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1.  INTRODUCTION

Socio-economic development strategies have histori-
cally focussed narrowly on local development concerns
and have not emphasized cross-sector interactions and
dependencies, especially over large spatial and tempo-
ral scales (Gunderson & Holling 2002, Starzomski et al.
2004, Levin 2006). The consideration of long-term and
remote effects of ecological exploitation for human de-
velopment purposes has not historically been a major
consideration (Lubchenco 1998). The implications for

social–ecological systems are that optimising human
development activities at a local scale for short-term,
microeconomic gain does not necessarily translate into
benefits at the whole-system scale. In particular the
effects of local development optimisation efforts have
often had significant remote effects in other sectors of
the social–ecological system or in components of the
ecosystem. These sectors are traditionally viewed as
distinct parts of a system and only local dependencies
and interactions with other sectors are considered in
strategic planning and implementation.
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Biofuel is currently being considered as a supplemen-
tary source of low emission, renewable energy as a liq-
uid fuel supplement in agriculture-based economies
such as South Africa (DME 2006), and in transitional and
industrially developed countries (e.g. Brazil, USA). With
the increased global awareness of climate change ef-
fects, the pressure to lower emissions has grown. How-
ever, the impact of the agricultural sector entering an en-
ergy market with rising demands and the threat of lower
fossil fuel reserves in the future poses complex inter-
sectoral development challenges. This is perceived to be
due to the interdependency that is being created be-
tween the energy and food production sectors by the
introduction and use of biofuel as a source of alternative
energy (MIT 2007, Sugrue & Douthwaite 2007).

Both climate change effects and regional human de-
velopment activities (especially significant land-use
changes) may threaten water supply and agricultural
food production in southern Africa (Mendelsohn et al.
2000, Mukheibir & Sparks 2003, Midgeley et al. 2005,
Kates & Dasgupta 2007). In the southern African region,
climate-change models (Mendelsohn et al. 2000) pre-
dict an increase in water scarcity due to temperature in-
creases. For agricultural production this suggests an
increase in plant evapotranspiration rates, surface
runoff and dam evaporation rates. At the national scale
this implies that sector-driven competition between fuel
and food producers will increase. Avoiding unintended
effects of diverting existing agriculture for food and
animal feed to biofuel production requires prescribing
an appropriate balance between the agricultural activi-
ties of food and biofuel production.

The South African total national biofuel target (Lem-
mer 2006) for 2013 was originally drafted at 4.5% of
liquid road transport fuels (DME 2007); that is, approx-
imately 8% of ethanol in national petroleum production
(NPP = 10.985 × 109 l) and 2% biodesel in diesel, which
is approximately 4.5% of national petrol and diesel vol-
umes (DME 2007). Achieving this target across a range
of scenarios requires blending in up to 5 and 10% bio-
fuel components for biodiesel and fuel ethanol, respec-
tively (DME 2006). This target was later slashed to 2%
(i.e. around 400 million l yr–1; DME 2007) citing con-
cerns over food security in 2007, and the cultivation of
maize for ethanol production has been suspended in
the initial phase of the strategy. Biofuel production from
soya beans, sunflowers and sugarcane on this scale
from irrigated agriculture alone may require a large
amount of new arable land, and the conversion (to fuel-
producing agriculture) of significant areas of land on
which food-producing agriculture (especially subsis-
tence agriculture) is currently being practised.

Between academic disciplines, economic sectors, civil
society and governance bodies, there is a debate on the
national biofuel development strategy. Climate-change

adaptation strategies involving land-use changes that aim
to develop the biofuel sector holistically and sustainably
require that the effects of climate change on production
limits and intersectoral dependencies are taken into
account. This study outlines an approach to assess
what scenarios may create the conditions for conflicting
sectoral interests to play out in response to the biofuel
strategy being proposed.

The aim of this study is to show how interdisciplinary
multi-participant cooperation around intersectoral
effects can be enhanced by using a Bayesian model to
assess land-use adaptation strategies against multiple
future scenarios—i.e. to establish an understanding of
a multi-sector, social–ecological system in an ana-
lytical framework which could help support a multi-
participatory approach. The focus of our analysis is on
testing the land-use combinations that can help attain
biofuel production targets; and in particular, exploring
the sensitivity of surpluses that would be required to
meet targets under climate change effects. To this
end, we apply the approach to 2 examples of hypothet-
ical land-use combinations, and test these strategies
against projected climate change effects for the region
regarding rainfall and temperature variation. This
study is therefore an illustrative and descriptive study,
and is not an exhaustive study of the multitude of
future options, nor is it definitive in terms of prediction.

The approach proposed in this study provides a
framework in which subtle changes—resulting from
the exposure of different land-use combinations to pro-
jected climate change scenarios—may be evaluated
against each other. We argue (and show) that this
Bayesian framework constitutes an adaptive, flexible
framework that can test a wide range of system con-
figurations against envisaged future system scenarios;
especially where land-use changes (or adaptations)
are concerned. In particular, the food, water and
energy sectors are considered in an integrated frame-
work in which biofuel development strategies being
considered in South Africa may be evaluated against
its cross-sector impacts on other critical sectors, in par-
ticular; regarding food security. The framework is for-
mulated using graphical causal maps and Bayesian
networks in interdisciplinary workshops where inter-
disciplinary and multi-sector concerns of the system
may be formulated and tested.

2.  METHODOLOGY

2.1.  Background

Studies of the suitability of Bayesian nets for model-
ling the challenges facing social–ecological systems
have recently emerged. Bayesian nets have been used
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to model environmental decision support (Baran &
Jantunen 2004), biophysical systems (e.g. integrating
estuarine eutrophication models; Borsuk et al. 2004)
and integrated water resource planning (Bromley et al.
2005). In the approach used in this study, large- and
small-scale spatio-temporal system interdependencies
may be considered within an integrated framework.
This framework can be used to consider (1) biofuel
production options in relation to land-use strategies,
and (2) crop production sensitivities to climate change
effects. The approach helped us to formulate a
Bayesian model which provides a probabilistic frame-
work of driver–response mechanisms acting across
scales and sectors.

We used a case study formulated in previous re-
search (Musango & Peter 2007) to assess the feasibility
of the current, revised biofuel production targets (DME
2007). We adapted the model in Musango & Peter
(2007) to assess the impact of climate change on irri-
gated agriculture in South Africa using Bayesian net-
works. We formulated and ran a national-scale South
African model which links the impacts of predicted cli-
mate-change effects (e.g. changes in temperature and
rainfall) to irrigated agricultural activities, water-stor-
age planning and biofuel production. Using the model
we explored ways of assessing the resilience of 2 pos-
sible biofuel-related land-use strategies (or land-use
adaptations) to various climate-change scenarios.

We evaluated adaptation responses in a Bayesian
modelling framework and assessed the relative trade-
offs of increased biofuel production in terms of food
crop production and impacts on water supply. Through
the sensitivity analysis provided by Bayesian nets, the
study provided an enhanced understanding of cross-
scale and cross-sector (e.g. food and energy) activities,
with particular respect to the critical limits and thresh-
olds to the growth of crops as biofuel feedstock in rela-
tion to climate change. This could form the basis
for facilitation of interdisciplinary cooperation. The ap-
proach provided a probabilistic framework for sen-
sitivity analysis of cross-scale and cross-sector inter-
dependencies in a variety of scenarios and land-use
combinations. The Bayesian framework can merge
quantitative data sources and qualitatively (or subjec-
tively) assessed variables with varying levels of confi-
dence (Demirez et al. 2006) in the conditional causal
belief structure of the Bayesian Network. System
interdependencies and sensitivities may be manually
changed within this framework to reflect unfolding
contextual changes and improved understanding of
system features. Expert opinion and information ob-
tained from the literature and other data was used to
constrain the probabilities in the Bayesian model.

The scenarios were formulated with an understand-
ing of regional climate change projections for the

African continent and southern Africa in particular
(Mendelsohn et al. 2000, Midgeley et al. 2005), and
from the results of global climate change modelling
(Bates et al. 2008). These regional climate change
models project a general increase in temperatures over
the southern African region. More detailed projections
indicate that rainfall may decrease in the west (Midge-
ley et al. 2005) and increase in the eastern part of the
country. The model that was formulated and tested in
this study does not provide a spatial account of activi-
ties in South Africa. Instead, activities are aggregated
at the national scale, i.e. each activity is assessed
independently of its local spatial context. The system is
evaluated at a cumulative scale, and the modelling
challenge lies in assessing the scale and level of de-
scription required for modelling critical interdepen-
dencies that govern the behaviour of the system. The
flexibility provided by the Bayesian modelling frame-
work enables different scenarios and adaptation
responses to be appropriately formulated and tested at
this scale.

We show how key sensitivities between subsystem
components and with the external system environment
may be elucidated and assessed (and verified) and
how sensitivities change depending on the scenario
under which the social–ecological system is being
assessed. The approach integrates top-down and bot-
tom-up learning in a traceable process (Peter 2008),
and may be used to enable interdisciplinary considera-
tion and scrutiny of land-use strategies under a variety
of proposed scenarios. This may also be used to stimu-
late dialogue and debate between various decision
makers and help create a shared understanding of
cross-sector and cross-scale dependencies which have
a significant impact at the system scale (Peter 2008).

The critical difference between Bayesian models and
dynamic simulation models such as STELLA and
VENSIM is that Bayesian models are probability-
theory based models i.e. probability distributions are
used to model interactions between processes, vari-
ables, events, stocks, flows, etc. Moreover, variables
are related through conditional causality, i.e. a reason
must exist for the causal relationship between any
parent and child variable (node). Maximum-likelihood
based (versus probability-based) statistical approaches
rely on correlations as evidence for relationships, with-
out necessarily explaining causality. This leads to
the often lamented ignominy of ‘spurious correlations’,
which often brings statistical evidence into question.
Scientific hypotheses are based on articulating the
conditional dependences upon which causal relation-
ships are assumed to exist, and to make predictions
from that understanding. Bayesian networks and
graphical causal models force researchers to articulate
the assumptions that underlie the conditional causal
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relationships that they believe exist between variables
in a Bayesian network. They therefore provide a rig-
orous interrogation framework for investigation of
scientific research hypotheses.

A hierarchy of land-use model human decision-mak-
ing complexity was proposed by Agarwal et al. (2000,
their Table 2.2). In this hierarchy, probability-based
models—such as the one used in our study—rank at
the 4th level of complexity, below single-agent land-
use models (Level 5) and multi-agent land-use models
(Level 6). The larger volume of variables included in
the model provides the flexibility to test a variety of sce-
narios and adaptations. Decision-makers are constantly
faced with ‘whitewaters’ (Malhotra 1999), where emer-
gent or unforeseeable changes occur, which change the
context or nature of the problem to such a degree that
flexible, modular modelling frameworks are required to
easily reconfigure subsystem modules. With Bayesian
networks this is a ‘cut-and-paste’ task, as editing the
model is enabled with Bayesian software. Bayesian
networks were chosen for this task because of the wide
range of scenarios, and a wide range of adaptation
options could be catered for within the framework,
which provides adaptability and modularity. Moreover,
Bayesian networks make evident the difference be-
tween observational and interventional variables (Meder
et al. 2009), allowing researchers and decision-makers
to have a clear understanding of where to measure and
monitor within a system, and where to make interven-
tions (respectively).

2.2.  Conceptualising and formulating the model

Interdisciplinary cooperation was employed for
model formulation and verification. A graphical causal
model of the various sub-models formulated in an inte-
grated Bayesian framework is shown in Fig. 1. The
model is formulated to evaluate the economic value
added (VAD) of water to agricultural production and
water use in relation to water storage and climate dri-
ven changes in annual temperature and rainfall, and,
comparing this with results obtained from scenarios
that are run without considering climate driven
changes and water losses from water storage in dams.
The model has 4 basic modules which are outlined in
Fig. 1 and shown in detail in Fig. 2. The economics
modules calculate the economic VAD to water (and
water use) through food-based agriculture with and
without climate change effects (Fig. 2a,b). The biofuel
production module (Fig. 2c) enables the user to in-
crease the area of a crop under production, and dedi-
cate a percentage of the yield to biofuel production
and calculates the resulting biodiesel and bioethanol
production. The water storage, temperature and rain-

fall module (Fig. 2d) enables the user to assess the
impact of climatic changes in rainfall and precipitation
on the total amount of water available. The 4th module
(Fig. 2a) calculates what the envisaged water use would
be for planners who did not consider climate change
effects.

The conceptual framework of total economic value
(TEV) (Blignaut & de Wit 2004) goes beyond the utility-
based approach of neoclassical economics by con-
sidering a wide range of ecological services provided
by ecosystems, ranging from ecosystems as sources or
sinks to ecosystems as providers of human develop-
ment services (e.g. recreation, spiritual and cultural
value). We use the conceptual framework of TEV to
define and formulate the linkages between the various
sectoral socio-economic and biophysical domains of
concern in this study. However, we kept the systems
development process as open as possible, and drew on
other concepts and frameworks. For example, in a
recent study of agricultural services in the Crocodile
Basin of the Incomati catchment, Hassan (2003) used
direct and total VAD to assess the value of sugar cane,
subtropical fruit and forestry activities. We use the eco-
nomic multipliers derived in this study to evaluate both
direct and total VAD derived from water use in human
activities as proxies to help compare the micro- and
macroeconomic impacts of adaptation strategies, within
the broader TEV framework.

Emission reductions due to the inclusion of biofuel in
petroleum may be deduced using estimated conver-
sion rates for emission reductions from the percentage
of biofuel added to the national petroleum supply. For
example, the carbon dioxide extracted from wheat
amounts to roughly one-third of the wheat ground
(Lemmer 2006). Other indicators of interest which are
not explicitly calculated in the model may be inferred
from the model outputs. There are estimates available
for the VAD contributed through agricultural produc-
tion of biofuel feedstock. For example, 1 t of ground
wheat is estimated to yield a VAD of 243 South African
rand (Lemmer 2006).
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2.2.1.  Populating the model

The best available information and expert opinion
was used to populate and verify the model—which is
based on Musango & Peter (2007). The use of economic
multipliers for water-intensive activites derived by
Hassan (2003) are used to assess and compare the
relative changes in micro- and macroeconomic effects
of water adaptation strategies, even though the actual
values of multipliers may be contentious. Information
regarding the national biofuel strategy (DME 2006)
and the bioethanol production feasibility of a plant in
the Western Cape (Lemmer 2006) was used to obtain
an idea of the national and provincial considerations
made in formulating a biofuel development strategy.
Dam evaporation rates were obtained from the South
African Council for Scientific and Industrial Research
(CSIR) records and reports. Information about current
levels of irrigated agricultural activities was obtained
from several local and international sources (e.g.

AQUASTAT 2005). All sources were compared and
verified before use. Traceability of model parameters
and the reasoning behind using them is captured in
the graphical causal modelling software that is used to
formulate Bayesian nets and may therefore be shared
and scrutinised amongst researchers.

Probability distributions from empirical or theoreti-
cal frameworks (e.g. through detailed subsystem mod-
els) can be used, as can conditional probability tables
populated with expert understanding and verified in
sensitivity analyses. Critically, the probabilities in the
model reflect the ‘current state’ of the system, as esti-
mated and projected from data sources that may be a
few years old (e.g. census data), and may constitute the
only available data, forcing the team to make an esti-
mate (based on an understanding of evolving growth
patterns) of the current state of the variable (e.g. the
marginal distribution for area under a particular crop
such as soya). Therefore, standard deviations from his-
torical data about the history of soya cultivation area
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are not used to characterise the probability. Rather, the
extent of uncertainty in the estimated ‘current state’ of
area under soya production is reflected, i.e. the uncer-
tainty around the shared knowledge of the interdisci-
plinary group. In other Bayesian modelling applica-
tions—such as to asset management by Demirez et al.
(2006) where up-to-date real-time information is avail-
able, and the historical patterns of change have some
relevance—historical standard deviations can be used.
By characterising the variables to reflect the ‘current
state’ (subjectively estimated), the Bayesian model in
its default state reverts to a baseline state representing
the shared understanding of the expert group of what
the ‘current state’ of the system is, to which all sce-
narios can be compared.

In general, most of the model makes use of equations
with reliable constraints to relate probability distri-
butions between variables. The constraints governing
these equations are generally well understood, and
while the Bayesian modules deal more explicitly with
cumulative effects rather than considering spatial and
temporal differences during the period of a year, their
outputs are verifiable. There are 2 ways of characteris-
ing the probabilities: with (1) discrete and (2) continu-
ous probability distributions. Both ways make use of
the Bayesian conditional probability principle to relate
variables in causal relationships. In this study, discrete
probability distributions were used, as they allow the
user to add new evidence to the Bayesian model and
update the model to reflect new understanding (Demirez
et al. 2006).

Very few variables were subjectively characterised
in this Bayesian model (using expert opinion to formu-
late conditional probability tables, CPTs), and the few
variables that were subjective, were verified against
expert opinion and understanding of the limits and
thresholds of the system under different scenarios (e.g.
see the curve in Fig. 4, generated from a conditional
probability table). To emphasise, these outputs can be
verified against empirical, and modelled evidence, and
output, driver and constraint values of the Bayesian

network are verified in each scenario. If the marginal
and a priori probability distributions are incorrectly
determined then the outputs will also be nonsensical.
Therefore, input–output relationships are carefully
scrutinised and verified by experts for each scenario.

2.2.2.  Sensitivity analysis and running the model

When running the Bayesian model using a Bayesian
software interface, the probability distribution of each
selected variable may be viewed. The parameters of
states (or intervals) chosen for agricultural land-use
driver variables are shown in Table 1, and the initial
states for a selection of critical variables are shown in
Fig. 3. The probability of the variable being in any
state is shown as a discrete probability distribution
over the range of states for each variable. Before the
model is run, variables are automatically initialised to
defaults representing current value settings (e.g. the
wheat area variable in Fig. 3 has a 73.64% chance of
being in the interval, or state: 173 280 to 194 940 ha).
Sensitivity analysis is conducted by varying the values
of driver variable states (i.e. 100% in a single state) and
observing response variable distributions.

For each scenario, the response variables are veri-
fied for the full range of driver variables. Biodiesel,
bioethanol and biofuel production at the aggregate
and individual levels are verified. This curve in partic-
ular shows that a standard relationship has been used
to represent the non-linear response of crops to water,
i.e. at first they will grow in response to available
water, but growth ceases when heavy rainfall or flood-
ing conditions are approached. This limit is set when 8
times the annual rainfall is obtained. Some response
variable values are verified using calculations, while
others are verified using information available online,
such as census data. These, and expert judgement,
were used to formulate equations between variables
that are conditionally dependent (or causally related)
in the Bayesian network. For the curves shown in Fig. 4
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Table 1. Specifications of land-use change Strategies 1 and 2 (S1, S2): increased crop area and percentage of crops used for 
biofuel production

Crop Area (ha) Area increase Crop used in 
(ha) production (%)

Current S1 S2 S1 S2 S1 S2

Soy 0 to 5200 57200 to 62400 78000 to 83200 57200 78000 85 85
Sunflower 10000 to 20000 70000 to 80000 80000 to 90000 60000 60000 85 85
Canola 0 to 15000 105000 to 120000 150000 to 165000 105000 1500000 85 85
Sugar beet 0 to 10000 40000 to 50000 70000 to 80000 40000 70000 75 75
Sugar cane 72000 to 81000 90000 to 99000 72000 to 81000 18000 18000 65 65
Wheat 173280 to 194940 0 to 43320 173280 to 194940 –162450 0 5 5
Maize 103040 to 115920 0 to 25760 103040 to 115920 –115920 0 5 5

Total 400190 402020 776190 1830 376000
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we are interested principally in the growth conditions—
which are mainly linear—resulting in a plateau where
adding more water will not result in more yield. There
is an approximate 15 to 20% error associated with
assessments made from the probabilities used in this
model, which is typical of Bayesian network models,
where each variable requires a minimum of 5 states (in
20% quantiles) to be characterised by a probability
distribution.

2.3.  Testing land-use strategies in different climate
change scenarios

A range of land-use combinations was considered
with the purpose of converging upon the minimum re-
quirements for enabling the national biofuel target. We
incrementally increased the growth of each crop and
established what scale of growth would be required to
reach the target, and how much of the crops would
have to be supplied for biofuel.

Two different land-use growth strategies
were identified that meet the South African
biofuel production target (i.e. approxi-
mately 2% or 400 × 106 l) of national liquid
fuel supply in 2008, i.e. Strategy 1 and
Strategy 2. Each strategy’s constraint para-
meters and responses (for no change in
annual climate parameters) are shown in
Tables 1 and 2 respectively. These particu-
lar strategies each represent one possible
land-use combination that meets the pro-
duction target. There are feasibly more
land-use combinations that would enable
the national biofuel target, but these par-
ticular land-use combinations are evalu-
ated and presented in this study, in order
to illustrate the value of the modelling
approach.

These land-use combinations, or strate-
gies, were chosen to illustrate how each
strategy’s sensitivity to different climate
change scenarios can be assessed using the
approach proposed in this study. They take
into account the revisions made in the final
national biofuel strategy, which discounted
maize and jatropha to alleviate concerns
over food security, and proposes sugar
cane, sugar beet, biodiesel sunflower,
canola and soy beans. These crops are
intended to be grown in the short term by
small-scale farmers in the former rural
homelands such as the Eastern Cape,
under dryland conditions. However, one of
the key aims of the introduction of biofuel

into the liquid fuel supply is to reduce emissions. In
order for the market penetration of biofuel to have a
significant impact on emissions savings, larger vol-
umes of biofuel would need to be produced and would
necessarily occur at the national scale. Furthermore,
biofuel production is easily decentralized and it is
foreseeable that as local production centres spread,
local farmers all over the country will become more
involved. As the demand for biofuel grows it is likely
that irrigated farming of mainly animal feedstock and
crops for human consumption might be converted to
biofuel feedstock production in different parts of the
country, and that irrigated agriculture, which has a
limited water supply in South Africa, may come under
pressure. The present study explores this pressure,
and focuses on the sensitivity of national irrigated agri-
culture to climate change effects. The sensitivity of
areas of dryland crop cultivation to changes in rainfall
and precipitation will be much greater as variations in
rainfall patterns would have greater effects on the vul-
nerability of crops that do not have guaranteed water
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Fig. 4. Sensitivity analysis of biofuel production to the ratio of the actual 
availability of water over the water that was planned for
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supply. Therefore, to some extent this study focuses on
a best-case scenario for biofuel feedstock production.
The details for implementing the national biofuel strat-
egy in the Eastern Cape are still ongoing, and the
model built for this study may be further developed in
future work to assess the specific dimensions of the
Eastern Cape, linking and detailing the different spa-
tial and temporal scales. However, that is beyond the
scope of this study, which focuses on showing how the
sensitivity of critical limits—thresholds obtained using
Bayesian networks—helps researchers and decision-
makers better understand the limitations of the pro-
duction of biofuel feedstock. Land-use Strategy 1
excludes maize and wheat and Strategy 2 includes
maize and wheat, to compare 2 strategies which in-
clude and exclude the commercial sector in biofuel
production, respectively.

Groups of scenarios were chosen to illustrate the
sensitivity to climate change effects. Group 1 and 2
scenarios are applied to Strategies 1 and 2, and tests
both strategies under the same climate change con-
ditions for comparison. In Group 1 scenarios (see Sec-
tion 3.1) it is shown how the national biofuel produc-
tion target can be achieved more confidently at higher
annual rainfall levels (i.e. >400 × 106 l yr–1: see Fig. 5)
if higher average annual rainfall is obtained (i.e.
>400 mm yr–1). In Group 2 scenarios the temperature is
increased incrementally and the strategies evaluated

over the rainfall range to identify how this
limits crop production. A temperature range
is used, so that the scenarios cater for a
range of possible annual temperature varia-
tions, as the predictions from global climate
change models for 2099 (Bates et al. 2008)
cannot simply be linearly regressed in order
to determine possible temperature changes
in the short and medium terms (Bates et al.
2008). Temperature variations due to cli-
mate change are likely to vary significantly
from the values obtained through linear
regression over a period of 100 yr.

The agricultural expansion Strategies 1
and 2 are specified in Tables 1 & 2. These
percentages were iteratively determined,
after testing various growth strategies

against whether they could provide the surpluses
required to meet production targets. The relationships
between hectareage and tonnage per crop are well
understood and reliably determined and verified
against South African census data on agricultural pro-
duction. These strategic options are tested under dif-
ferent scenarios (i.e. Group 1 and 2 scenarios) to illus-
trate how Bayesian nets may be used to estimate the
robustness of the proposed strategy to possible climate
change effects (Mendelsohn et al. 2000).

The land-use strategies may be understood by com-
paring the driver and response variables with their
current values, also shown in Tables 1 & 2. In Strategy
1, the driver variables reflect a situation where com-
mercial irrigated crops such as maize and wheat are
excluded from biofuel feedstock production, and Strat-
egy 2 reflects a situation where they are included, but
very low percentages (i.e. 5%) of maize and wheat
crop yields are used as biofuel feedstock. The areas
under cultivation of maize and wheat were signifi-
cantly reduced in Strategy 1, so that sufficient irriga-
tion is available to grow the required crops. The yields
obtained from cultivating these areas are sensitive to
water availability, and are calculated from crop yields
that are biased relative to water availability to the
whole system. The relationships which characterise
yield variations with water availability are taken to be
similar for all crop-types and are denoted by a simpli-
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Fig. 5. Comparing (a) Strategy 1 and (b) Strategy 2: increased annual rainfall 
improves chances of achieving national biofuel production target

Table 2. Comparing responses to South African land-use growth strategies (Strategies 1 and 2 — see Section 2.3): biofuel 
production, water availability and planned water use

Planned water Total planned Bioethanol Biodiesel Biofuel 
available water use production production production
(km3 yr–1) (km3 yr–1) (106 l yr–1) (106 l yr–1) (106 l yr–1)

Initial 5 to 10 11.59 to 12.98 0 + Residual 0 + Residual 0 + Residual
Strategy 1 5 to 10 10.39 to 11.59 211 to 422 72 to 94 408 to 545
Strategy 2 5 to 10 11.69 to 12.98 211 to 422 72 to 94 ~408
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fied s-shaped growth curve with a non-linear drop-off,
i.e. too little or too much water per area farmed results
in crop yield losses (see Fig. 4). Lastly, percentages of
the total annual projected yield (as modelled) of each
crop are used for bioethanol and biodiesel production
as shown in Table 1, i.e. the percentage contribution of
annual crop production is used as biofuel feedstock.
For each hectare of maize, grain, wheat, sugar cane,
soybeans and sunflower seeds cultivated, biofuel pro-
duction of 542, 2016, 1014, 86 and 536 l, respectively,
is assumed feasible and is consistent with that in on-
line and published literature and discussions on the
subject (Lemmer 2006). In these strategies it is feas-
ible that approximately 400 to 500 × 106 l of the afore-
mentioned target of around 2% of national petroleum
production (see Table 2) can be obtained, but re-
quiring, under Strategy 1, a significant expansion
(280 200 ha) of the crop types chosen in the national
strategy, i.e. sugar cane, sugar beet, biodiesel sun-
flower, canola and soy beans, and a significant reduc-
tion in irrigated commercial maize and wheat, leaving
an overall moderate expansion of 1830 ha. In Strategy
2, an expansion of 376 000 ha in total, including maize
and wheat, is required to meet the target.

3.  RESULTS

In Group 1 scenarios the availability of water in the
national system for irrigation was considered. Biofuel
production sensitivities to rainfall are illustrated. In
Group 2 scenarios, the robustness of the strategy
against annual temperature increases was evaluated.

3.1.  Group 1 scenarios: sensitivity to rainfall

The annual average rainfall was increased (in the
Bayesian model) across the range 0 to 1200 mm yr–1

for both Strategies 1 and 2. The strategies being eval-
uated were shown to be more feasible in high rain-
fall years (Fig. 5); exceeding ~600 mm yr–1 in Strat-
egy 1 and exceeding 400 mm yr–1 in Strategy 2. In
Fig. 5 the resilience (Gunderson 2000) of the 2 strate-
gies to annual rainfall changes can be compared. In
the next scenario, we tested the resilience of this
strategy to scenarios where annual temperatures may
increase.

3.2.  Group 2 scenarios: sensitivity to temperature

The sensitivity of Strategies 1 and 2 to rises in tem-
perature is assessed in Fig. 6. The average annual tem-
perature is raised in 1°C increments, from the average

22°C (no increase in annual temperature) to 27°C in
each consecutive row of panels in Fig. 6, where total
biofuel production in response to rainfall at each tem-
perature is shown. In the model, total biofuel produc-
tion in summed from total biodiesel and bioethanol
production. Meeting a total biofuel production of
approximately 400 million l yr–1 would require a con-
stant increase in annual rainfall, and the point at which
rainfall meets the requirements of the Agricultural
Land-use Strategy changes from the top to the bottom
row of panels (see Fig. 6). This shows how climate-
related limits to growth can be assessed and verified,
using Bayesian networks. These limits are not precise
and predictive measurements of the system, but are in-
tended to guide overall understanding of the system’s
critical limits and thresholds in a variety of scenarios.
Other land-use strategies can also be assessed in dif-
ferent climate change scenarios in the manner outlined
in this study.

4.  DISCUSSION

Both the long- and short-term implications of
human-development trajectories into the future are
critical to understand if sustainable development tra-
jectories are to be realised (Kates & Clarke 1996). The
Bayesian modelling framework is flexible and adapt-
able, and can support analyses of a wide range of
future climate change and human development sce-
narios. The approach helps envisage cross-sector inter-
dependencies, and to compare between system level
trade-offs in an integrated analytical framework. It is
also a flexible approach that allows for new evidence
to be added and can serve as an input to learning
(Demirez et al. 2006). Bayesian belief networks are as
certain as the information used to characterise them,
and reflect real-world uncertainties over cross-system
and multi-scale interdependencies.

We showed how the national biofuel strategy of
South Africa (and other countries) may be tested at the
national scale before the identification and more in-
depth investigation of key subsystem dependencies.
The model allows the assessment of various strategies
against one another, which may be used to facilitate
more focussed discussion around system interdepen-
dencies and cross-sector linkages at policy making and
implementation level. The model is interdisciplinary
and allows for a broad variety of variables to be linked,
irrespective of scale or whether the variables are for-
mulated using empirical data or subjective judgement.
The sensitivities and uncertainties associated with all
variables may be visualised and used to enhance deci-
sion-making processes through a broader considera-
tion of system linkages.
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In particular, this study shows how the energy–emis-
sions threat to food security (the threat of rising energy
needs and the need for lower emissions to food security
through rising demand for biofuel crop production) can
be considered using a Bayesian approach. If rising
demands for energy and low emissions cause food
prices to rise (as agricultural farming for biofuels be-
comes more lucrative and farmers dedicate larger
tracts of land to crop strains suited for fuel production),
then this approach can be used to identify the strengths
and limitations of a particular land-use strategy.

5.  CONCLUSIONS

This study showed how the national biofuels target
may be analysed for robustness to climate change

effects, using 2 particular biofuels production strate-
gies as examples to illustrate how a variety of land-use
agro-production combinations may be tested against a
possible set of future scenarios and compared. The
model presented in this study is multi-scale and con-
sists of various embedded sub-system modules which
are related through cross-sector interactions. The Bay-
esian software interface enables the model to be easily
adapted with changes in understanding of sub-system
inter-dependencies and sensitivities and may be used
to facilitate and enable interdisciplinary consideration
and scrutiny of adaptation responses under a variety of
proposed scenarios. In this way, the approach taken in
this study integrates top-down and bottom-up learning
in a traceable process. Key parameters, thresholds
and functional relationships defining the system are
encoded into a Bayesian network using a software
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Fig. 6. Scenario 2a: increasing average annual temperature by 5°C, in 1°C increments by row of panels, to assess sensitivity to 
climate change conditions for land-use Strategies 1 and 2



enabled knowledge engineering language to manage
model development. Best available information from
current literature and available data is used to con-
strain the probabilities in the Bayesian model, which
is then verified through sensitivity analysis. The
approach elucidates key sensitivities in the system,
which depends on the scenario under which the sys-
tem is being assessed. Sensitivity to scale and the exact
nature of the causal interdependencies in the system
may be iteratively probed and compared with observa-
tion and empirical data. Using this approach, under-
standing may be shared and iteratively improved in
the consideration of policy-making for biofuels devel-
opment programmes which have consequences in
other related sectors.
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