizzardi, G. and Wagner, G. (2005b): Some applications of
a unified foundational ontology in business modeling. In
Business Systems Analysis with Ontologies. 345-367,
Green, P. And Posemann, M. (eds). IGI Publishing.

Henderson-Sellers, B. (2003): Method engineering for OO
systems development. Communications of the ACM 46
(10): 73-78.

Henderson-Sellers, B. and Giorgini, P. (eds) (2005): Agent-
Oriented Methodologies. Hershey, USA, IGI
Publishing.

Henderson-Sellers, B. (2006): Method engineering: theory
and practice. Proc. ISTA 2006 International Conference
on Information Systems Technology and its Applications,
Klagenfurt, Austria, 5:13-23. Lecture Notes in
Informatics (LNI) 84 GI 2006.

Henderson-Sellers, B. and Unhelkar, B. (2000): OPEN
modeling with UML, Boston, MA, USA, Addison-
Wesley Longman Publishing Co., Inc.

ISO/IEC (2007): 24744: Software Engineering - Metamodel
for Development Methodologies, Geneva, Switzerland,
International Organization for Standardization
(ISO)/International Electrotechnical Commission (IEC).

Karagiannis, D., Fill, H.-G., Höfferer, P. and Nemetz, M.
(2008): Metamodelling: some application areas in
information systems. Proc. UNISCON 2008 Information
Systems and e-Business Technologies, International
United Information Systems Conference, Klagenfurt,
Austria, 2:175-188. Springer-Verlag Berlin Heidelberg.
Lecture Notes in Business Information Processing
(LNBIP) 5.

van Lamsweerde, A., Darimont, R. and Letier, E. (1998):
Managing conflict in goal-driven requirements
engineering. IEEE Transactions on Software Engineering
24(11):908-926.

Leppänen, M. (2007): An Ontological framework of method
engineering: an overall structure. Proc. EMMSAD 2007
Workshop on Exploring Modeling Methods for Systems
Analysis and Design at CAiSE’07 Conference on
Advanced Information Systems, Trondheim, Norway,
12:47-57, Tapir Academic Press.

Mani, A. and Nagarajan, A. (2002): Understanding Qality of
Service for Web Services,
http://www.ibm.com/developerworks/library/ws-
quality.html. Accessed 1 June 2008.

Noy, N.F. and McGuinness, D.L. (2001): Ontology
development 101: a guide to creating your first ontology.
Stanford Knowledge Systems Laboratory Technical
Report KSL-01-05 and Stanford Medical Informatics
Technical Report SMI-2001-0880.

Oliveira, K.M. de, Villela, K., Regina Rocha, A. and Horta
Travassos, G. (2006): Use of ontologies in software
development environments. In Ontologies for Software
Engineering and Software Technology. 275-309. Coral,
C., Ruiz, F. And Piattini, M. (eds). Springer Berlin
Heidelberg.

OMG (2005a): Unified Modeling Language: Superstructure,
Version 2.0, formal/05-07-04.
http://www.omg.org/spec/UML/2.0/Superstructure/PDF.

OMG (2005b): Ontology Definition Metamodel, ad/2005-08-
01.

OWL-S Coalition (2006): Semantic Markup for Web
Services. http:// www.daml.org/services/owl-s/.
Accessed 1 Nov 2009.

Rilling, J., Zhang, Y., Meng, W.J., Witte, R., Haarslev, V.
and Charland, P. (2007): A unified ontology-based
process model for software maintenance and
comprehension. In Models in Software Engineering. 56-
65. Kűhne, T. (ed). Springer Berlin/Heidelberg. Lecture
Notes in Computer Science (LNCS) 4364.

Rodríguez, A., Palma, J. and Quintana, F. (2003):
Experiences in Reusing Problem Solving Methods - An
Application in Constraint Programming. Proc. KES’2003
International Conference on Knowledge-Based
Intelligent Information & Engineering Systems, Oxford,
U.K., 7:1299-1306. Lecture Notes in Computer Science
(LNCS) 2774.

Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R.,
Stollberg, M., Polleres, A., Feier, C., Bussler, C. and
Fensel, D. (2005): Web Service Modeling Ontology,
Applied Ontology 1(1): 77-106.

Ruiz, F. and Hilera, J.R. (2006): Using ontologies in
software engineering and technology. In Ontologies for
Software Engineering and Software Technology. 49-102.
Calero, C., Ruiz, F. And Piattini M. (eds). Springer
Berlin Heidelberg.

Shen J., Yang Y., Yan J. (2007): A P2P based Service flow
system with advanced ontology-based service profiles.
Advanced Engineering Informatics 21(2):221-229.

Sousa, J.P.P., Carrapatoso, E., Fonseca, B., Pimentel,
M.G.C. and Bulcão-Neto, R.F. (2009): Composition of
Context-Aware Mobile Services Using a Semantic
Context Model, IARIA International Journal on
Advances in Software 2(2):1-13.

Tran, Q.N.N. and Low, G.C. (2005): Comparison of
Methodologies. In Agent-Oriented Methodologies. 341-
367. Henderson-Sellers, B. And Giorqini, P. (eds). IGI
Publishing.

Tran, Q.N.N., Low, G.C. and Beydoun, G. (2006): A
methodological framework for ontology centric oriented
software engineering. International Journal of Computer
Systems Science and Engineering 21(2):117-132.

Uschold, M. (2005): An ontology research pipeline. Applied
Ontology 1(1):13-16.

Wand, Y. and Weber, R. (2005): Introduction: setting the
scene. In Business Systems Analysis with Ontologies. xii-
xv, Green, P. And Posemann, M. (eds). IGI Publishing.

Wooldridge, M., Jennings, N.R. and Kinny, D. (2000): The
gaia methodology for agent-oriented analysis and design.
Autonomous Agents and Multi-Agent Systems 3(3):285-
312.

32

An Approach to Customizing Requirements Goal Model based on

Metamodel for Ontology Registration

Chong Wang1, Chi Zhang2, Keqing He1, Jingbai Tian3, Jian Wang1, Cheng Zeng1
1State Key Lab. Of Software Engineering, Wuhan University, Wuhan, 430072, China

2 International School of Software, Wuhan University, Wuhan, 430079, China
3 School of Computer Science, Hubei University of Technology, Wuhan, 430068, China

cwang@sklse.org, chzhcn88@gmail.com

Abstract
To speed up creation of personalized requirements models
for users, it is necessary to systematically model domain
knowledge and specify a reuse mechanism to customize
personalized requirements models. Based on a unified
framework for requirements metamodeling named RGPS
(Role-Goal-Process-Service), a goal oriented and ontology
based approach is proposed in this paper to customization
of requirements goal models based on domain knowledge.
Particularly, Metamodel for ontology registration is
introduced as a common facility to register goal models
and promote semantic interoperation between them.
Accordingly, a series of rules are designed to construct,
refine and ultimately confirm requirement goal models. In
order to demonstrate how our approach works, a case study
in urban transportation domain is illustrated step by step to
provide details of how to customize requirements goal
models for users. In this way, well-modeled and registered
domain goal models will be the foundation for constructing
high-quality requirements goal models in a normative way.

Keywords: Domain modeling, requirements customization,
goal-oriented requirements analysis, ontology

1 Introduction
With the rapid growth of Internet, the software
development environment is shifting from centralized and
closed local network to open, dynamic, complex, and
evolving Internet (Fuqing 2005), software development is
now facing challenges of providing better products and
services to discriminating customers by reusing existing
information resources，which leaves two key problems to
be resolve. One is to promote interoperation between
heterogeneous resources; the other is to fill in the gap
between users’ requirements described from different
viewpoints and those resources.

Goals are often used as descriptive statements of users’
intention, or objectives the system under consideration
should achieve (Lamsweerde 2001). Thus, goal models
satisfying specific requirements are capable of carrying
users’ intention to describe functional and non-functional
requirements at different levels of granularity. As an active
branch of requirements engineering, famous goal-oriented
approaches to requirements description and analysis, such
as KAOS (Lamsweerde 2001, Dardenne 2003) and i*(Yu
1997), can a) characterize and classify requirements that
are viewed as goals, and help developers capture real
motivation and intention of users in an accurate and
precise way; b) generate operational goals for developers
by decomposing and refining abstract goals. Goal-oriented
approaches enable a smooth transition from users’s
abstract descriptions to specified softwares, but rare
effective mechanisms for non-functional requirements
have been issued. Tropos (Castro 2002) and NFR
(Non-Functional Requirements Framework) (Chung 2000,
Mylopoulos 1992) define “softgoal” to express
nonfunctional requirements. Yet, it differs from
non-functional goals in that it can express both
nonfunctional requirements and extra functional
expectations, which brings difficulty for technicians to
analyse and process requirements described by softgoals.
On the other hand, ontology is able to capture the
semantics of information from various sources and give
them a concise, uniform and declarative description,
therefore have brought up significant attention in
academia and industry (Fensel 2001). So it offers a
common semantic foundation to support consistent
expression of both user’s requirements and information
resources.

To perform requirements modeling in a comprehensive
and user-friendly way, a framework for requirements
metamodeling named RGPS was proposed (Jian 2007,

33

Jian 2008). It supports requirements modeling from four
aspects, namely, role, goal, process and service, so that
interweaved requirements in a specific domain can be
organized into orderly and structured requirements
specifications. Compared with the requirements modeling
methods motioned above, Goal metamodel in RGPS is a
suitable choice for goal-oriented requirements modeling
because a) it makes a clear distinction between functional
goals, nonfunctional goals and operational goals as well as
defines respective description facilities for them; b) in
RGPS, four decomposition manners and two constraints
are designed to help goal modeling more flexible for users
to perform goal decomposition; c) it specifies relationships
among goal, role and process respectively to facilitate
reuse of domain knowledge of multi-granularity. In this
paper, we will take goal metamodel in RGPS as the
foundation and the cases in urban transportation domain as
an example to demonstrate how to customize requirements
goal model(RGM) from RGPS-based domain goal models
(DGM). In RGPS, DGM is described with OWL. So
Metamodel for Ontology Registration (MOR) is
introduced in this paper, which can register and manage
goal models in a specific domain. On one hand, MOR is
able to promote interoperation between heterogeneous
domain assets. On the other hand, customization of RGM
will be addressed as how to create local ontologies based
on a given reference ontology. Meanwhile, in terms of
internal relationships between local ontology and the
reference ontology in MOR, which part of a DGM is
reused and how frequently it is reused can be summarized
to benefit the process of merging individual requirements
into requirements of a specific user group.

The rest of this paper is organized as follows: section 2
gives a brief introduction of MOR; section 3 explains the
details of the Goal metamodel in RGPS and shows how to
perform goal modeling in the urban transportation domain
with the modeling tool we developed; section 4 proposes a
solution to customize requirements goal model based on
domain goal model created in section 3 and its registration
information based on MOR; section 5 is the related work,
followed by the summary and future work.

2 Brief Introduction of MOR
MOR is a key member of Metamodel Framework for
Interoperability (ISO/IEC 19763) (ISO 2007), whose main
objective is to register and manage administrative
information with respect to the structure and semantics of

ontologies. Since the differences in ontology descriptive
languages and ontology development techniques add
difficulties in promoting semantic interoperations between
ontologies, MOR illustrates a comprehensive solution for
this problem (Yangfan 2005, Chong 2006). The overall
structure of MOR is depicted in Fig. 1.

Fig.1. Overall structure of MOR
Examining Fig. 1 from the top down, MOR defines

“Ontology_Whole-Ontology_Component-Ontology_Atom
ic_Construct” to register common information of
ontologies. This three-layer structure implies that an
ontology consists of ontology components and each
ontology component is composed of ontology atomic
constructs, the smallest component of an ontology.
Moreover, it only emphasizes the language-independent
information of ontologies and ignores their differences
caused by representative notations. So for any ontology to
be registered, ontology components and ontology atomic
constructs will respectively represent sentences and
non-logical symbols (such as concepts, instances) of the
ontology.

Viewing Fig. 1 from left to right, MOR also specifies
ontologies of two different types, Reference
_Ontology_Whole (RO) and Local_Ontology_Whole (LO)
to distinguish different roles that ontology plays in
different cases. RO is responsible of representing common
ontologies in domains, which is in usual created and
maintained by authorities and/or relevant domain experts
to guarantee its suitability. Different from RO, LO is
designed for particular information systems, which reuses
some elements of ROs and adopts changes to meet
different needs. As a result, two LOs derived from the
same RO suggest there is some inherent semantic
relationship between them. Thus, the information systems
adopting these two LOs can interoperate with each other
on the basis of the parent RO. In addition, LO can also
reuse some parts of RO, modify the reused part and add

34

new elements in MOR. This idea is illustrated where
Reference_Ontology_Component(ROC) forms RO but LO
is composed of two ontology components, i.e. ROC that
comes from RO directly and
Local_Ontology_Component(LOC) that is special for LO
and generated by modifying or adding operations.
Likewise, Reference_Ontology_Atomic_Construct(ROAC)
forms ROC while LOC consists of both
Local_Ontology_Atomic_Construct(LOAC) and ROAC.

3 Domain Goal Modeling based on RGPS

3.1 Goal Metamodel in RGPS
RGPS is designed for service-oriented requirements
metamodeling. It consists of four metamodels which are
interconnected with each other. Role Metamodel describes
organizations, roles and the interactions between them in a
given requirements problem space. Goal Metamodel is to
perform goal decomposition by specifying constraints
between them. Process Metamodel defines basic
constructs of a Process and the connections between them.
Service Metamodel provides available services and is in
general bound zero-to-many with a process.

Goal Variability

Mandatory

Optional

Alternative

OR

Operational Goal

NFG

FG Constraint
Depend

Exclude0..*source1..*

hasNFG

upper
1..1 lower

0..*

NOTE Metaclasses whose names are italicized are abstract metaclasses.

0..*target

Fig. 2. Overall Structure of Goal Metamodel.
Fig.2 shows Goal Metamodel in RGPS. Considering

the system functionality that should be achieved and the
global constraints that have to be followed, goals can be
classified as Functional Goal(FG) and Nonfunctional
Goal(NFG). FG describes the functions that a system must
achieve, and NFG explains how these FGs are exercised
and will affect or restrict the achievement of which FG to
some degree.

As mentioned before, a goal is a high-level and general
statement. With Goal Metamodel in RGPS, it can be
refined as a concrete and operational description of the
software-to-be. Goal refinement is a process in which a
high-level goal is decomposed into sub-goals, using

feature decomposition strategies in FODA (Kang 1990). In
RGPS, Variability decomposition indicates whether a goal
is variable with respect to its upper-goal during the process
of goal refinement. In detail, Variability decomposition
relationships that characterize the relationship between the
upper goal and lower goal set can be divided into
Mandatory, Optional, OR and Alternative sub-goals
during goal decomposition. A Mandatory goal is a goal
that is common to all the software systems in domain,
while the other three are dependent on particular systems.
Optional goals are those whose existence depends on the
requirements of individual cases. The difference between
the OR goal and the Alternative goal is that exactly one
Alternative goal can be chosen from a sub-goal set, while
more than one OR goals can be selected from the set.
Additionally, the Constraint among goals is either Depend
or Exclude. The former means that the realization of a
certain goal depends on the realization of other ones, and
the latter implies that two goals cannot be satisfied
simultaneously.

3.2 Goal Modeling in Urban Transportation
Domain

In this paper, we will take urban transportation domain as
the typical application domain for modeling DGMs based
on RGPS. To facilitate domain modeling based on RGPS,
a domain modeling toolkit named O-RGPS was developed
to import domain ontologies of a specific domain and
perform domain knowledge modeling based on RGPS.
Supposing we want to arrange a trip plan, a corresponding
domain goal model will be created by the goal modeling
tool in the toolkit, shown in Fig.3.

We can find that FG “PrepareTripPlan” is composed of
four mandatory FGs, i.e. “GenerateTripPreference”,
“QueryTripInfo”, “ArrangeTrip” and “DisplayTripPlan”
and one optional goal “PerformBooking”. Moreover,
“DisplayTripPlan” depends on “ArrangeTrip”, which
depends on “QueryTripInfo”. FG “PerformBooking” has a
NFG “AvailabilityisGreaterThan95”. “QueryBusInfo”,
“QueryHotelInfo” and “QueryParkingInfo” are three OR
sub-goals of “QueryTripInfo”. “DisplayTripPlan” also has
two OR subgoals, i.e. “DisplayTripbyVideo” and
“DisplayTripbySMS”. In addition, operational goal
“QueryBusInfobyStation” and “QueryBusInfobyRoute”
are two alternative subgoals of “QueryBusInfo”.

35

4 Customizing Personalized RGM
The basic idea of RGM customization is to reuse common
goals from RGPS-based domain goal models and add
personal goals for user preference. The process of
customizing RGM includes the following steps:

Step1: register DGM as an instance of RO according to
the three-layer structure defined in MOR.

Step2: select a requested set of goals from registered
DGM, add relevant goals to the set and supplement
associations between them, and then organize them as a
predefined RGM (PreRGM) that is in the form of DGM.

Step3: simplify the associations between goals in
PreRGM and convert it into RGM.

Step4: complete RGM by adding personalized goals
and detecting potential conflicts between goals, register
RGM as LO and specify “sameAs” relation from RGM to
DGM.

In this way, a unified registration facility is introduced
to promote sharing of domain assets and interoperation
between them by registering and managing both common
and personalized requirements in a domain. Furthermore,
“sameAs” relations between RGM and DGM states which
goals are frequently reused by which users. This can help
requirements evolution from individuals to user group.

4.1 Goal Metamodel in RGPS
Before registering DGM based on MOR, we will introduce
graph theory, a formal description of DGM, in this section.

Def.. DGM = 〈V, E〉 denotes a domain goal model, in
which V denotes a set of goals and E denotes relationships
between them, whereE = V × V and ∀e ∈ E,∃u, v ∈ V →
e = 〈u, v〉 ∩ w(e) = {M, O, A, OR, D, Ex, hasNFG} . M, O,
A, OR, D and Ex denote Mandatory, Optional, Alternative,
OR, Depend and Exclude respectively. The domain goal
model in Fig.2, for example, can be formalized into
followings:
DGMprepareTrip = 〈Vprep areTrip , EprepareTrip 〉
VprepareTrip

= {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14}
= {PrepareTripPlan, GenerateTripPrefernce,

QueryTripPlan, ArrangeTrip, DisplayTripPlan,
PerformBooking, QueryBusInfo, QueryhotelInfo,
QueryParkingInfo, QueryBusInfobyStation,
QueryBusInfobyRoute, DisplayTripbyVideo,
DisplayTripbySMS, AvaliablityisGreaterThan95}

EprepareTrip

= {〈v1, v2〉, 〈v1, v3〉, 〈v1, v4〉, 〈v1, v5〉, 〈v1, v6〉, 〈v4, v3〉,
〈v5, v4〉, 〈v5, v14〉, 〈v3, v7〉, 〈v3, v8〉, 〈v3, v9〉, 〈v7, v10〉,
〈v7, v11〉, 〈v5, v12〉, 〈v5, v13〉}
Take a further look at EprepareTrip , it is found that

w(〈v1, v2〉) = w(〈v1, v3〉) = w(〈v1, v4〉) = w(〈v1, v5〉) =
M,

w(〈v1, v6〉) = Op,

w(〈v4, v3〉) = w(〈v5, v4〉) = D,

w(〈v3, v7〉) = w(〈v3, v8〉) = w(〈v3, v9〉) = OR

Fig. 3 Screenshot of the domain goal model for “Prepare Trip Plan”.

36

w(〈v7, v10〉) = w(〈v7, v11〉) = w(〈v5, v12〉) =
w(〈v5, v13〉) = A,

w(〈v5, v14〉) = hasNFG
After registering DGM, the whole goal model is

registered as an instance of RO. Individual goals and the
constraints between them in the goal model is viewed as
ROAC. The instance of ROC can be any subgraph
consisting of some goals and the corresponding relations.

Table 1: Mapping Goal metamodel to MOR.

Elements in Goal metamodel Metaclasses
in MOR

 RO

 ROC

 ROAC

 ROAC

(a)

(b)

Fig. 4 Registration information of (a) ROC and (b)
ROAC based on the Ontology Registration Platform.

We have developed a platform for ontology registration
based on MOR. Following mappings from extended Goal
metamodel to MOR in Table1, we can get registration
information of DGM created in section 4.1. Fig.4(a) shows

registration information of ontology component and
Fig.4(b) illustrates that of ontology atomic construct.

4.2 Customizing PreRGM
Given a set of goals, is the only input when users try
to customize a satisfying RGM. It includes and

, denoting part of goals within DGM and a set of
personalized goals beyond DGM, respectively. Actually,

 is the starting point of customizing PreRGM. The
basic idea is that for ∀vi ∈ Vcommon , we should find a
subDGMi = 〈Vi, Ei〉 whose root is vi and in which 1) Vi
represents a set of goals that is directly or indirectly related
to vi and 2) Ei denotes a set of associations connecting
goals in Vi. The algorithm below shows how to customize
PreRGM.

// GoalCollection denotes a set of

selected goals.

// Boolean Goal.hasRelatedGoal(Goal

goal) is used as a method to tell

whether a goal has related goals.

// GoalCollection

Goal.listRelatedGoal() is used to list

all the goals related to a given goal

GoalCollection

completeGoals(GoalCollection gc1){

gc = new GoalCollection ();

 for(int i=0; i<gc1 ; i++){

 gc.add(gc1[i]);

 if(gc1[i].hasrelatedgoal()){

 gc2=gc1[i].listRelatedGoal();

 for(int j=0; j<gc2.length();

j++){

 gc.add(gc2[j]);

 }

 }

}

Return gc;

}

For example, we suppose:
Vuser = {ArrangeTripPlan, DisplayTripPlan,
 PerformBooking, ReponseTimeisLessThan5sec. }

By matching Vuser to the registration information of
RGM, we can get Vcommon = {v4, v5, v6} and Vpersonal =
{"ReponseTime is less than 5 sec. "}

After applying the improvement algorithm above, goals
and relevant associations contained in subDGMarrange ,

37

subDGMdisplay and subDGMperform are generated as
follows. Note that the process of customizing RGM will
not change the weight of the edges.

(1) Search goals that are related to Vuser
subDGMarrange = 〈Varrange ,Earrange 〉
Varrange = {v4, v3, v7, v8, v9, v10, v11}
Earrange

= {〈v4, v3〉, 〈v3, v7〉, 〈v3, v8〉, 〈v3, v9〉, 〈v7, v10〉, 〈v7, v11〉}
subDGMdisplay = 〈Vdisplay ,Edisplay 〉
Vdispl ay = {v5, v4, v12, v13, v14}
Edisplay = {〈v5, v4〉, 〈v5, v14〉, 〈v5, v12〉, 〈v5, v13〉}
subDGMperform = 〈Vperform ,Eperform 〉
Vperform = {v6}, Eperform = ∅

(2) Search goals linking to Vuser
Varrange
′ = Varrange ∪ {v1, v5},

Earrange
′ = Earrange ∪ {〈v1, v4〉, 〈v1, v3〉, 〈v5, v4〉},

Vdisplay
′ = Vdisplay ∪ {v1}, Edisplay

′ = Earrange ∪ {〈v1, v5〉}
Vperform
′ = Vperform ∪ {v1},

 Eperform
′ = Eperform ∪ {〈v1, v6〉}

(3) Generate PreRGM
PreRGM = 〈Vcommon , Ecommon 〉
Vcommon = Varrange

′ ∪ Vperform
′ ∪ Vdisplay

′
= {v4, v3, v7, v8, v9, v10, v11, v5, v12, v13, v14, v6, v1}
Ecommon = Earrange

′ ∪ Eperform
′ ∪ Edisplay

′

= {〈v4, v3〉, 〈v3, v7〉, 〈v3, v8〉, 〈v3, v9〉, 〈v7, v10〉, 〈v7, v11〉,
 〈v5, v4〉, 〈v5, v14〉, 〈v5, v12〉, 〈v5, v13〉, 〈v1, v4〉, 〈v1, v3〉,

 〈v1, v5〉, 〈v1, v6〉}

4.3 Refining PreRGM to RGM
Since all the goals involved in RGM will explicitly
describe user’s requirements, this paper specifies that only
Mandatory, OR and Depend are allowed in RGM. For this
purpose, it should expect users not only to further select
appropriate goals from PreRGM, but refine PreRGM into
RGM with corresponding transformations on Optional,
Alternative and Excludel. That is, we need to transform
Optional and Alternative association into Mandatory as
well as delete Exclude relation.

The inference rules of Optional, Alternative and
Exclude are fundamental for refining PreRGM into RGM.
To define the SWRL-based rules, we suppose that
hasGoal denotes a goal set whose elements are selected by
users; hasNegationGoal presents a goal set whose
elements are beyond the choice of users; hasMandatory,
hasOptional, hasAlternative and hasExclude denote four
kinds of goal sets whose elements are respectively
connected with Mandatory, Optional, Alternative and

Exclude; differentFrom implies that the involved goals are
quite different with each other. The rules are defined as
follows:

Optional Rule: hasGoal(?x,?y) ∧ hasOptional(?z,?y)
→ hasGoal(?x,?z).If user x has a goal y and y is an
optional goal of z, then goal z is the mandatory goal of
users.

Alternative Rule:
hasGoal(?x,?y)∧hasAlternative(?y,?z)∧hasAlternative(?y
,?a)∧differentFrom(?a,?z)∧ hasGoal (?x,?a) →
hasNegationGoal(?x,?z). Given user x has a goal y, which
has two different alternative goals named x and z. If a is
selected by user x, then z must be contained in the negation
goal set of x.

Exclude Rule: hasGoal(?x,?y) ∧ hasExclude(?y,?z) →
hasNegationGoal(?x,?z). Given user x has a goal y. If goal
y and z exclude each other, then y resides in the negation
gal set of x.
Table 2: Transformation rules for refining PreRGM
into RGM.

Rule name Operation
Change_Op_T

o_M e

if

then
Change_A_To

_M
if

then {

 }

 else if

then { w(e13) = M;
 w(e12): = Ex;

}
Delete_Ex e

if
then {delete v;

if

then { delete e ;
delete x;

 delete
}

}

Accordingly, Table 2 illustrates how to handle Optional,
Alternative and Exclude to perform transformation from
PreRGM to RGM. Before refining RGM, we suppose that
goals in Vcommon

′ are the ultimate choice of users to
express their personalized requirements. In our case, for
example, the individualized requirements are expressed in
Vcommon
′ = {v1, v3, v4, v5, v6, v8, v9, v12, v14}.

38

In this case, only rules of Change_Op_To_M and
Change_A_To_M will be applied to refine PreRGM. In
detail, when Rule Change_Op_To_M is implemented, the
value of 〈v1, v6〉 will be changed to M; when Rule
Change_A_To_M is applied, the value of 〈v5, v12〉 will be
changed to M, followed by deleting OG “Display Trip
Plan by SMS”, its relevant goals and the relations between
them. In this way, the case in section 4.3 will be
transformed into the corresponding RGM in Fig.5.

<<Operational Goal>>
Arrange Trip Plan

<<FR Goal>>
Prepare Trip Plan

<<FR Goal>>
Query Trip Info

<<FR Goal>>
Display Trip Plan

<<NFR Goal>>
Availability is greater than 95

<<Operational Goal>>
Query Parking Info

<<Operational Goal>>
Dispaly Trip Plan by Video

<<Operational Goal>>
Perform Booking

Mandatory

Or
Depend

hasNFG

<<Operational Goal>>
Query Hotel Info

Fig. 5. RGM in urban transportation domain.

4.4 Registering RGM
Till now, only goals matching existing DGM are involved
in RGM. In order to completely express individualized
requirements of users, goals in Vpersonal will also be added
to RGM by means of specifying dependency between
goals in Vpersonal and then connecting them to the FGs in
RGM. Meanwhile, to keep the consistency of ultimate
RGM, it toned to detect potential conflicts between
original goals and newly added ones. In this paper, we will
focus on conflicts related to nonfunctional requirements,
which are further classified into two categories. The first is
that Manner of FG and NFR type of NFG are likely to
come into conflicts. Take the case in 4.3 as an example,
“ResponseTimeisLessThan5sec.” is modeled as an
instance of NFG beyond the PreRGM. Since information
exchange must have a huge transmission volume by means
of video, the FG “DisplayTripbyVideo” might hinder
realization of “ResponseTimeisLessThan5sec”. The
second category concentrates on the potential conflicts
between NFR types of different NFGs. For instance,
“ResponseTime” might be in conflict with “Reliability”.

Consequently, it is important to resolve potential
conflicts mentioned above to keep a robust goal modeling.
As for conflicts between FG and NFG, it is advisable to
change the manner of FG or lower expectation of the
NFGs. Concerning conflicts between NFGs, we need to
lower expectation of some NFGs to leverage the whole
quality of experience, which will lead to potential
modifications on original goals. Then we should negotiate
with users to clarify how to handle conflicts appropriately.

In particular, conflicts between FG and NFG should be of
top priority.

(a)

(b)

Fig. 6. Screenshot of (a) adding “sameAs” relations to
map RGM to DGM and (b) querying added “sameAs”
between them.

Similar to the process of registering DGM, ontology
registration platform based on MOR supports registration
of RGM by importing the corresponding OWL files of
RGM. Moreover, “sameAs” relationships defined in MOR
to specify how to customize RGM based on DGM should
be added manually. For example, Fig.6(a) shows that
“QueryHotelInfo” in both DGM and RGM are the same.
After that, the newly added “sameAs” relationship
becomes visible to query operations. In Fig.6(b), the
component “DisplayTripbyVideo” in RGM reuses that of
DGM. The operation and query of ontology atomic
construct are similar to that of ontology component.

This section just exemplifies how to reuse DGM for
customization of RGM and record inherent relationships
between RGM and DGM. In this way, the relationships
between one DGM and many RGMs can act as the
statistics showing how frequently the DGM is reused by
which kind of users. That is, it can speed up the process of
collecting preference of individuals to merge them into
requirements of a certain user group.

Adding sameAs” between OC Adding “sameAs” between OAC

Components from DGM

Components from RGM

Query “sameAs” relations between RGM and DGM

39

5 Related work
Based on software reuse techniques, domain engineering
proposes a systematic method for mass reuse of domain
knowledge. In general, users’ requirements are closely
linked with a certain domain where software engineers
usually find themselves not familiar with the specified
domain knowledge. Thus, the collaboration between
knowledge engineering and domain engineering will
benefit the process of requirements analysis. Meanwhile,
ontologies can be adopted to supply formal description of
domain knowledge, which is fundamental for negotiation
between users and developers.

Currently, domain-driven requirements engineering is
blooming in both academia and industry. In the 1990s, R.Q.
Lu and Z. Jin proposed a domain ontology based approach
to requirements analysis and modeling for information
systems (Ruqian 1995, Ruqian 1996). It performs domain
modeling based on ontologies, so that domain ontologis
are able to support requirements elicitation, assist the
process of requirements modeling and create high-quality
requirements model, which is the basis of automatic
requirements analysis (Zhi 2000, Ruqian 2000). MADEM
(Multi-Agent Domain Engineering Methodology) (Girardi
2007) is designed as a software development methodology
for multi-agent requirements modeling. In MADEM,
GRAMO (Generic Requirement Analysis Method based
on Ontologies) (Girardi 2004) is proposed as an
ontology-based approach for requirements modeling and
analysis from four aspects, i.e. concept modeling, goal
modeling, role modeling and role interaction modeling.

However, most of the approaches to domain-driven
requirements modeling mainly concentrate on functional
requirements rather than nonfunctional requirements and
its correlation with a specified domain. Different domains
and scenarios focus on different aspects of nonfunctional
requirements. Therefore, domain modeling should include
not only functional requirements but its integration with
nonfunctional requirements. Our approach not only takes
nonfunctional requirements into account, but addresses
fusion of FG and NFG by defining two types of
NFG-related conflicts and the corresponding solutions for
them. In future, those principles used to resolve potential
conflicts between FG and NFG as well as between NFGs
will be enhanced to ensure customization of consistent and
comprehensive requirements for a variety of customers.

6 Summary and future work
In this paper, a goal-oriented approach is proposed to
customize personalized RGM based on ontologies by
combining RGPS-based domain modeling technique,
goal-oriented method for requirements refinement and a
common ontology registration mechanism based on MOR
as well. Creation of RGM can be implemented by reusing
RGPS-based DGM and the registration information based
on MOR, while the refinement of initial RGM is processed
by the goal model improvement algorithm and checking
rules derived from Goal metamodel in RGPS. The ultimate
RGM is confirmed by merging FG and NFG requirements.
As for MOR, it is responsible for registering RGM and
explicitly specifying the relationship between RGM and
DGM, so that it can help generate a required RGM based
on modeled domain knowledge. And the corresponding
registration information will be fundamental for counting
the reusing rate of domain knowledge and acting as hints
to deduce the requirements of user groups from individual
requirements.

In the near future, how to detect and resolve potential
conflicts between FG and NFG as well as between NFGs
will be the focus of our research. In addition, the platform
for ontology registration will be further enhanced by
statistically deducing the requirements of a specified user
group from the registration information that describes
which atomic constructs or components of a DGM are
reused by which RGMs.

Acknowledgement
This research project was supported by the National Basic
Research Program of China (973) under Grant
2007CB310801, the National High Technology Research
and Development Program of China (863) under Grant
No.2006AA04Z156, the National Natural Science
Foundation of China under Grant No. 60803025,
60873083, 60703018 and 60703009, the Natural Science
Foundation of Hubei Province under Grant
No.2008ABA379 and 2006ABA228, the Research Fund
for the Doctoral Program of Higher Education of China
under Grant No. 20070486065, and the Eleventh
Five-Year Plan for National Key Technology R&D
Program under Grant No. 2006BAK04A20-7.

40

Reference
Fuqing Yang, Hong Mei. (2005): Internetware: A New

Software Modality in the future. China Education
Network, Vol.7, (2005)52–54.

D. Fensel, Ontologies: A Silver Bullet for Knowledge
Management and Electronic Commerce, Springer,
2001.

A. V. Lamsweerde (2001): Goal-oriented Requirements
Engineering: a Guided Tour. Proc. The 5th IEEE
International Symposium on Requirements Engineering,

Toronto, Canada, 249-263, IEEE CS.
Dardenne, A. V. Lamsweerde, and S. V. Fickas (1993):

Goal-Directed Requirements Acquisition. Science of
Computer Programming 20:3-50.

E. Yu (1997): Towards Modeling and Reasoning Support
for Early Requirements Engineering. Proc. IEEE
International Symposium on Requirement Engineering.

地点 226 -235.

J. Castro, M. Kolp, and J. Mylopoulos (2002): Towards
Requirements-Driven Software Development
Methodology: The Tropos Project. Information Systems,
27:365-389.

L. Chung, B. A. Nixon, E. Yu, et al. (2000):
Non-Functional Requirements in Software Engineering.
Massachusetts, US, Kluwer Academic Publishers.

J. Mylopoulos, L. Chung, B. Nixon (1992): Representing
and Using Non-functional Requirements: A
Process-oriented Approach. IEEE Transactions on
Software Engineering, 18(6): 483-497.

Jian Wang, Keqing He, Bing Li, et al. (2007): Metamodels
of Domain Modeling Framework for Networked
Software. Proc. The Sixth International Conderence on
Grid and Cooperative Computing. Lecture Notes in
Computer Science. Urumchi. 878-885.

Jian Wang, Keqing He, Ping Gong, et al. (2008): RGPS: A
Unified Requirements Meta-Modeling Frame for
Networked Software. Proc. Third International
Workshop on Advances and Applications of Problem
Frames(IWAAPF’08) at 30th International Conference
on Software Engineering(ICSE’08), Leipaig, Germany,
29-35.

International Organization for Standardization (ISO).
ISO/IEC 19763-3 (2007): Information technology –
Framework for metamodel interoperability –Part 3:
Metamodel for ontology registration.

Yangfan He, Keqing He, Chong Wang (2005): Research
on Semantic Web Service-Oriented MMFI for Complex
Information Registration. Proc. IEEE International
Workshop on Service-Oriented System Engineering
(SOSE 2005), Beijing, 237-243, IEEE Press.

Chong Wang, Keqing He, Yangfan He (2006): MFI4Onto:
Towards Ontology Registration on the Semantic Web.
Proc. The sixth International Conference on Computer
and Information Technology (CIT 2006). Seoul,
p.4019862, IEEE Press.

Kang, K., Cohen, S., Hess, J., et al. (1990):
Feature-Oriented Domain Analysis (FODA): feasibility
study. Technical Report: CMU/SEI-90-TR-021,
Software Engineering Institute/Carnegie Mellon
University.

Ruqian Lu, Zhi Jin, Ronglin Wan (1995): Requirement
Specification in Pseudo-Natural Language in PROMIS.
Proc. The 19th International Computer Software and
Applications Conference (COMPSAC'95), Dallas, USA,
96-101, IEEE CS.

Ruqian Lu, Zhi Jin, Ronglin Wan, Youming Xia (1996):
An Approach of Acquiring Requirements Information
based on Domain Knowledge. Journal of Software,
7(3):137-144. (in Chinese)

Zhi Jin (2000): Ontology-based requirements elicitation
automatically. Chinese Journal of Computers,
23(5):486-492. (in Chinese)

R. Q. Lu, Z. Jin, and G. Chen (2000): Ontology-based
Requirements Analysis. Journal of Software,
11(8):1009-1017. (in Chinese)

R. Girardi, L. B. Marinho (2007): A Domain Model of
Web Recommender Systems based on Usage Mining
and Collaborative Filtering. Requirements Engineering
Journal, 12:23-4

R. Girardi, C. Faria, and L. Marinho (2004):
Ontology-based Domain Modeling of Multi-agent
Systems. Proc. The Third International Workshop on
Agent-oriented Methodologies at OOPSLA2004, Canada,
51-62

41

42

Using Explicit Semantic Representations for User Programming of
Sensor Devices

Kerry Taylor1 Patrick Penkala2

CSIRO ICT Centre
GPO Box 664, Canberra, Australia 2601,

1Email: Kerry.Taylor@csiro.au
2Email: ppenkala@gmail.com

Abstract

As the demand for environmental sensing grows, there
is an urgent need to improve access to observation
data collected by sensor systems. However, sensing
devices and the platforms on which they are deployed
are highly heterogeneous in their capabilities as well
as in their method for control and for retrieval of ob-
servation data. In this paper we propose to employ se-
mantic technologies, in particular descriptions in the
OWL-DL ontology language coupled with ontology
editors and reasoners to control the heterogeneity.

Through a case study developed for a pro-
grammable automatic weather station, we show how
an ontological concept description can be translated
to an active query or command to a sensor device,
coupling interpretation of a declarative ontology with
device-specific wrapper code. Our method relies on a
single extensible ontological model to describe the ca-
pability of sensor devices, and thereby support their
discovery, and also to support their programming.
This manages the heterogeneity to enable widespread
access to sensor programming languages by naive
users.

Keywords: Semantic Sensor Networks, Sensor Task-
ing

1 Introduction

Many of the challenges facing mankind in the 21st
Century, such as climate change, biodiversity conser-
vation, food security, water security and sustainable
energy require improved data through remote and in-
situ environmental sensing services at lower spatial
and temporal scales. Currently, sensor devices and
their communication networks are both highly hetero-
geneous and closed: we must find ways to make sensor
deployments more widely accessible and re-usable in
order to achieve the density of measurement in space
and time that is needed.

This issue has been recognised by the Open
Geospatial Consortium (OGC), a standards organ-
isation that has been developing a suite of XML-
service based standards for Sensor Web Enablement
(SWE). However, while the standards specify an in-
teraction protocol and XML markup languages for
querying and tasking sensor devices, they do not ad-
dress the representation of element content, so vital
information, for example, the physical property being
observed, is generally free text. Recent work in the

Copyright c©2009, Commonwealth of Australia. This paper
appeared at the The Fifth Australasian Ontology Workshop
(AOW 2009), Melbourne, Australia. Conferences in Research
and Practice in Information Technology (CRPIT), Vol. ??,
Thomas Meyer and Kerry Taylor, Ed. Reproduction for aca-
demic, not-for profit purposes permitted provided this text is
included.

OGC and the W3C has begun to extend the SWE
frameworks by adding ontology-based annotation to
the XML content to improve precision and interoper-
ability in this respect (Duchesne et al. 2008).

However, formal ontology languages such as OWL-
DL and the emerging OWL 2 DL offer much more
than an ability to represent a controlled vocabulary—
where the meaning of the terms in the vocabulary is
interpreted by human understanding—they offer for-
mal inference available through reasoners for the un-
derlying formal logic. We propose that this mecha-
nism can be used as part of a comprehensive software
framework to discover, program and query sensor de-
vices, to retrieve measurements made by sensors; and
to integrate the historical and real-time measurement
data into broader software systems for analysis and
decision support (Li & Taylor 2008).

In this paper, we specifically address the prob-
lem of querying and programming sensor devices.
Although sensor network architectures vary widely,
many sensor platforms permit programmable control
over sensor selection, timing and persistent memory
management. Querying may be a two-step process of
firstly instructing the sensor platform to make the
desired measurements, and secondly retrieving the
measurements from the sensor platform’s memory. In
other architectures, sensed data is forwarded to a cen-
tral Web-connected service from which it may be re-
trieved through some kind of query. Because of this
typical design, unless where specifically stated oth-
erwise in this paper, we do not distinguish between
programming, tasking, commanding and querying a
sensor network.

Generally, a sensor platform offers a special-
purpose programming language for querying and
tasking. Although NesC (Gay et al. 2003) is widely
used for mote-based Wireless Sensor Networks, there
are also many other emerging languages and higher-
level programming abstractions are keenly sought, in-
cluding declarative languages like SNlog (Chu et al.
2007). Typically, commercial sensor platforms em-
ploy manufacturer-specific line-based command lan-
guages, sometimes intended to be used through a
manufacturer-specific client GUI tool. The Environ-
data Weathermaster Series automatic weather sta-
tion exemplifies these sensor systems. In our work,
unlike the OGC SWE approach for example, we do
not attempt to standardise the query interface to sen-
sor systems, but instead to reflect the command and
query interface that is offered with a semantic model
represented in the OWL-DL language. The seman-
tic model is loaded as configuration data into a client
interface tool and thereby a user may work with a
common look and feel to discover and interact with
multiple sensor networks. Due to the expressive se-
mantic modelling, it is not necessary to constrain the
flexibility of the native capability of the sensor sys-
tems offered through the common interface, although

43

it may be desirable to repackage it in order to im-
prove usability. We propose a client interface tool
embedded in an architecture for linking multiple het-
erogeneous sensor platforms. Server-side components
support retrieval of shared domain and sensor-specific
ontologies, a server-side back end for translation be-
tween client-originated queries and sensor network-
specific code, and a communication layer for dealing
at a low level with heterogeneity in the communica-
tion architectures of sensor networks. As a case study,
we have implemented our proposal in a prototype that
is used for programming or retrieving data from an
automatic weather station.

Outline of the paper In the next section we in-
troduce our architecture for ontology-enabled sensor
network programming, then we introduce the sensor
system that we have used as the basis for the proto-
type in Section 3. Then we describe the client tool
and how it employs description logic classification to
assist in programming the sensor network in Section
4. In Section 5 we describe the query translation and
communication process, and the retrieval of sensor
network data. In Section 6 we discuss related work
and we conclude in Section 7 with an analysis of the
benefits of our work in a wider context.

2 Architecture Sketch

In Figure 1 we show the structure of the software
prototype we have developed. A GUI client tool, the
semantic query client loads relevant ontologies and
permits querying over those ontologies for sensor dis-
covery, analysis and programming. The client tool is
built as a plug-in for the well-known editor for OWL
DL, Protégé (v3.3.1)1, and is backed by a description
logic reasoner (in our case, Pellet 1.5.12). After pro-
cessing by the client tool, a query developed by the
user is directed to the ontology transformer respon-
sible for the intended sensor network. The ontology
transformer translates the query to a sensor-device
specific form and hands it over to a communication
controller configured for the sensor device. The de-
vice returns a response which is directed back to the
ontology transformer for further processing before be-
ing returned to the requesting client. In Figure 2 we
show the message flow amongst the architectural com-
ponents during query processing.

Figure 1: Transformer interacting with the Weather
Station and providing functionality to a client

1The Protég’é Ontology editor and knowledge acquisition sys-
tem, http://Protege.stanford.edu/

2Pellet OWL DL reasoner, http://clarkparsia.com/pellet/

3 Automatic Weather Station Sensor Plat-
form

In this section we outline the design of the weather
station we have used for the case study, concentrat-
ing on the command language structure, which will
be used to exemplify the presentation of the query
processing method later.

Environdata’s Weather Station WeatherMaster
1600 3 is an industrial self-contained instrument with
a built-in battery and attached solar panel. Com-
munication with a host computer uses a proprietary
command-line language of about 50 commands in a
request-response interaction style over a serial port.
It has four sensors which measure air temperature,
relative humidity, wind speed, and wind direction,
and three other simulated sensors to measure the volt-
ages of the battery and the solar panel and the activ-
ity of the serial port.

Measured data can be saved for a limited period
in one of four memories, in a FIFO log scheme. The
stored data consists of a time stamp and a data value
for each of the four sensors at the time. The total
memory of 104 kilobytes can be split amongst the
four memories according to need. The intention be-
hind this splitting support is to avoid logging mea-
surements with the value 0, corresponding to a sensor
whose measurement is not recorded. For example, if
the Weather Station is programmed to measure the
temperature every 30 seconds as well as the relative
humidity at 6pm every day, then it will log a data
set every 30 seconds, containing the time stamp, the
measured value of the air temperature and a 0 for
the humidity, since it hasn’t been measured yet. An
efficient memory management scheme would allocate
all commands recording at the same frequency to the
same memory, thereby using the space allocated to
each sensor efficiently.

To retrieve logged data a command gives the num-
ber of the memory to be queried. There is no support
to access all measured data from a particular sensor
directly, but all memories need to be inspected and
unwanted data discarded. This may be data for other
sensors, or data summarised undesirably, or zero-data
indicating that the desired sensor measurement was
not recorded.

3.1 Programming the weather station

The weather station takes measurements according
to a program comprising a sequence of STORAGE
commands, each of which takes nine or ten arguments
as follows:

No command line number (1–64)
Command summary function: either

AVERAGE, MAXIMUM,
MINIMUM or CURRENT

Mem memory for storage (1–4)
Sensor sensor number (1–6)
Format 1 unless Command is CURRENT,

in which case it is 0
LimitValue always 0
Param always 1
Timetype one of HOUR, EHOUR, EMIN

or ESEC
Time1 counting number
Time2 number: only used when

Timetype is HOUR
The Command values mean respectively to com-

pute the average, maximum or minimum over the
3Environdata Weather Master 1600 - http://www.environdata.

com.au/Product/Weather_Stations/WeatherMaster_1600.html

44

Figure 2: Message flow amongst components in the architecture for ontology-driven querying and programming
of the weather station

time period given by Timetype, or to log an instan-
taneous measurement at the time given by Timetype.
The Timetype values mean respectively to log every
day at times given by Time1 and (optionally) Time2;
every Time1 hours; every Time1 minutes, and every
Time1 seconds.

For example, “STORAGE 1 AVERAGE 1 1 1 0
1 HOUR 9” means that command 1 logs the aver-
age air temperature (sensor 1) in memory 1 at 9am
daily. “STORAGE 13 CURRENT 2 3 0 0 1 EHOUR
1 0” means that command 13 logs the current wind
direction in memory 2 every hour. In general, every
storage command should be bracketed by MEMOFF
and MEMON commands; otherwise it also causes the
memories of logged data to be cleared.

3.2 Querying the weather station

There are two weather station commands to retrieve
measurements from the sensors: the simplest is the
parameter-free R command which simply returns the
current value for each sensor and its respective unit
of measurement.

Measurements are retrieved from memory by a
MEM command with a parameter corresponding to
the memory number to inspect (1–4) and optionally
a parameter to select a time period from the memory.
This parameter may take the values ALL, for every-
thing, UPDATE for data not previously retrieved, or
SPECIFIC from-time to-time for data time-stamped

within the given range (the times here are written in
the form YYYY MM DD HH MM SS).

4 Ontology-Driven Client Tool for Program-
ming

The major part of the device-independent query pro-
cessing is performed within the client tool. The goal
of the ontology-driven user interface is threefold: to
support a common user interface to widely ranging
sensor devices; to support the discovery and interac-
tion with a sensor service by modelling the service ca-
pability in an accessible manner; and to offer the full
capability of the sensor platform’s native interface.
We have chosen to offer an explicitly ontology-driven
interface for this—as an experiment in stretching the
applications of ontologies into new ground, and also
in preparation for integration with other sensor sys-
tems enabled through the ontology development work
of the W3C’s SSN-XG (see Section 6). We have de-
veloped our interface as a plug-in to Protégé v3.3.1,
although we plan to change to the new version 4.0
which has more features and is more convenient for
working with OWL ontologies. Our ontology is suf-
ficient for our case study purposes and its simplicity
makes it possible to explain here, but we recognise
that a much larger and differently-structured ontol-
ogy would be needed for wider deployment.

45

4.1 Ontology modelling

We started our ontology by importing NASA’s
SWEET domain ontology4 and extending it with
classes and properties that model the command lan-
guage of the Environdata weather station. The mod-
elling is not complete, so we do not offer the full
capability of the sensor platform for this prototype.
However, our use of the ontology capability is exten-
sive: it may be used for sensor discovery through the
browsing and classification ability; it is used for phras-
ing queries—as definitions of ontology concepts (and
thereby also supporting multiple syntaxes for a query
function); it is used to detect redundancy in queries
and so to improve efficiency, and it is used for vali-
dating queries and directing them to the appropriate
sensors.

The sensors of the weather stations are de-
scribed by disjoint subclasses of SWEET’s mate-
rial thing:Sensor. We introduce the object prop-
erty measures with domain material thing:Sensor,
and define each sensor through both a universal and
an existential restriction on measures (for example,
the temperature sensor measures SWEET’s prop-
erty:Temperature). This modelling enables the dis-
covery of sensor platforms within the ontology by
reference to the physical property measured. In ad-
dition, for each weather station sensor class we use
datatype properties to represent parameters required
for the weather station, such as hasSensorNo with do-
main material thing:Sensor and an integer value. We
create an instance of each sensor and initialise each
hasSensorNo property value with the corresponding
weather station-defined sensor number.

To model time commands, we create subclasses
for each of the four SWEET time units: so we have
a new Day, Hour, Minute and Second which are in-
tended to refer to periods of time for measurement.
Each of these classes we existentially restrict with the
hasSubPeriod property over each of the smaller peri-
ods, and add a closure axiom for hasSubPeriod—the
purpose of this is given later in the paper. Now we
allocate a weather station memory to each period—
in order to manage the memory efficiently according
to the memory management scheme described ear-
lier. To do this, we create the datatype property us-
esMemory, create an instance of each time period,
and instantiate it’s usesMemory value with each of
the four memory numbers (1–4). We also create a
timeTypeCmd datatype property of the time period
classes, and instantiate each with the corresponding
weather station timetype string: HOUR, EHOUR,
EMIN, or ESEC. Further, to support retrieval queries
over a time range, we create a Date as a subclass of
SWEET’s time:Instant, with integer datatype prop-
erties atYear, atMonth, atDay, atHour, atMinute and
atSecond to describe a time instant.

We model the summary function part of the
weather station capability as subclasses of a new class
Statistic: Average, Maximum, Minimum and Cur-
rent, with a datatype property statCmd instantiated
with the value of the corresponding command string,
as before.

With these basic concepts in place, now we
turn to modelling general schemas for the com-
mands of the weather station. Grouped under a
WM1600Capabilities class, we provide (complete) de-
scriptions of three capability classes as described in
figures 3 and 4 in the form of Protégé screen copies.
These capability classes correspond respectively to
the weather station’s commands R for current sen-
sor readings, MEM for logged data, and STORAGE

4Semantic Web for Earth and Environmental Terminology,
(SWEET) v1.0 at http://sweet.jpl.nasa.gov/index.html

for reprogramming, as described in Section 3.

Figure 3: Hierarchy of Functions, Queries and Capa-
bilities in the capability ontology

Finally, we also create a class to describe the func-
tions of our sensor platform. This serves as documen-
tation for the device, by grouping its functions, can
be used to discover which devices can perform cer-
tain functions. We define the property hasFunction
(which may be used for all such sensor definitions)
and the class WM1600 as in Figure 5. Note that
other sensors, especially other models from the same
manufacturer, may have a similar definition, reusing
some of the capability classes we have defined for the
WM1600.

Now we show how these descriptions of weather
station capabilities can be used to compose queries
for the weather station.

4.2 Querying the weather station

Our Protégé plug-in provides a query interface for the
weather station, loading up the sensor ontology, sup-
porting browsing of the ontology and query formu-
lation, and communicating with the ontology trans-
former. A user defines a query as a new class defini-
tion in the context of the sensor ontology described
above. The query is classified, using the services of
the connected reasoner. The query must be subsumed
by a weather station capability class in order to be a
valid weather station command. We use the power of
the DL classification in this way to admit alternative
syntaxes for the same query by, for example, allowing
the definition and use of classes as subqueries in more
complex queries. The same method can also be used
to assign queries to multiple devices capable of han-
dling the query in which case such a query would have
multiple capability class parents (although in our case
study we use only one device).

Figure 6 shows the plug-in window for compos-
ing queries as class definitions: in this case the query
screen has been generated at run-time specifically for
the WM1600 by inspecting its definition in the ontol-
ogy. Next, the plug-in prompts the user to instanti-
ate the query class just created, and this gathers the
predefined datatype property values described earlier,
and permits further refinement such as the entry of
dates for range queries.

Figure 7 shows the form of two simple queries
(displayed in Protégé) after entry through the query
screen. The first, curFunc, requests the current data
for the temperature sensor only. The second, per-
Func, is a more complex query for raw temperature
data from storage for a given period. The figure
also shows the instance data attached to the sec-
ond query (displayed under the “Individual” tab of

46

Figure 4: Definitions of the queryCurrentData, queryPeriodData, and setStorageFunction capabilities, respec-
tively

Figure 6: Screenshot of the Plug-In window to create
a query

Protégé) connecting the query instance to properties
identifying the sensor and the selected time range pa-
rameters. This individual view is no longer available
in Protégé v4.0.

Finally, the plug-in invokes the ontology trans-
former that is configured for the selected device, pass-
ing on both the name of the new query class and the
query instance.

5 Query Translation and Execution

Each different sensor platform is configured with a
dedicated “ontology transformer” which, in our case
is written in Java code. It communicates with the
Protégé plug-in via sockets and with the weather sta-
tion, via a communication handler, over a serial port
on its host. The same transformer may be used for
multiple deployments of the same device, but a dif-
ferent one is needed for devices that have different
modelled capabilities in the ontology. A detailed de-
scription of the ontology transformer is out of scope
for this paper: although we note that it is responsible
for dealing with device-specific issues such as corre-
lating the device commands with responses, applying
error checking and correction as required and adding
or filtering unwanted device-specific characters in the
command and response dialogue.

The main role of the ontology transformer is to
manage the state of the sensor device (through config-
uration and status commands), to translate the class
and instance form of the query to the required com-
mand line form, and to filter response data to match
the query where necessary. The transformer classifies
the query in the context of the ontology (as before in
the client) and traverses the ancestor paths to match
the name of a capability class known to the trans-
former. In Figure 8 we illustrate the classification
of the example queries given previously (plus several
others), with respect to the capability classes of the
weather station.

The ontology transformer for the weather station

47

Figure 5: Definition of the WM1600 class defining its capabilities

then passes the query instance to a handler specialised
for that capability class that can retrieve the param-
eters from the instance and generate the appropri-
ate command strings for the weather station. For
some query classes it generates multiple commands:
for example the STORAGE command is bracketed by
MEMOFF and MEMON commands.

When the corresponding response is received from
the weather station, the capability class handler may
also filter the response data to match the query. For
example, although our queryPeriodData capability
class supports selection of sensors, this capability is
not matched in the corresponding weather station
“R” command, so the capability class handler uses
the hasSensorNo property value in the individual to
select only those columns of data corresponding to
the desired sensors from the full response, and only
those rows with non-zero values for that sensor read-
ing, since a zero value indicates a non-measurement.
Similarly, the logged rows with a different summary
function to that requested in the query must be re-
moved.

For the reprogramming queries, we also use the
classification of the query to perform a query optimi-
sation step to reduce the load on the weather station.
Taking advantage of our semantic model for time cor-
responding to the weather station’s EHOUR, EMIN
and ESEC parameters, we detect when a reprogram-
ming query is subsumed by an earlier (already ex-
ecuting) reprogramming query. In such a case, the
ontology transformer does not submit the query to
the weather station, because the corresponding data
can already be retrieved from the log due to the pre-
existing query.

Finally, the filtered data is returned to the client
for display to the user, as in Figure 9.

6 Related Work

This is the first time ontological descriptions and for-
mal description logic reasoning has been used to as-
sist in sensor network programming and querying,
although other“semantic” representations have been
used for similar purposes.

For example, in (Liu & Zhao 2005) and (White-
house et al. 2006) an ontology of sensors, compris-
ing just a simple, explicit, taxonomy of sensor types
and represented in restricted prolog is used in con-
junction with expressive prolog rules and associated
Horn clause reasoning to derive and represent higher-
order sensor network services, including composition
of multiple sensors to deliver targeted sensor services.
However, there is no mechanism for sensor tasking
in this framework and the query model corresponds
to simply accessing named attributes from a named
sensor data stream.

More commonly, formal OWL ontologies have
been used for describing sensors and their capabili-

ties. In early work, (Eid et al. 2007) propose a simple
taxonomy of sensors and their measurements which
is used with an RDF query language for discovery of
sensors via their descriptions. DL reasoning is pro-
posed for validation during ontology development (as
is customary for OWL ontologies), but there is no
support for sensor querying or tasking in this work.

In (de Mel et al. 2009) an OWL-DL ontology and
a reasoner is used as part of an algorithm for dis-
covery of sensors suitable for tasks. The ontology of
sensors and platforms includes information on sensor
capabilities. Platforms (comprising multiple sensors)
with any sensor capability that subsumes any of those
required for the task are suggested as candidates. A
covering algorithm is then used to select platforms
for the task from the candidates. In our work, the
same kind of subsumption reasoning for discovery of
sensors (e.g. discovery of sensors that can measure
temperature) is also a valuable feature of the ontol-
ogy modelling we employ and is quite straightforward.
However, in our work we extend the ontology model
to support querying and programming of the sensors
too.

In (Ha et al. 2007), the services ontology OWL-S is
used to represent compositions of sensor instructions
and an hierarchical task network planning algorithm
is used to discover new compositions. Although this
work focuses on tasking sensors, and can generate in-
struction sequences for sensor devices, it relies on a
procedural programming model and procedural rea-
soning; the ontology is otherwise only used for infor-
mal partial matching of input and output datatypes.

In recent work, (Compton et al. 2009) propose
rich ontological descriptions of sensors coupled with
a number of reasoning services, including sensor clas-
sification for discovery and also composition of sen-
sors. This work does not address a mechanism for
querying or programming sensors in their native de-
vice languages, although it might be possible to en-
code a procedural sensor program to perform a task
within its OWL-S-like process model.

One of the OGC’s Sensor Web Enablement stan-
dards, the Sensor Planning Service (Simonis 2005),
aims to provide a web service interface to program
sensor devices, although another service is used to
retrieve the data. However, in its current form the
service does not use descriptive semantics. Although
it provides an operation (“DescribetaskingRequest”)
to retrieve a description of the commands from the
sensor service, the response encodes a list of (uncon-
strained) parameter names and their types with nat-
ural language descriptions for each. Although this
description may be sufficient for a user to compose a
query to the service, relying on the predefined syn-
tax pattern, there is no support for contextual mod-
elling of the meaning of the parameter names, nor
of the commands and functions overall as is offered
in our approach. Further, it is aimed at human in-

48

Figure 7: Definitions of queries: curFunc to retrieve
current temperature data, perFunc for temperature
data over a period of time, and the instance data for
the perfunc query, respectively

terpretation and does not facilitate machine inference
that could otherwise automate high-level tasks, such
as sensor substitution, composition and integration.
It does address communication heterogeneity through
its standard service protocol, but does not address
heterogeneity at the device level.

Finally, under the auspices of the W3C, the SSN-
XG5 is currently developing an expressive device on-
tology aimed at supporting a number of use cases.
This includes acting as a source of terminology for
markup of OGC Sensor Web Enablement Web ser-
vices, but may also include more direct sensor net-
work tasking. Although the ontology will certainly
not be developed to the extent of capturing individual
sensor network programming languages, as is done in
the case study for this paper, it will certainly provide
a richer context ontology for embedding such pro-
gramming concepts than is offered by SWEET that is
used in this paper. Employing such a well-developed
context ontology will improve the user experience and
value of the semantic representation and processing
that is demonstrated in this paper.

5W3C Semantic Sensor Network Incubator Group, http://www.
w3.org/2005/Incubator/ssn/

Figure 8: Subsumption of valid queries by capability
classes of the weather station

7 Discussion and Conclusion

We have described a case study application of formal
ontologies to the problem of programming and query-
ing sensor networks. Like many other approaches to
managing heterogeneity, our approach wraps the na-
tive interface in a customised device-specific compo-
nent to manage heterogeneity in the native commu-
nication protocol and, to some extent, in the interac-
tion paradigm, command language, and response en-
coding. However, atypically, our approach also uses
a high-level semantic description of the domain and
the command language to offer a common user in-
terface for access. This description amounts to con-
figuration data in the client tool—enabling user or
application customisation and evolution without re-
programming.

Through our model employing DL descriptions of
sensor devices we have shown how DL classification
can offer more than just sensor description and discov-
ery. It can also be used to assist in programming and
querying heterogeneous sensor networks. We have
concentrated on a declarative model for sensor net-
work commands, rather than an alternative process
model. This design may make our approach easier
to use, but it may be unwieldy and insufficiently ex-
pressive for heavily state-based devices, such as those
that are programmed to move in space prior to taking
a measurement.

Although our case study has been applied to only
one sensor device, it is easy to see that the approach
can extend to other sensor devices, and to incorporate
them all within the same client environment. One
such extension might, for example, provide an ontol-
ogy transformer for the OGC Sensor Planning Ser-
vice (together with a chosen data retrieval service)
to enable modelling of the non-standardised param-
eter names and sensor capabilities within a seman-
tic framework. Another extension might develop an
ontology transfomer for sensors mounted on motes
in sensor networks: the transformer would need to

49

translate the semantic commands to code fragments,
embed the fragments within a complete sensor net-
work program in NesC, for example, and distribute
the program to the nodes using an over-the-air pro-
gramming tool.

In this case of a widely distributed and heteroge-
neous network, it would also be necessary to manage
the ontology more carefully at run time: an ontology
server could be used to retrieve a desired domain on-
tology and a set of relevant device ontologies (where
relevance may be defined by user context, such as
location or access rights). The relevant device and
domain ontologies would be merged and delivered to
both the client tool and the required ontology trans-
formers on demand.

Our pure-semantics approach to managing the het-
erogeneity offers a number of other benefits over more
conventional architectures for similar problems of het-
erogeneity in distributed systems. Our ontology of-
fers a data-driven (i.e not pre-programmed) context
model to assist in the discovery and querying of sen-
sors suitable for a user task. This enables modelling
of sensors by location, type, observable properties, ac-
curacy, availability, platform, mobility, or any other
aspects relevant to discovery and application. In
our prototype, we have used a simple extension to
the well-known ontology-independent Protégé tool to
achieve this, although a deployable implementation
would use a specialised client tool for better ease-of-
use targeted to user expectations.

The ontology modelling offers other benefits in
querying. For example, the same device capability
may be offered through multiple syntaxes, or via mul-
tiple concepts, through careful ontology design. Pro-
vided that a query can be mapped to a supported
capability class by subsumption computed by the rea-
soner, verifying that the query is semantically correct,
no programming is needed to support such alternative
query syntaxes. The ontology transformer, already
designed to handle the capability class, will therefore
also handle the subsumed query. Further, the verifi-
cation function can assist a developer to present the
device capabilities in a convenient (but correct) way
and can also assist a user to understand the device
capabilities. As noted by (Compton et al. 2009) in-
tegration with inference mechanisms other than DL
alone could also help here, for example, reasoners for
spatial modelling could help when access to multiple
sensors is required for the desired result. Similarly,
spatial reasoning may assist with modelling of mobile
devices in a declarative manner, so that sequential
locator commands may be unnecessary.

The ontology modelling also enables, at least in
our case study of the weather station command lan-
guage, the use of subsumption reasoning to infer when
a command to the weather station is redundant be-
cause the answers may be retrieved from data pro-
duced by an already-executing command, after filter-
ing. In a multi-user sensor network environment, this
may offer significant gains in efficiency.

An OWL 2 DL implementation (Motik et al. 2009)
of this work would improve the benefit of the verifi-
cation by subsumption test further: the data ranges
capability, for example, would offer tighter modelling
of sensor device specifications and identification of re-
dundant commands.

In the longer term, we envisage our work con-
tributing to a highly distributed, multi-organisational
sensor networked, computation environment. This is
needed for the emerging transdisciplinary science that
is required to address the big questions in our shared
future.

Figure 9: Result window with the answer from the
Weather Station

50

References

Chu, D., Popa, L., Tavakoli, A., Hellerstein, J. M.,
Levis, P., Shenker, S. & Stoica, I. (2007), The de-
sign and implementation of a declarative sensor ne-
towrk system, in ‘5th ACM Conference on Embed-
ded Network Sensor Systems (Sensys 2007)’, Syd-
ney, Australia, pp. 175–188.

Compton, M., Neuhaus, H., Taylor, K. & Tran, K.-N.
(2009), Reasoning about sensors and compositions,
in K. Taylor, A. Ayyagari & D. De Roure, eds, ‘Pro-
ceedings of the 2nd International Workshop on Se-
mantic Sensor Networks, SSN09’, Vol. 522, CEUR
workshop Proceedings, Washington DC, USA.
URL: http://ceur-ws.org/Vol-522

de Mel, G., Sensoy, M., Vasconcelos, W. & Preece,
A. (2009), Flexible resource assignment in sen-
sor networks: A hybrid reasoning approach, in
Corcho, Hauswirth & Koubarakis, eds, ‘1st Inter-
national Workshop on the Semantic Sensor Web
(SemsSensWeb 2009)’, Vol. 468, CEUR workshop
Proceedings, Heraklion, Crete, Greece.
URL: http://ceur-ws.org/Vol-468

Duchesne, P., Maué, P. & Schade, S. (2008), Semantic
annotations in OGC standards, Discussion Paper
OGC 08-167, Open Geospatial Consortium.
URL: http://portal.opengeospatial.org

Eid, M., Liscano, R. & Saddik, A. E. (2007), A uni-
versal ontology for sensor networks data, in ‘IEEE
International Conference on Computational Intel-
ligence for Measurement Systems and Applications
(CIMSA 2007)’, Ostuni, Italy, pp. 59–62.

Gay, D., Levis, P., von Behren, R., Welsh, M.,
Brewer, E. & Culler, D. (2003), The nesC language:
A holistic approach to networked embedded sys-
tems, in ‘Programming Language Design and Im-
plementation (PLDI) 2003’.

Ha, Y.-G., Sohn, J.-C., Cho, Y.-J. & Yoon, H.
(2007), ‘A robotic service framework supporting
automated integration of ubiquitous sensors and
devices’, Inf. Sci. 177(3), 657–679.

Li, L. & Taylor, K. (2008), A framework for seman-
tic sensor network services, in ‘ICSOC 2008: 6th
International Conference on Service Oriented Com-
puting’, Vol. 5364 of LNCS, Springer, Sydney, Aus-
tralia, pp. 347–361.

Liu, J. & Zhao, F. (2005), Towards semantic services
for sensor-rich information systems, in ‘Proceed-
ings the 2nd IEEE/CreateNet International Work-
shop on Broadband Advanced Sensor Networks
(Basenets 2005)’, Boston, MA.

Motik, B., Patel-Schneider, P. F. & Parsia, B.
(2009), OWL 2 web ontology language structural
specification and functional-style syntax, Technical
report, W3C. W3C Proposed Recommendation.
URL: www.w3.org/TR/2009/PR-owl2-syntax-
20090922/

Simonis, I. (2005), OpenGIS sensor planning service,
OpenGIS Discussion Paper OGC 05-089r1, Open
Geospatial Consortium.
URL: http://www.opengeospatial.org/standards/sps

Whitehouse, K., Liu, J. & Zhao, F. (2006), Seman-
tic streams: a framework for composable infer-
ence over sensor data, in ‘Proceedings of the 3rd
European Workshop on Wireless Sensor Networks
(EWSN)’, LNCS, Springer.

51

52

Review of semantic enablement techniques used in geospatial and
semantic standards for legacy and opportunistic mashups

Laurent Lefort
CSIRO ICT Centre

GPO Box 664 Canberra, ACT 2601, Australia

laurent.lefort@csiro.au

Abstract
Networks of sensors are increasingly used to monitor
essential environmental variables for biodiversity, water,
and climate change research. Such multidisciplinary
scientific projects require more flexible ways to publish
and aggregate sensor observations from different
networks as mashable web resources. Semantically-
enabled and linkable descriptions of sensors and sensors
services can simplify the integration of legacy backend
sensor web services and make it easier for mashup
developers to opportunistically combine these resources.

This paper reviews linking and annotation techniques
applicable to the development of geospatial mashups
services. It describes how approaches based on RDFa
could supersede existing techniques for the semantic
annotation of RESTful services. It highlights specific
issues linked to the hybrid nature of mashups combining
solutions based on XML, RDF and HTML standards and
the failure risks attached to such multi-standards
knowledge systems. It points out the pending technical
issues, especially the ones where more coherent
approaches are needed e.g. the upgrade of existing
standards like XLink and SAWSDL or the integration of
validation tools developed for each family of standards.

Keywords: semantic web, sensor web, geospatial
standards, mashup, XLink, RDFa. .

1 Introduction
As networks of sensors are increasingly used to monitor
essential environmental variables for biodiversity, water,
and climate change research, we need innovative
approaches to simplify the integration of sensor
observations from different networks into mashable web
resources. Pairing geospatial standards developed by the
Open Geospatial Consortium (OGC) and semantic web
standards developed by the World Wide Web Consortium
(W3C) can foster new approaches for applications that
are not (or not yet) clear candidates as web standards.

Apart from the Keyhole Markup Language (KML),
most OGC standards have been developed prior to the
appearance of modern mashup techniques. The W3C

Copyright © 2009, Australian Computer Society, Inc. This
paper appeared at the Fifth Australasian Ontology Workshop
(AOW2009), Melbourne, Australia. Conferences in Research
and Practice in Information Technology (CRPIT), Vol. 1xx.
Thomas Meyer and Kerry Taylor, Eds. Reproduction for
academic, not-for-profit purposes permitted provided this text is
included.

Semantic Sensor Network Incubator Activity1 (SSN-XG)
develops semantic descriptions of sensors and sensors
services to semantically enable services based on Sensor
Web Enablement (SWE) standards like the Sensor
Markup Language (SensorML) and the Sensor
Observation Service (SOS). This review focuses on
linking and annotation techniques which can support the
discovery and composition of these services and their
integration into web mashups (Le Phuoc and Hauswirth
2009).

This paper is structured in four main parts. Section 2
defines legacy and opportunistic mashups and how they
can be combined in a multi-layered integration scheme. It
also discusses how this scheme may evolve with the
introduction of new mashup engines and technologies
based on existing and actively developed semantic web
standards. Section 3 reviews the XML, HTML and RDF-
based linking, and annotation methods and their
applicability in this context. Two practical examples are
used in Section 4 to compare the available approaches
and to identify the innovative features of RDFa which are
applicable to the semantic annotation of RESTful
services. The discussion in Section 5 identifies failure
risks which are specific to knowledge systems including
sources of interfaces problems likely to occur in such
multi-standard setups. It also points out the pending
technical issues, especially the ones where more coherent
approaches are needed e.g. the upgrade of existing
standards like XLink and SAWSDL or the integration of
validation tools developed for each family of standards.

2 Typology of mashups

2.1 Multi-layered mashup framework
The Model for layered integration tools proposed by
Gamble and Gamble (2008) groups pre-Web, Web 1.0
and Web 2.0 technologies into three separate integration
zones with decreasing level of integration effort and
increasing readiness for opportunistic development. In
this framework, legacy mashups require more work
because the integration of pre-Web and Web 1.0
resources generally requires the development of custom-
made wrappers. First generation mashup engines such as
Damia, Yahoo Pipes, Popfly, or Google Mashup Editor
(Di Lorenzo et al. 2009, Koschmider et al. 2009) enable
the creation of opportunistic mashups based on the most
popular Web 2.0 service API (Application Programmable
Interfaces). These mashup engines have been very
successful even if they are often tied to proprietary APIs
or platforms.

1 http://www.w3.org/2005/Incubator/ssn/

53

Figure 1 illustrates the layered model defined by
Gamble and Gamble (2008) where the two types of
integration approaches cohabit. Legacy services are
integrated in the first integration layer as legacy mashups.
The resulting services are exploited in the second
integration layer with more lightweight mashup methods.

Figure 1: Multi-layered mashups

2.2 Non-semantic mashups
Geospatial and Sensor web service-oriented platforms can
combine Web 2.0 technologies like Ajax to global
geospatial data resources like Google to enable the online
publication of geospatial and sensor datasets and services.
Mashable APIs are now available for geospatial and
sensor web resources like Google Maps2 or Pachube3 and
from popular GIS tools like ArcGIS4.

Figure 2 presents a simple example of multi-layered
geospatial mashup. ArcGIS can be used to integrate data
from OGC web services and expose it through proprietary
Javascript APIs5 which can be further mashed up in Web
2.0 tools like Google maps.

Figure 2: A simple geo-mashup based on Arc GIS

2.3 Semantic mashups
The lack of extensibility of existing APIs is driving the
development of the next generation of semantic mashup
engines based on semantic web standards developed by
W3C. SAWSDL (Kopecký et al. 2007) uses semantic
descriptions to enable the composition of web services for
legacy semantic mashups. These rich semantic
descriptions help to compose geospatial services
(Lemmens et al. 2007, Vaccari et al. 2009). Custom-made
operators are often developed to transform the data from
XML to RDF (Henson et al. 2009) and to better manage
its provenance (Sahoo et al. 2008).

Opportunistic semantic mashups generally use RDF
(triple stores) resources applying the Linking Open Data
conventions (Bizer et al. 2007) via standard APIs based
on SPARQL (Prud'hommeaux et al. 2008, Clark et al.
2008) or via proprietary query languages offered by Web-
based development environments such as Metaweb

2 http://code.google.com/apis/maps/
3 http://www.pachube.com/
4 http://www.esri.com/software/arcgis/
5 http://www.esri.com/javascript

ACRE6 or Yahoo Pipes7 designed to offer the possibility
for end users to develop and share their mashups.

Opportunistic semantic mashups can also source data
from HTML pages, especially from RDFa (Adida et al.
2008) snippets embedded in web pages. RDFa, originally
designed as an extension of XHTML2 and now ported8 to
HTML59 is a hybrid method devised to sprinkle RDF
data or metadata in a web page and make it available for
further content aggregation down the track, e.g. at the
level of search engines (Benjamins et al. 2008). Search
platforms like Google and Yahoo SearchMonkey10
exploit RDFa content to improve search results and use it
in search engine results as richer snippets (Goel et al.
2009).

DERI Pipes (Le Phuoc et al. 2009), MashQL (Jarrar
and Dikaiakos 2009) and TopQuadrant’s SparqlMotion11
are three examples of semantic mashup engines which
allow end users to chain (or pipe) simple URI-based data
integration operators. DERI Pipes users can fetch data
from XML using XQuery, from RDF using SPARQL and
extract embedded RDFa and microformat data from
HTML using purpose-built operators. Figure 3 presents a
semantic mashup architecture implemented by Le Phuoc
and Hauswirth (2009) which combines a semantic
wrapper for Sensor Observation Service similar to
SemSOS (Henson et al. 2009) with a SensorMasher
application based on DERI pipes. In this implementation,
SPARQL is used to query data from the sensor ontologies
and from the sensor data streams.

Figure 3: A multi-layered semantic mashup

2.4 Semantic enablement methods
There are four basic semantic enablement methods for
legacy and opportunistic mashups applicable at different
levels of the multi-layered scheme described in Figure 1:

• Inclusion of remote RDF (or SKOS/OWL)
resources in XML using XLink,

• Annotation of web services with SAWSDL,

• Annotation of RESTful web services using
hRESTs (or SA-REST, MicroWSMO),

• Inclusion of remote RDF (or SKOS/OWL)
resources in HTML using RDFa.

6 http://www.freebase.com/apps/
7 http://pipes.yahoo.com/
8 http://dev.w3.org/html5/rdfa/rdfa-module.html
9 http://www.w3.org/TR/html5/
10 http://developer.yahoo.com/searchmonkey/
11
http://www.topquadrant.com/products/SPARQLMotion.h
tml

54

The next section reviews the basic XML, HTML and
RDF-based linking and annotation standards and their
relevance to the four semantic enablement methods
defined above. For this purpose, the following
terminology is used. Mashable content corresponds to
any type of remotely managed resources which can be
used in a mashup. Links specifies the inclusion of
remotely managed resources. Semantic annotations
define how to map service capabilities to semantic
definitions to enable the discovery or composition of web
services. The transition from XML-based services to
RDF-based services is called a lifting operation (Farrell
and Lausen 2007) and the inverse one, from RDF to
XML is called a lowering operation.

3 Linking and annotation methods

3.1 Handling mashable content with javascript
Mashable content can be extracted from XML, RDF
(OWL) and HTML resources, and from RDFa snippets
included in web pages. Different javascript libraries (see
Table 1) can be used to process data sourced from
different origins.

Mashed up

content
Javascript library

XML resource JQuery http://jquery.com/

RDF resource JSON http://www.json.org/ used to
serialise SPARQL results

http://www.w3.org/TR/rdf-sparql-json-res/

OWL resource JOWL (JQuery extension)
http://jowl.ontologyonline.org/

HTML snippet JQuery http://jquery.com/

RDFa snippet rdfQuery (JQuery extension)
http://code.google.com/p/rdfquery

Microformat
snippets

A custom-made javascript library is
needed for each different microformat

Table 1: Types of mashable content

Interest for RDFa is growing fast because the prospect for
being able to extend documents without having recourse
to standards organisations is enormous and because the
addition of RDFa content to already published web pages
can be done without forcing the web site designers to
change the look of their sites.

Microformats are available for a number of specific
applications with various levels of popularity and support.
The HTML5 Microdata proposal is an attempt to offer a
generic alternative to the existing Microformat coding
conventions. It is not reviewed here because this set of
requirements (Hickson 2009) can be considered as a
subset of the requirements addressed by RDFa.

3.2 Linking methods
Links are defined here as mechanisms used to extend
available content from any type of resources with
information sourced from remotely managed content
(type or instance). Links are possible between two
documents of the same type or between documents of
different types. Table 2 lists the techniques used to link
documents to each other on a range of use cases which
can occur in mashups.

Linked
resource

type

Linking method Type of link

XML XLink XML to XML

XML XLink XML to URNs

XML XLink XML to RDF

XML RDFa XML to RDF

RDF OWL mapping properties
or weaker alternatives like

umbel:isLike

RDF to RDF

SKOS SKOS mapping properties SKOS to
SKOS

OWL OWL mapping properties OWL to OWL

HTML Microformats HTML to
“data”

HTML RDFa or
Common Tag

 HTML to
RDF

Table 2: Linking methods

The XML Linking language or XLink (DeRose et al.
2001) is a W3C standard which allows the creation of
links between XML resources. It is commonly used in
OGC standards to include references to external
vocabularies managed with URNs.

To link RDF-based vocabularies, ontologies or
Linking Open Datasets (LOD) content, the most common
approach is to use the basic relationships defined in the
Web Ontology Language OWL: owl:sameAs,
owl:equivalentClass, owl:equivalentProperty although for
plain LOD content, weaker alternatives may be preferable
like the one proposed by the UMBEL12 developers.
SKOS13 offers a richer range of properties (exactMatch,
closeMatch, broaderMatch, narrowerMatch) to specify
the relationships between concepts.

3.3 Semantic annotation methods
Different semantic annotations methods are needed for
WSDL web services and RESTful web services.

Upgrading WSDL web services into semantically
enabled services can be done with the help of SAWSDL
(Kopecký et al. 2007), now a W3C Recommendation
(Farrell and Lausen 2007). The SAWSDL specification
has three main features:

• Semantic definitions (in a RDF-based format
like OWL) may be included in the WSDL file.

• A small set of elements and attributes can be
added in different parts of the WSDL service
description to create links from XML schemas
elements and attributes to their model references
which are semantic definitions.

• And finally, additional attributes can be used to
associate a schema type or element with a
mapping script describing lifting transformation
from XML to RDF and lowering transformation
from RDF to XML.

Upgrading REST web services into semantically enabled
services requires different tools because the service

12 http://www.umbel.org/
13 http://www.w3.org/TR/skos-reference/

55

declaration is generally made within a HTML web page
and does not use an XML-based description format. SA-
REST (Lathem et al. 2007, Sheth et al. 2007) and
MicroWSMO (Kopecký et al. 2009) are two related
efforts which use the same semantic annotation
microformat, hRESTs (Kopecký 2008). The SA-REST
approach is more closely related to the SAWSDL
standard while MicroWSMO uses a different ontology:
WSMO-Lite.

3.4 Types of lifting operations
GRDDL (Connolly 2007) defines the syntax to embed the
reference to a lifting script in any type of well-formed
XML format. The file to which the GRDDL annotation
has been added is used as the input of the specified lifting
operation. The RDF output depends on the location of the
GRDDL markup. If the corresponding transformation is
available, any HTML files containing microformat-based
annotations can use this mechanism to be transformed
into RDF.

SAWSDL, SA-REST and MicroWSMO also require
the development of custom-made scripts. A major
difference is that these scripts specify how to process the
XML data manipulated by the service, not the content of
the file containing the annotations.

RDFa defines a generic lifting mechanism to
transform the annotations included in an HTML file into
RDF. In this case, there is no need for user-developed
scripts.

Lifting scripts may use languages like XSL
transformations14 (XSLT) or XQuery15. Lowering scripts
may use hybrid approaches like XSPARQL (Akthar et al.
2008), a W3C Member Submission16 which mixes
XQuery and SPARQL. RDFa users can also use
alternative implementations such as the ones available in
javascript (Table 1).

4 Comparison of key linking methods
A short summary of the key features of each method is
provided below. A more direct comparison is also done
on two examples to complete this analysis in relation to
two critical issues:

• Choice between the hRESTs microformat and
RDFa for the semantic annotations of REST-
based services and consistency of these
approaches with existing ones (SAWSDL),

• Choice between XLink and RDFa as the linking
technique used for XML content.

The first example focuses on semantic annotation
requirements to guide the future work on REST services
and also bridge the gap between these new methods and
what can currently be used for WSDL.

The second example illustrates the differences
between the XML-friendly solution based on XLink and
the alternative approach based on RDFa.

14 http://www.w3.org/TR/xslt20/
15 http://www.w3.org/TR/xquery/
16 http://www.w3.org/Submission/2009/01/

4.1 Key attributes for each approach
RDFa: for the purpose of this review, we use the W3C
Recommendation version of RDFa (Adida et al. 2008).

Attribute Description Intended
RDF

about The identification of the
resource (to state what
the data is about)

rdf:about of
domain
resource

typeof RDF type(s) to associate
with a resource

rdf:about of
class of a
resource

href Partner resource of a
relationship ('resource
object')

rdf:about of
range resource

property Relationship between a
subject and some literal
text ('predicate')

rdf:about of
datatype
property

rel Relationship between
two resources
('predicate')

rdf:about of
object property

rev Reverse relationship
between two resources
('predicate')

rdf:about of
(inverse)
object property

src Base resource of a
relationship when the
resource is embedded
'resource object')

rdf:about of
domain
resource

resource Partner resource of a
relationship that is not
intended to be 'clickable'
('object')

rdf:about of
range resource

datatype Datatype of a property XML type
range of
datatype
property

content Machine-readable
content ('plain literal
object')

Value for
datatype
property

Table 3: RDFa attributes

In RDFa, the about and resource attributes plays the role
of rdf:about and rdf:resource attributes in RDF. They can
be encoded as compact URIs or CURIES (Birbeck and
McCarron 2009), a syntax inspired by the prefix
management conventions used in SPARQL. The content
of a datatype property can be included as an extra
attribute (content) or retrieved from the element content.

hRESTs: hRESTs focuses on the capture of mapping
information between the service description and a
reference ontology. The additional information is
provided through the coding of the lifting script
applicable to the service outputs. The hRESTs
microformat specification used here is the one published
by Kopecký et al. (2009) and the associated examples.

56

Attribute Description Intended RDF

class Type of XML or
WSDL element
(service, operation,
address, method,
input, output, label)

rdf:about of
class of domain
resource

href next to
rel=”model”

association between a
WSDL or XML
schema component
and a concept in
some semantic model

rdf:about of
range class =
modelReference

href next to
rel=”lifting”

Lifting script URL N/A

href next to
rel=”lowering”

Lowering script URL N/A

id Locally declared id
of WSDL element (to
be combined with the
document URL)

rdf:about of
domain resource

Table 4: hRESTs Microformat attributes

The HRESTs microformat mandates the use of blocks

with class elements in a rigid parent-child hierarchy (e.g.
service contains operation) which will be implicitly
transposed in the resulting RDF file.

XLink: For the purpose of this review, we will use the
XLink guidelines documented for the Geography Markup
Language standard (Portele 2007) rather than the original
W3C specification Xlink (DeRose et al. 2001). Table 5
summarises the attributes defined by this specification.

Attribute Description Intended RDF

xlink:href Identifier of the
resource which is
the target of the
association, given
as a URI

rdf:about of range
resource

xlink:role Nature of the target
resource, given as a
URI

rdf:about of class
of range resource

xlink:arcrole Role or purpose of
the target resource
in relation to the
present resource,
given as a URI

rdf:about of object
property linking
domain element to
range resource

xlink:title Text describing the
association or the
target resource

rdfs:comment

Table 5: XLink attributes

4.2 Feature comparison: hRESTs and RDFa
Kopecký et al. (2009) also specify how hRESTs can be
expressed in RDFa. Table 6 is based on this input. The
main difference is that hRESTs in RDFa allows the user
to specify the target ontology through the definitions of
the typeof, rel, property and datatype attributes.

RDF mapping hRESTs in
Microformats

hRESTs in
RDFa

Domain instance id (URL-
prefixed)

about

Domain class class (closed
list)

typeof

Object property ref=”model” rel

Inverse object property rev

Range instance href or resource

rdf:about of range class href typeof

Datatype property property

Datatype property type datatype

Range value content or
element content

Table 6: Comparison of RDFa and hRESTs

4.3 Feature comparison: XLink and RDFa
The direct comparison done in Table 7 can help to locate
the major difference between XLink and RDFa which is
that the two specifications cover different types of RDF
triples:

• XLink: predicate (role) and object (href) for
object properties

• RDFa: subject (about), predicate (rel) and object
(href) for object properties and subject (about),
predicate (property) and object (content or
element content) for datatype properties

RDF mapping Xlink RDFa

Domain instance about or src

Domain class typeof

Object property arc role rel

Inverse object
property

 rev

Range instance href href or resource

Range class role typeof

Datatype
property

 property

Datatype
property type

role datatype

Range value content or
element content

Table 7: Comparison of XLink and RDFa

4.4 Examples of semantic annotations
The National Digital Forecast Database is a web service17
developed by the U.S. National Weather Service to test
the Digital Weather Markup Language (DWML). This
forecast service (see also Al-Muhammed et al. 2007) is
used here because it is simultaneously implemented as a
WSDL service and as a REST service. Figure 4 shows an
example of SAWSDL annotation in the WSDL file.

17 http://www.nws.noaa.gov/ndfd/technical.htm

57

<wsdl:part name="endTime"
sawsdl:modelReference="http://sweet.jpl.nasa.gov/2.0/time.owl#End
” type="xsd:dateTime "/>

Figure 4: WSDL file with SAWSDL annotations (extract)

Table 8 lists the concepts defined in the SWEET 2.0
ontologies18 which can be used as model references for
the message parts of the NFDGen operation. Model
references for service parameters like the product type
(Time series or “glance”) and the output type are specific
to DWML and are not available in SWEET 2.0.

wsdl:part SWEET 2 ontologies Class
latitude spaceCoordinates.owl Latitude

longitude spaceCoordinates.owl Longitude

startTime time.owl Start

endTime time.owl End

Table 8: Types of mashable content

Many REST services are only documented through a web
page. This is why semantic annotation methods like SA-
REST or MicroWSMO can use any type of web page
describing a service. The two options are to annotate the
HTML page (or form) used to run the service (Figure 5)
or a “WSDL-inspired” documentation page (Figure 6).

Figure 5: HTML form for a REST service (simplified)

In the first case, the HTML form can host the semantic
annotations for the input data and for other elements used
to run the service. An advantage of this approach is that
the annotated form (Figure 5) can still be used to test that
the service works. But additional content is required to
annotate the output data (representations and faults).

The alternative is to have a documentation page in
HTML which describes hierarchically the service, its
operations, and the input and output format for each
operation. This style of web page is comparable to what

18 http://sweet.jpl.nasa.gov/ontology/

could be generated out of a WSDL file (when such a file
is available). Figure 6 illustrates this approach with an
HTML file generated out of (an extract of) the WSDL file
with an existing XSL transformation19.

Figure 6: HTML service description derived from WSDL

The two following examples present two types of
annotations: hRESTs Microformat (Figure 7), and RDFa
(Figure 8) applicable to the HTML form.

The hRESTs example (Figure 7) only includes
semantic references for the sawsdl:modelReference
attributes in SAWSDL. While the hRESTs solution may
seem easier to use, it also requires extra effort for the end
user to learn how the mapping between the class
annotations used in the microformat (operation, action,
input …) and the ontology used for the generated RDF
content. This mapping may depend on the hRESTs
toolset and on the availability of custom-made lifting and
lowering scripts.

<FORM method="get" name="NDFDgenForm"
action="http://www.weather.gov/forecasts/xml/sample_products/bro
wser_interface/ndfdXMLclient.php"
class="operation">
 <DIV id="GmlTimePeriod" style="display: block; ">
 <P>Valid Time Range ?</P>

 <TABLE border="1" cellpadding="4" width="60%">
 <TBODY class=“ input”>
 <TR rel=”model”
href="http://sweet.jpl.nasa.gov/2.0/time.owl#End”>
 <TD>End Time: <INPUT
type="text" name="endTime">
size="40" maxlength="80" value=""
onfocus="document.NDFDgenForm.endTime.value = '2010-
01-01T00:00:00';">2010-01-01T00:00:00</TD>
 </TR></TBODY></TABLE>
 </DIV>
</FORM>

Figure 7: hRESTs example

19 http://tomi.vanek.sk/index.php?page=wsdl-viewer

58

The RDFa example (Figure 8) includes semantic
references defining the type of annotations (e.g.
sarest:operation). This approach gives more control to the
end user for the choice of the service ontology and
simplifies the task for the programming of tools which
interprets the annotations. The RDFa specification (Adiba
et al. 2008) defines processing rules which helps to
combine these two types of semantic references
seamlessly.

<FORM method="get" name="NDFDgenForm"
typeof="[sarest:action]"
action="http://www.weather.gov/forecasts/xml/sample_products/bro
wser_interface/ndfdXMLclient.php"
about="http://www.weather.gov/forecasts/xml/sample_products/bro
wser_interface/ndfdXMLclient.php">>
 <DIV id="GmlTimePeriod" style="display: block; ">
 <P>Valid Time Range ?</P>

 <TABLE border="1" cellpadding="4" width="60%">
 <TBODY rel="[sarest:input]”>
 <TR
about="http://www.weather.gov/forecasts/xml/sample_products/bro
wser_interface/ndfdXML.htm#GmlTimePeriod.endTime”
typeOf="[sweet20:End]” >
 <TD>End Time:
<INPUT type="text" name="endTime">
size="40" maxlength="80" value=""
onfocus="document.NDFDgenForm.endTime.value = '2010-
01-01T00:00:00';">2010-01-01T00:00:00</TD>
 </TR>
 </TBODY></TABLE>
 </DIV>
</FORM>

Figure 8: hRESTs in RDFa example

4.5 Examples of semantic links
OGC standards like GML (Portele 2007) define the use of
XLink to add annotations in XML files. These
annotations can point to extra sources of information (e.g.
a file) or to Uniform Resource Name (URN).

The first use case is described in the GML
specification as “composition by inclusion of remote
resources”: in this case, the XLink annotation use the
xlink:href attribute to reference an external file containing
additional data (Figure 9).

<component name="weatherStation"
xlink:href="http://vast.uah.edu/downloads/sensorML/v1.0/examples/
sensors/DavisWeather/DavisMonitorII-WeatherStation.xml"/>

Figure 9: XLink used in SensorML to include extra data

Transposing this example to RDFa requires the inclusion
of an annotation which identifies the concept in a
repository of sensor descriptions with an about attribute:
the URI would then point to an individual or instance
(Figure 10) providing access to the data to be included.

<component
name="weatherStation"about="http://vast.uah.edu/downloads/sensor
ML/v1.0/examples/sensors/DavisWeather/DavisMonitorII-
WeatherStation"/>

Figure 10: RDFa example: additional data

The second use case corresponds to the inclusion of a
“model reference to an ontological description”. In this
case, the XLink annotation use the xlink:arcrole attribute
to define the type of the referenced object (Figure 11).
The definition attribute in the SWE schemas and the
descriptionReference in the GML schemas are scoped for
this particular usage.

<member xlink:arcrole="urn:ogc:def:process:OGC:SensorInstance">

Figure 11: XLink used in SensorML to define a type

In RDFa, the typeof attribute can be used for the same
purpose (Figure 12). A URN pointing to a type definition
(or class) is then used

<member typeof=="urn:ogc:def:process:OGC:SensorInstance">

Figure 12: RDFa example: reference to ontological def.

The example above shows that the current use of Xlink in
OGC schemas can be mirrored in RDFa.

In our generalised mashup approach, the semantic
annotations should be exploitable by generic or user-
defined lifting operators to create the corresponding RDF
statements. When this RDF is lowered back into XML,
there is a risk of losing some of the information
previously available. XLink can be used to maintain some
of this lowered content. Table 7 defines the mappings
between the two approaches which are possible with the
present XLink specification. It also shows that there are
other usages which are possible in RDFa but not in the
“simple” style of XLink.

5 Directions for future work

5.1 Guidelines for the application of hRESTs
For RESTful services, the format of the HTML content
which should be annotated is not specified by the
proposed specifications. This is an issue which should be
addressed. The form-embedded annotation approach is
preferable to the description-based one in general for the
part of the description which describes how to run the
service, because the annotated form can still be used to
test that the service works. For the part of the description
which covers the output data (results and error messages),
a different approach is required, to be based on an
embedded XML schema (this is what WADL does) or on
another form of testable content.

5.2 SAWSDL vs. hRESTs in RDFa
The relative complexity and rigidness of the SAWSDL
and of the hRESTs Microformat specification contrasts
with the flexibility of the approaches based on RDFa (e.g.
hRESTs in RDFa), where the choice of the service
ontology can be made by the end user without requiring
any new developments for the lifting of the semantic
annotations into semantic web tools.

This extra flexibility is important not just for RESTful
services. Further work is required to upgrade SAWSDL
so that it can also let the end user select the service
ontology they want if they are not satisfied by the

59

definitions brought by the SA-REST or WSMO-Lite
ontologies.

5.3 Ontologies for other types of services
Other service description languages like WADL (Hadley
2009) and WSDL 2.020 may provide a better basis for
RESTful services. The hybrid ontology and rule-base
framework proposed by Zhao and Doshi (2009) handles
three categories of composable RESTful services to add
access and transform resources.

SensorML (Botts and Robin 2007) is an OGC-
developed markup language for the description of
sensors. It includes a process model which is comparable
to the other service ontologies discussed above. The
challenge for the W3C Semantic Sensor Network
Incubator Activity is to develop an ontology describing
sensor services based on SensorML and use it for
semantic annotations in a context where the boundary
between the application-specific ontologies and the
service ontologies and between non-semantic and
semantic mashups is harder to define.

5.4 Replacement of custom-made lifting scripts
Any solution requiring the development of custom-made
lifting mechanisms should be avoided if alternative
approaches based on standards which fully specify this
critical step like RDFa are available. The dependency on
user-developed transformations for the lifting scripts is
one of the factors which have slowed down the adoption
of semantic annotation standards for services like
SAWSDL and hRESTs/SA-REST/MicroWSMO.

As discussed above, the hRESTs in RDFa format
provides a generic approach for the transformation of the
semantic annotations into a RDF-based format and it
should be possible to develop a similar approach for
SAWSDL and to also suppress the requirement to
develop custom-made scripts for this purpose.

But, it is not yet possible to automatically derive the
lifting script for the second type of lifting operation
discussed in 3.4, where the script goal is to process the
XML data manipulated by the service and not the file
containing the annotations. The MyMobileWeb project
(Berrueta et al. 2009) has been looking at RDFa for a
similar problem, to describe the bindings to data sources
and enable multi-device mobile access to semantically
enriched information portals.

5.5 Controlled upgrade of legacy standards
Ad hoc semantic upgrade of legacy standards such as
XLink should be monitored closely to minimise the risks
of failure caused by problematic extensions by end users.

In many cases, techniques bound to one family of
standards (XML) have been later adapted to a different
context without any assurance that the new usage respects
the original intent of the specification. Hybrid ad hoc
approaches may also import conflicting or ambiguous
definitions from different standard families.

Some parts of SensorML uses XLink annotations to
embed “model reference to an ontological description” in
the sensor description (e.g. swe:phenomenon). These use

20 http://www.w3.org/TR/wsdl20/

cases are a possible source of confusion because they
answer to requirements which can potentially be better
addressed through new approaches based on semantic
web technologies.

For example, to handle all the annotations
requirements identified for RDFa in an XML context, a
simple approach would be to add a new “style” to XLink
for RDFa as an extension to the current XLink
specification. For organisations like OGC who already
use XLink and maintain a large number of XML
schemas, this approach would have two advantages.

• To limit the impact on existing schemas to
changes in the XLink schema,

• To provide a mechanism to isolate semantic
XLink snippets from normal ones.

This upgrade of XLink should not be done without a
careful consideration of the present usage of XLink in
OGC standards and also in other standards like SVG21.

5.6 Failure risk analysis
Combining legacy and opportunistic mashups will require
robust and mashable validation tools to prevent and
diagnose failures. Opportunistic mashups depends on
external resources which may disappear or evolve
without notice, especially mashable services and semantic
resources, so the risks of failure are greater and more
diverse than in other environments.

In a multi-layered mashup environment, it is important
to support validation at every possible step of integration
and to leverage the validation methods which are specific
to each family of standards: XML, HTML and RDF
individually. In this context, it is very important to check
the availability of validators and their ability to check the
content (markup validators) as well as the added
annotations or links to remote resources and also the
flexibility and robustness of these tools.

The Unicorn22 (Universal Conformance Observation
and Report Notation) project at the W3C is a validator
mashup combining a HTML validator, a CSS validator
and a HTML link checker. Extending this approach to the
other families of the W3C23 and OGC standards used in
the type of mashups discussed above would be very
useful.

6 Conclusion
There are multiple semantic enablement techniques which
can be used in geospatial and semantic standards for
legacy and opportunistic mashups. For the insertion of
semantics links in XML content formatted according to
OGC standards, the less disruptive approach identified in
this review may be to add a new style to the existing
XLink specification transposing all the RDFa attributes
and processing rules defined for the HTML context.

The hRESTs-in-RDFa annotation format is preferred
for the annotation of RESTful services. The arguments

21 http://www.w3.org/Graphics/SVG/
22 http://www.w3.org/QA/Tools/Unicorn/
23 W3C specifications and validators are listed in
http://www.w3.org/QA/TheMatrix

60

formerly raised (Graf 2007) to prefer Microformats to
RDFa to add semantic annotations or links to HTML
have been invalidated by the W3C decision to make
RDFa available in HTML5. The analysis presented above
shows that solutions based on Microformats prevent the
implementation of generic lifting services with scripting
languages such as XSL Transformations, XQuery or
XSPARQL or with javascript libraries like rdfQuery
which plays an essential role in opportunistic mashups.

The SAWSDL specification should also be upgraded
to offer the same possibility for the user to select the
service ontology.

Finally, in complex mashups, the risk of failure is
greater and the validation methods are different for
standards belonging to the XML, HTML and RDF
families. There should be a limited number of methods to
combine these standards together to lower the cost of
development of new markup validators and link checkers.
If possible, these new validation services should also be
mashable to simplify the creation of more integrated
validation services.

7 References
Adida, B., Birbeck, M., McCarron, S. and Pemberton, S.

(2008): RDFa in XHTML: Syntax and Processing A
collection of attributes and processing rules for
extending XHTML to support RDF W3C
Recommendation 14 October 2008, Available from
http://www.w3.org/TR/rdfa-syntax, Accessed 17 Sep
2009.

Akthar, W., Kopecky, J., Krennwallner, T. and Polleres,
A. (2008): XSPARQL: Traveling between the XML
and RDF worlds – and avoiding the XSLT pilgrimage.
Proc. of 5th European Semantic Web Conference,
ESWC 2008, Tenerife, Spain, LNCS 5021:432-447.
Springer.

Al-Muhammed, M. J., Embley, D. W.,Liddle, S. W., and
Tijerino, Y. A, (2007): Bringing Web Principles to
Services: Ontology-BasedWeb Services. Proc. of IEEE
Congress on Services (Services 2007), 73-80.

Benjamins, V.R., Davies, J., Baeza-Yates, R., Mika, P.
Zaragoza, H., Greaves, M., Gómez-Pérez, J.M.,
Contreras, J., Domingue, J. and Fensel D. (2008):
Near-Term Prospects for Semantic Technologies, IEEE
Intelligent Systems, 23(1):76-88, Jan./Feb. 2008.

Berrueta, D., Polo, L., Fernández, S., Cantera, J. M. and
Jiménez M. (2009): MyMobileWeb Deliverable
D.5.4.1 Semantic extensions for IDEAL, 20 February,
2009, Available from http://forge.morfeo-
project.org/wiki_en/index.php/Semantic_annotations_f
or_IDEAL, Accessed 17 Sep 2009

Birbeck, M. and McCarron, S. (2009): CURIE Syntax 1.0
A syntax for expressing Compact URIs W3C
Candidate Recommendation 16 January 2009,
Available from http://www.w3.org/TR/curie, Accessed
17 Sep 2009

Bizer, C., Heath, T., Ayers, D. and Raimond, Y. (2007):
Interlinking open data on the web. Proc. 4th European
Semantic Web Conference, Innsbruck, Austria.

Botts, M. and Robin, A. (2007): OpenGIS Sensor Model
Language (SensorML), OGC 07-000, Open Geospatial

Consortium, July 2007, Available from
http://www.opengeospatial.org/standards/sensorml,
Accessed 17 Sep 2009

Clark, K. G., Feigenbaum, L. and Torres, E. (2008):
SPARQL Protocol for RDF W3C Rec. 15 January
2008, Available from http://www.w3.org/TR/rdf-
sparql-protocol/ Accessed 17 Sep 2009

Connolly, D. (2007): Gleaning Resource Descriptions
from Dialects of Languages (GRDDL). W3C Rec.,
W3C, 11 September 2007, Available from
http://www.w3.org/TR/grddl/, Accessed 17 Sep 2009.

DeRose, S., Maler, E. and Orchard, D. (2001): XML
Linking Language (XLink) Version 1.0 W3C
Recommendation 27 June 2001, Available from
http://www.w3.org/TR/xlink/, Accessed 17 Sep 2009.

Di Lorenzo, G., Hacid, H., Paik, H., and Benatallah, B.
(2009): Data integration in mashups. SIGMOD Rec.
38(1):59-66, Jun 2009.

Farrell, J. and Lausen, H. (2007): Semantic Annotations
for WSDL and XML Schema W3C Rec., August 2007,
Available from http://www.w3.org/TR/sawsdl/,
Accessed 17 Sep 2009.

Gamble M. T. and Gamble R. (2008): Monoliths to
Mashups: Increasing Opportunistic Assets, IEEE
Software, 25(6):71-79, Nov/Dec 2009.

Goel, K., Guha, R. V. and O. Hansson (2009):
Introducing Rich Snippets, Google Webmaster Central
Blog, 2009-05-12, Google, Available from
http://googlewebmastercentral.blogspot.com/,
Accessed 17 Sep 2009

Graf, A. (2007): RDFa v.s. Microformats DERI
Technical Report 2007-04-10, Available from
http://www.sti-innsbruck.at/results/publications/,
Accessed 17 Sep 2009

Hadley, M.J. (2009): Web Application Description
Language (WADL) Sun Microsystems Inc. February 2,
2009, Available from https://wadl.dev.java.net/,
Accessed 17 Sep 2009.

Henson, C. A., Pschorr, J. K., Sheth, A. P. and
Thirunarayan K. (2009): SemSOS: Semantic sensor
Observation Service. Proc. of International Symposium
on Collaborative Technologies and Systems 2009, 44-
53.

Hickson, I. (2009): HTML5 Draft Standard, 3 November
2009, Available from http://whatwg.org/html5,
Accessed 13 Nov 2009.

Jarrar, M. and Dikaiakos, M. D. (2009): A Data Mashup
Language For The Data Web. Proc. of Linked Data on
the Web (LDOW2009) Workshop at WWW2009,
Madrid, Spain, ACM.

Kopecký J. (2007): Web Services Description Language
(WSDL) Version 2.0: RDF Mapping W3C Working
Group Note 26 June 2007, Available from
http://www.w3.org/TR/wsdl20-rdf, Accessed 17 Sep
2009

Kopecký, J., Vitvar, T., Bournez, C. and Farrell, J.
(2007): SAWSDL: Semantic Annotations for WSDL
and XML Schema, IEEE Internet Computing,
11(6):60-67, Nov./Dec. 2007.

61

Kopecký, J., Gomadam, K. and Vitvar, T. (2008):
hRESTs: An HTML Microformat for Describing
RESTful Web Services. Proc. 2008 IEEE/WIC/ACM
International Conference on Web Intelligence and
Intelligent Agent Technology, wi-iat 1:619-625.

Kopecký, J., Vitvar, T., Fensel, D. and Gomadam, K.
(2009): D12v0.1 hRESTs & MicroWSMO CMS WG
Working Draft 10 March 2009, Available from
http://cms-wg.sti2.org/TR/d12/v0.1, Accessed 17 Sep
2009

Koschmider, A., Torres, V. and Pelechano, V. (2009):
Elucidating the Mashup Hype: Definition, Challenges,
Methodical Guide and Tools for Mashups. Proc. of the
2nd Workshop on Mashups, Enterprise Mashups and
Lightweight Composition on the Web in conjunction
with the 18th International World Wide Web
Conference, Madrid, Spain.

Lathem, J., Gomadam, K. and Sheth, A. (2007): SA-
REST and (S)mashups: Adding Semantics to RESTful
Services. Proc. IEEE Int’l Conf. Semantic Computing,
469–476, IEEE CS Press.

Lemmens, R., de By, R., Gould, M., Wytzisk, A.,
Granell, C., and van Oosterom, P. (2007): Enhancing
Geo-Service Chaining through Deep Service
Descriptions, Transactions in GIS, 11(6):849-871,
December 2007

Le Phuoc, D., Polleres, A., Morbidoni, C., Hauswirth, M.
and Tummarello, G. (2009): Rapid semantic web
mashup development through semantic web pipes.
Proc. of the 18th World Wide Web Conference
(WWW2009), Madrid, Spain.

Le Phuoc, D. and Hauswirth, M. (2009): Linked open
data in sensor data mashups. Proc. of the 2nd
International Workshop on Semantic Sensor Networks
(SSN09), Chantilly, VA, USA, CEUR-WS Proceedings
522.

Portele C. (2007): OpenGIS® Geography Markup
Language (GML) Encoding Standard version 3.2.1
OGC 07-036 Open Geospatial Consortium 2007-08-27

Prud'hommeaux, E and Seaborne, A. (2008): SPARQL
Query Language for RDF W3C Rec. 15 January 2008,
Available from http://www.w3.org/TR/rdf-sparql-
query/, Accessed 17 Sep 2009

Sahoo, S. S., Sheth A. and Henson, C. (2008): Semantic
Provenance for eScience: Managing the Deluge of
Scientific Data, IEEE Internet Computing, 12(4):46-54,
July/Aug. 2008.

Sheth, A. P., Gomadam, K. and Lathem, J. (2007), "SA-
REST: Semantically Interoperable and Easier-to-Use
Services and Mashups," IEEE Internet Computing,
11(6):91-94, Nov./Dec. 2007.

Vaccari, L. Shvaiko, P. and Marchese, M. (2009): A geo-
service semantic integration in Spatial Data
Infrastructures. International Journal of Spatial Data
Infrastructures Research (IJSDIR), 4:24-51.

Zhao, H. and Doshi, P. (2009): Toward Automated
RESTful Web Service Compositions. Proc. of the 2009
IEEE International Conference on Web Services (ICWS
2009), 189-196, IEEE Computer Society.

62

