
 

 

 
  

 
Abstract 

 
    This paper presents the performance analysis of Super-
Orthogonal Space-Frequency trellis coded OFDM 
(SOSFTC-OFDM) system using the Gauss-Chebyshev 
Quadrature technique. SOSFTC-OFDM is a form of the 
super-orthogonal space-time trellis code that is used with 
OFDM. SOSFTC-OFDM utilizes the diversities in frequency 
and space domain by assuming that coding is done along 
adjacent subcarrier in an OFDM environment. This paper 
evaluates the exact pairwise error probability (PEP) of the 
SOSFTC-OFDM system based on the Gauss-Chebyshev 
Quadrature formula and used the PEP to calculate the 
approximated average bit error probability. Comparing the 
calculated average bit error probability to the simulated our 
results shows 0.2dB SNR deviation for 10-2 average bit error 
probability at error event of length 3.. 

 
 

1. Introduction 
 
Space-time coding techniques are bandwidth and power 
efficient methods of communication over fading channels. It 
combines the design of channel coding, modulation, transmit 
diversity and, receive diversity.  Some of the basic examples 
of space-time codes includes space-time trellis code (STTC) 
[1], space-time block code (STBC) [2] and super-orthogonal 
space-time trellis code (SOSTTC) [3]. SOSTTC is a new 
class of space-time code that combines the set partitioning 
and a super set of orthogonal space-time block codes in a 
systematic way to provide full diversity and improved 
coding gain when compared with earlier space-time trellis 
construction [1-2]. The orthogonal transmission matrix used 
in the design of SOSTTC is given as:  
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constellation signal represented by si  ∈ exp(j2πa/M), i =1,2. 
, a=  0, 1, …, M-1; one can pick θ = 2πá/M, where á= 0,1, 
…, M-1.  
Although space-time coding schemes were designed for non-
frequency selective fading channels, their performance in 
frequency selective channels have been an ongoing research 
area. Space-time coding schemes in a frequency selective 
channel results in severe performance degradation as a result 
of intersymbol interference (ISI) [4]. 
Orthogonal frequency division multiplexing (OFDM) 
technique transforms a frequency selective channel into 
parallel frequency non-selective subchannels and eliminates 
the ISI caused by the multipath. The performance of various 
space-time coding schemes in OFDM systems have been 
investigated in the literatures [5-6].  
In [5], space-time trellis coded OFDM systems with no 
interleavers over quasi-static frequency selective fading 
channel was considered. The performance of the code was 
analyzed under various channel conditions in terms of the 
coding gain. The work points out that the minimum 
determinant of the space-time coded OFDM systems 
increases with the maximum tap delay of the channel, 
thereby causing an increase in the coding gain of the coded 
OFDM. 
In [6] a full-rate robust Super-orthogonal space-time trellis 
coded OFDM system was introduced. The scheme provides 
multipath diversity in wideband-frequency selective fading 
channels in addition to space and time diversity. The paper 
assumes that the channel remains constant during the 
transmission of the orthogonal matrix. 
Another possibility of coding as hinted in [7] for a block 
coding schemes in an OFDM environment is to assume that 
the channel frequency response is identical across the Nt 
adjacent subcarrier.  We introduce this type of scheme for a 
super set of orthogonal block codes, as Super-Orthogonal 
Space-Frequency Trellis Coded (SOSFTC) OFDM system.  
In [8], the closed form expression for the average bit error 
rate (BER) of space-frequency block coded OFDM systems 
were derived using the instantaneous BER at each channel 
subchannel and assuming Gray bit-mapping. 
In this paper, the approximated expression of the average bit 
error probability is given using the derived closed form 
expression for the pairwise error probability (PEP) of a 
SOSFTC-OFDM system using the Gauss-Chebyshev 
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Quadrature technique [9]. The calculated average bit error 
probability shows good correlated with simulated average bit 
error probability. 
The paper is organized as follows. In Section 2, the system 
model of the SOSFTC-OFDM is discussed. In Section 3, we 
describe the derivation of the PEP using the Gauss-
Chebyshev Quadrature technique and also give numerical 
examples. In Section 4, we use the PEP obtained in Section 
3 to give an approximated expression for the average bit 
error probability for a quasi-static frequency selective fading 
channel. In Section 5 a brief discussion on the results 
obtained from the numerical example of both the PEP and 
the average bit error probability is given while Section 6 
concludes the paper. 

2. System Model 
 
 An OFDM transmission system with Nt transmit antennas, 
Nr receive antennas and N subcarriers is considered.  
Each transmitted frame consists of N*Nt M-PSK SOSFTC 
block of codes with each block consisting of N encoded 
symbols. Let si(n) represent the symbol transmitted from 
subcarrier n ( n ∈ {1,2,…,N}) at the i th transmit antenna.  
After matched filtering, sampling and fast Fourier transform 
(FFT), the received signal at the j th received antenna is given 
by: 

1

tN

j ij i j
i =

= +∑R G S N% ,                                                  (2) 

 
where  Gij =[ Gij(1), Gij(2), Gij(3),…, Gij(N)]  T consist of the set 
of channel frequency response Gij(n)    from the i th transmit 
antenna to the j th receive antenna for the nth subcarrier, Rj =[ 
r j(1), r j(2), r j(3),…, r j(N)]T consist of the received vectors at 
different subcarriers and Ñj =[ ηj(1), ηj(2), ηj(3),…, ηj(N)]T 
consist of the noise component ηj(n) at the receive antenna j 
and subcarrier n. The noise components are independently 
identical complex Gaussian random variables with zero-
mean and variance No/2 per dimension.  
The time domain channel impulse representation between 
the i th transmit antenna and the j th receive antenna can be 
modeled as a L tapped-delay line. The channel response at 
time t with delay τs can be expressed as: 
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where ( )∂ � is the Kronecker delta function, L denotes the 

number of non-zero taps, ĝij(l, t) is the complex amplitude of 
the l th non-zero tap with delay of nl/N∆ƒ, ln is an integer and 

∆ƒ is the tone spacing of the OFDM system. In (3), ĝij (l, t) 
is modeled by the wide-sense stationary (WSS) narrowband 
complex Gaussian processes with power E[|ĝij(l, t)|2] = σl

2, 

which is normalized as
1 2 1

L

ll
σ− =∑ .  

For an OFDM system with proper cyclic prefix, prefer 
sampling, the channel response is expressed as: 
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where gij= [ ĝij(0), ĝij(1), ĝij(2), ĝij(3), …, ĝij(L-1)]T
 is the 

channel vector with narrowband zero-mean complex 

Gaussian processes and the FFT coefficient is 
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3. Pairwise Error probability of SOSFTC-
OFDM Systems 
 
3.1.    Mathematical Analysis 
 
For the PEP analysis we consider a SOSFTC-OFDM system 
with two transmit antenna (Nt = 2), using the orthogonal 
transmission matrix given in (1). The received signal at the 

j th receiver antenna is given by: 

 
R j = G1jS1 + G2jS2 +Ñ j,                                                   (5) 
 
where the super-orthogonal block codes for the two transmit 
antenna is written in equation (6) below as: 
 
S1 = [s1(1), s1(2), s1(3),…, s1(N) ]T 

    =[s(1)ejθ, -s*(2)ejθ, s(3)ejθ, -s*(4)ejθ ,…, s(N-1)ejθ ,-s*(N)ejθ ]T 

S2 = [s2(1), s2(2), s2(3),…, s2(N) ]T 

    =[s(2), s*(1), s(4), s*(3) ,…, s(N) ,s*(N-1)]T                     (6) 
 
To evaluate the PEP of a SOSFTC-OFDM scheme i.e. the 
probability of choosing the codeword Ŝ = [ŝ(1), ŝ(2), ŝ(3), 
ŝ(4), ŝ(5), …, ŝ(N)], where ŝ(n) = [ŝ1(n), ŝ1(n)],  when in fact 
the codeword S = [s(1), s(2), s(3), s(4), s(5), …, s(N)], 
where s(n) = [s1(n), s1(n)]  was transmitted, the maximum 
likelihood metric corresponding to the correct and the 
incorrect path will be used. The metric corresponding to the 
correct path and the incorrect path is given in equation (7) 
and (8) respectively. 
 
m(r, S) = ||Rj – (G1j S1+ G2j S2)||2.                                       (7) 
 
m(r, Ŝ) = ||Rj – (G1j Ŝ1+ G2jŜ2)||2.                                       (8) 
 
The realization of the PEP over the entire frame length and 
for a given channel frequency response is given in equation 
(9). 
 
P (S → Ŝ│G) = Pr{ m(r, S) > m(r, Ŝ)} 
                         = Pr{ (m(r, S) - m(r, Ŝ)) > 0}                   (9)   
 
Simplifying (7) and (8) and substituting it in (9) gives 
equation (10) 
 
P (S → Ŝ│G) = Pr{ || G1j (S1- Ŝ1) ||2 + || G2j (S2- Ŝ2) ||2 } 
                                    = Pr{||Gj ∆||2 > 0},                                   (10)                                                                                     

 
where Gj = [G1j G2j], ∆ is the block codeword matrix that 



 

characterize the SOSFTC-OFDM system and ||.|| stands for 
the norm of the matrix element.. The expression of ∆ is 
given in equation (11). 
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The conditional PEP given in (10) can be expressed in term 
of the complementary error function [9] as: 
 

( )
10

1ˆP erfc
2 4

rN
H Hs

j j
j

E

N =

 
→ =  

 
 

∑S S G G ∆∆ G      (12) 

 
The function ∆∆H  is a diagonal matrix of the form shown in 
(13) below and (.)H represents the conjugate transpose of the 
matrix element and Es/ No stands for the symbol signal-to-
noise ratio, 
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The diagonal element of (13) and further expansion of jG  

is given below. 
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A complementary error function, as defined integrally in [10, 
7.4.11] is given by, 
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Expanding (12) using (16), the conditional PEP can be 
expressed as an integral. Thus, with E(x) denoting the 
average of x, one gets: 
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The above expression (17) can be simplified further using 
the results in [11].  
For a complex circularly distributed Gaussian random row 
vector z with mean µ and covariance matrix σz

2 = E[zz*]- 
µµ*, and a Hermitian matrix M , we have: 
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where I  is an identity matrix. Applying (18) and also using 
(15) in solving (17), (19) is obtained.  
Knowing that z = [g1j g2j], M = -(t2+1)Es / 4NoW(n)∆(n)( 
∆(n))H(W(n))H (it should be noted that since W(n)∆(n)( 
∆(n))H(W(n))H is a diagonal matrix, M  is an Hermitian 
matrix i.e. M  = M T), µ=0 ([g1j g2j] has Rayleigh 
distribution) and 
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To solve (19), an integral equation is given by (20) 
considered. 
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Substituting  21 1y t= +  into (20), (20) becomes (22). 
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The above equation (22) is in the orthogonal polynomial 
form as given in (23) [10, 25.4.38] and Gauss-Chebyshev 
Quadrature technique of first kind can be used to solve it. 
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The expression in (22) can take the form of (23) if 
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The closed-form expression of the PEP for SOSFTC-OFDM 
system using the Gauss-Chebyshev Quadrature formula as 
enumerated above is now given by (26). 
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As m (which is the order of the polynomial i.e. f (ui) and also 
function of degree of precision ≡ 2m-1) increases the 
remainder term Vm becomes negligible.  
 
3.2    Numerical Example 
 
A 2-state BPSK trellis given in [12] is used as an example. 
In our example we assume that L=2, Nr =1 and that the 
OFDM system has a bandwidth of 1MHz and 256 OFDM 
subcarrier (N=256). The tone spacing of the OFDM system 
is 3.9 KHz. Based on this assumption W(n) is given in (27).  
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The different values of A for the PEP expression of the 
SOFTC-OFDM system is given below for error event of 1 
and 2 . 
For Error event of 1, A in (26) is given as A1. 
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For error event of 2, A in (25) is given as A2. 
 
A2=K 1+K 2+K 3+K 4                                                           (29) 
 
where: 
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4. Average bit error probability of the 
SOSFTC-OFDM system  

 
The average bit error probability is of greater interest than 
the PEP in analyzing the performance of a communication 
system. The average bit error probability of the SOSFTC-
OFDM systems can be obtained by accounting for error 
event path up to a pre-determined specific value using 
equation (34). 
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where h  is the number of input bits per trellis transition and 
q(S → Ŝ) is the number of bit errors associated with each 
error event. If the maximum length of error events taken into 
account is chosen as H, it is sufficient to consider the error 
event up to H; this represents a truncation of the infinite 
series used in calculating the union bound on the bit error 
probability for high SNR values. The choice of H is critical 



 

in the sense that most of the dominant error events for the 
range of SNR of interest should be taken into account by a 
proper choice while preventing excessive computational 
complexity (the computational complexity grows 
exponentially with H). 
The PEP previously derived will be used to evaluate in 
closed form an approximation to the average bit error 
probability by accounting for error event equal to 3. If the all 
zero sequence was transmitted i.e. {(0,0)} , using the 2-state 
code in [12], there is a single error event path of length 1 i.e. 
{(0,1)} which has a PEP of type PEPI  and contribute only 
one bit in error. When accounting for error events of length 
2 i.e. H = 2 and assuming that the all zero sequence was 
transmitted i.e. {(0,0)} and {(0,0)}, there are 4 error event 
paths i.e. {(1,0)(1,0), (1,0)(1,1), (1,1)(1,0) and (1,1)(1,1)} 
which have PEP of type PEPII and they all contribute a total 
of 12 bits in error.  
Also when accounting for error event of length 3 i.e. H = 3 
and the all zero sequence was transmitted i.e. {(0,0), (0,0), 
(0,0)}, there are 8 error event paths i.e.{(1,0)(0,0)(1,0), 
(1,0)(0,0)(1,1), (1,0)(0,1)(1,0), (1,0)(0,1)(1,1), 
(1,1)(0,1)(1,0), (1,1)(0,1)(1,1), (1,1)(0,0)(1,0), 
(1,1)(0,0)(1,1)}. All these error event paths have PEP of 
type PEPIII  and they contribute in total 28 bits in error 
To approximate the average bit error probability by 
considering only the error event path of 1, 2 and 3 we use 
Pb1, Pb2 and Pb3 respectively. 
 
Pb1 ≈ ½ (PEPI )                                                               (35) 
 
Pb2 ≈ ½ (PEPI + 12*PEPII)                                              (36) 
 
Pb2 ≈ ½ (PEPI + 12*PEPII +28*PEPIII )                             (37) 
 
 
 

5.   Performance results 
 
The performance of the SOSFTC-OFDM system in a quasi-
static frequency selective channel is evaluated by simulation 
and analysis using the same parameters stated in section 3.2. 
Figure 1 shows the PEP for of the scheme for various error 
event lengths using the derived closed form expression of 
the pairwise error probability of the 2-state SOSFTC-OFDM 
system. The graph shows that an increase in the error event 
(i.e. error event of length 3) gives a better PEP evaluation 
which corresponds to more accurate average bit error 
probability as show in Figure 2.  

6.  Conclusions 
 
The paper derived a closed form expression of the pairwise 
error probability of a 2-state SOSFTC-OFDM system using 
Gauss Chebyshev Quadrature technique. The pairwise 
derived is use to approximate the BER of the SOSFTC-
OFDM system. The approach used in this paper is different 
from the one use in [8] for space-frequency block code as 
our approach took into account the codeword matrix of the 
transmitted block. The method proposed in this paper can be 

used for other form of space-frequency block coded-OFDM 
schemes. 
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Figure 1: PEP performance of a 2-State BPSK SOSFTC-
OFDM system. 
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Figure 2: Average Bit error Probability 2-State BPSK 
SOSFTC-OFDM system. 
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