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Abstract—ISAR imagery of ships are 
complicated by the 3-D motion of the target, 
which causes blurring in the imagery. A 
technique is proposed which could help detect 
such motion and prove useful to both analyse the 
3-D motion as well as possibly help to estimate 
the 3-D position of scatterers as a by-product of 
the analysis. The technique is based on principal 
component analysis of accurate scatterer range 
histories and is shown only in simulation. Future 
research should focus on practical application. 
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I.  INTRODUCTION 
Inverse Synthetic Aperture Radar (ISAR) is a well known 

radar signal processing technique for generating images of 
moving targets [3]. The technique relies on the relative 
rotational motion of the target which produces range-Doppler 
histories that can be converted into a 2-D image. Many 
conventional motion compensation techniques assume that the 
target possesses rotational motion around a fixed axis at a 
constant rate of rotation during the coherent processing interval 
(CPI) [8] [14] [6]. This assumption leads to severely blurred 
images when the target experiences 3-D rotational motion 
during the CPI. However, small ships at sea produce few CPI’s 
during a typical sample that conform to the 2-D rotational 
motion assumption [13]. For this reason, detection algorithms 
are needed to find intervals with a low degree of 3-D rotational 
motion so that conventional motion compensation algorithms 
can be used to form focused ISAR imagery. Alternatively, 3-D 
imaging algorithms can be used to form a 3-D ISAR image of 
target using its 3-D rotational motion [5]. If such detection 
algorithms can provide insight into target movement directly 
from the range history data it could be an advantage i.t.o. 
computational complexity. 

Some of the ISAR motion compensation algorithms include 
a multiple scatterer range tracking step, which is one of the 
signal processing steps that is required [2] [1]. This is done to 
estimate the targets radial motion and correct for the 
translational component of the target. An autofocus technique 

is then applied to perform phase correction along the cross-
range dimension, before a Fourier Transform is used to 
generate an ISAR image. 

The current literature shows that there are individual 
algorithms to detect the presence of 3-D rotational motion [5] 
and to generate a 3-D ISAR image using 3-D rotational motion 
[9] [10]. These algorithms assume that it is possible to 
accurately track the range or phase history of multiple 
scatterers from measured high range resolution (HRR) profiles; 
in [9] it is also shown that it is possible to accurately track 
multiple scatterers in HRR data even when scatterers overlap in 
range. The work by Li et al. [5] shows that range histories of 
scatterers can be used to detect the presence of 3-D rotational 
motion by examining the linear dependence of these range 
histories under a small angle assumption. If scatterers are found 
to be linearly dependent on one another, then it follows that 3-
D rotational motion was not present in the CPI. A geometric 
invariant technique for generating 3-D ISAR images of ground 
moving targets was proposed by Stuff in [9]. However, this 
method involves many matrix calculations; as a result, it is 
computationally expensive.    

This paper proposes a technique that jointly detects the 
existence of 3-D rotational motion and extracts 3-D 
information of the target of interest. It is hypothesised that the 
rotational motion of a target about more than one orthogonal 
axis, causes 3-D scatterers to exhibit unique range history 
components that can be broken into multiple orthogonal 
components. The proposed method performs principle 
component analysis (PCA) on the range history of multiple 
scatterers to estimate the amount of 3-D rotational motion in a 
CPI and to extract information about the relative position of 
scatterers in 3-D space. An advantage associated with the 
proposed technique is that it is computationally less expensive 
than the method described in [9]. In addition, the proposed 
algorithm can be seen to be an extension of the Li et al. 
technique in [5] as it is also applicable when the target exhibits 
large rotation angles over a longer CPI and the small angle 
approximation is no longer valid. 

To the best of the authors’ knowledge, this technique has 
not been previously shown or documented in the field of ISAR. 
It makes novel contributions by (1) Showing that a single 
technique can jointly detect the presence of 3-D rotational 
motion and provide information relating to the relative position 
of scatterers in 3-D space; and (2) Relating the outputs of the 



algorithm to a quantitative measure of the degree of 3-D 
rotational motion. This measure can be used to assess whether 
the CPI is better suited to 2-D or 3-D ISAR imaging 
techniques. 

The proposed technique could be useful both to the fields of 
RCS measurement of cooperative vessels and to the 
classification of non-cooperative vessels. All navies require 
their radar cross section (RCS) measurements of their 
platforms in order to identify the scattering hotspots. This 
technique may be used to extract the relative positions of 
scatterers of a ship, in order to pinpoint the relative location of 
unknown scatterers to known scatterers. In the non-cooperative 
case, the relative location of scatterers can be used as one of the 
features for classification. 

The paper is structured as follows: Section II describes the 
system model that is considered and defines some 
nomenclature; Section III discusses the effects of 3-D 
rotational motion on the linear dependence of scatterer range 
histories. Section IV discusses PCA. Section V provides the 
motivation for using PCA to analyse of the range history of 
scatterers. Section VI discusses the use of PCA to evaluate the 
existence of 3-D motion in the data and finally Section VII 
shows a set of simulation results (purely theoretical as well as 
based on measured motion data) that is used to confirm (but 
not yet mathematically prove) the hypothesis.  

II. SYSTEM MODEL  
Figure 1 illustrates the system model that is considered. In 

this paper we assume that the translation motion of the target 
has already been range compensated. The target is allowed to 
possess arbitrary rotational motion around the Y and Z axes, 
denoted by φ(t) and θ(t) respectively. The radar is positioned at 
a distance of R along the –X axis.  

 

 

Figure 1.  System model showing the radar, the target and the coordinate 
system 

III. THE EFFECT OF ROTATIONAL MOTION ON THE LINEAR 
DEPENDENCE OF SCATTERERS’ RANGE HISTORIES 

According to [5] the non-planar 3-D rotational motion of 
the target cannot be compensated by current rotational motion 
compensation algorithms such that the phase of each scatterer 
in the CPI is a linearly varying phase history. Such motion thus 
results in target blurring if a FFT based ISAR image is formed, 
and it is not possible to compensate all of the scatterers 
simultaneously in a single 2-D ISAR image. (For another 

analysis of the effects of 3-D motion see the work reported in 
[11]). 

The argument presented in [5] shows that, under the 
assumption of 2-D rotational motion the phase histories (and 
therefore range histories) of prominent point targets in the 
HRR data, will show a linear relationship (i.e. be linearly 
dependent on each other). The cross range coordinate or y 
component of the target is shown to be the constant of 
dependence. The linear relationship is shown to be dependent 
on the scatterer cross range (or y) coordinate. 

 It is also shown that for the case of 3-D rotational motion, 
the linear dependence of the phase (and range) histories will no 
longer hold, and the target range histories now depend on both 
the y and z coordinates of the scatterers, as well as the angles 
through which the target has rotated in three-space. 

Not noted in [5] is that, for the case where the small angle 
approximation does not hold, scatterer phase histories will not 
be linearly dependent, since they will depend on sin and cosine 
terms, which by their very nature are orthogonal (and by 
definition not linearly dependent). 

In this paper we propose to use PCA as a tool to analyse the 
linear dependence of the scatterers’ range histories. The next 
section discusses PCA in more detail.  

IV. PRINCIPAL COMPONENT ANALYSIS 
Principal Component Analysis (also termed the Karhunen- 

Loeve Transform or Hotelling Transform) is a technique that 
estimates an optimal set of orthonormal basis vectors that spans 
the observed data. The first principal component is optimal in 
the sense that it accounts for the most variance (power) in the 
data, the second for the variance orthogonal to that, and so on.  

Given an M by N matrix X  of which M different variables 
are observed N times (N samples), the goal of PCA can be 
summarized as follows: 

Find some orthonormal matrix P that diagonalises the 
covariance matrix of X formed as X = PY, i.e. find a matrix P 
such that the covariance CX = (N-1)-1XXT of X is diagonalised. 
The rows of P are the eigenvectors of XC , which also 
corresponds to the principal components of X . 

   The rank of the covariance matrix of a set of data 
determines the number of linearly independent components in 
the dataset [7] [4]. For a dataset of M different variables, a 
covariance matrix with a rank r < M indicates that there are r 
number of vectors that span the signal subspace and (M – r) 
vectors that span the noise subspace.  

In [12], it is reported that the eigenvectors associated with 
distinct eigenvalues of a real symmetric matrix are orthogonal, 
and the number of distinct eigenvalues indicate the rank of the 
matrix. Since the covariance matrix XC  is real symmetric, the 
number of distinct (non-zero) eigenvalues can be used to 
estimate its rank.   

Each unique eigenvalue therefore indicates an associated 
eigenvector basis required to span the signal subspace of the 
data.  
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The technique of principle component analysis is applied 
widely in the field of statistics to find, in order of importance, 
those components that best accounts for the variance in the 
data. The principal components corresponding to the smallest 
(M – r) eigenvalues are considered to represent noise. 

V. APPLYING PCA ON SCATTERER RANGE HISTORIES  
This section describes the proposed technique for detecting 

3-D rotational motion and extracting information relating to the 
relative position of scatterers. 

A. Estimating the number of significant eigenvalues 
Assume that we are able to track M scatterers of the target 

and extract N range values for each scatterer. Thus, we can 
define a row vector  mR  with N elements for the mth scatterer, 
where 1 m M≤ ≤ .  

The principle components of the range histories of M 
scatterers are calculated using the following steps: 

a) Estimate the mean of the range history for all M 
scatterers. The mean of the mth scatterer’s range history, 
denoted by mR  , is given by: 
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b) Let mX  denote the range history of the the mth 
scatterer with a mean of zero (i.e. the input vector mX  is zero 
mean for each observed variable); 

 
 m m m= −X R R  (2) 

c) Let X  denote the zero mean matrix of range 
histories: 
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d) Calculate the covariance matrix of X, which is 
denoted by XC : 

 1
1

T
X N

=
−

C XX  (4) 

e) Perform the eigenvector decomposition on the 
covariance matrix to calculate the eigenvectors and 
eigenvalues of XC ;  

 ( )EVD T
X =C P DP  (5) 

 
where the rows of the matrix P  contain the eigenvectors of 

XC  and the diagonal elements of the matrix D , denoted by 
{d1, d2 … dM} in descending order, contain their 
corresponding eigenvalues.  

f) Determine the significant eigenvalues. In this paper 
we propose fitting a linear model to the least significant 
eigenvalues (in dBs) using linear regression and detecting 
eigenvalues that deviate from this model by more than a 
threshold k.   

B. Relationship between the eigenvalues and target motion 
The distinct eigenvalues as produced by PCA provides us 

with the ability of detecting 2-D or 3-D motion during the CPI, 
since it relates to the number of linearly independent range 
history components. It is hypothesized that the number of 
significant eigenvalues relates to the complexity of the target 
motion as described below:  

1) Only one significant eigenvalue 
If there exists only a single unique (and non-zero) 

eigenvalue, then the data space is spanned by a one 
dimensional basis, and all the components are linearly 
dependent. In this case, it is postulated that there exists little 
information about the cross range dimension in the data (i.e. 
the 2-D ISAR image will most likely not exhibit good cross 
range resolution). 

2) Two significant eigenvalues 
If there exists 2 unique, non-zero, eigenvalues then the data 

spans two orthogonal bases, and thus contains enough 
information to produce a 2-D ISAR image, that will have 
significant range and cross range information. This will hold 
true even under the case of significant 2-D rotation, such that 
the small angle approximations are invalidated.     

3) Three or more significant eigenvalues 
If there are 3 unique significant eigenvalues, then the range 

histories contain information that spans a 3-D subspace, and 
the motion most likely contained significant 3-D components. 
In this case, it is postulated that there should be enough 
information to produce a 3-D image of the target from the 
single aperture. Depending on the significance of the third 
component, 2-D ISAR processing of the data will result in 
blurring, and the amount of blurring will be related to the 
significance of the third eigenvalue.  

C. Extracting information relating to the relative position of 
scatterers 
Assume that the covariance matrix XC  exhibits s 

significant eigenvalues. We hypothesize that the three 
eigenvectors associated with the three largest eigenvalues 
contain information relating to the relative position of the M 
scatterers in three-space. If s is equal to 3 then a 3-D plot of the 
scattering centres can be produced by simply using the first 
eigenvector as the x-coordinate, the second eigenvector as the 
y-coordinate and the third eigenvector as the z-coordinate. In 
the case of only two significant eigenvectors, the z-coordinate 
will contain noise. 

The next section shows through simulation that the above 
claims seems valid under many conditions. A rigorous 
mathematical analysis of these claims has not yet been 
performed, and will be pursued in a future publication.  



VI. SIMULATION 

A. Simulation Setup 
A point scatterer based model was used to simulate the 

range histories of targets during the CPI for various types of 
motion. The target, shown in Figure 2, represents a boat with a 
mast (shown as blue circles), and some added corner reflectors 
(shown as red asterisks).  The corner reflector positions were 
added for comparison with measured radar data of this target, 
but the results shown in this paper will be based solely on 
simulation.  

The radar is positioned at range of 20 km, and the 
simulations are run at X-Band (10 GHz) using a waveform 
bandwidth of 420 MHz, a CPI of 640ms and 64 HRR profiles 
per CPI. 

The range histories that form the input to the proposed 
technique are based on the accurate simulated range of each 
scatterer during the CPI. A Gaussian noise component with 
standard deviation σ is added as a range tracking error to these 
histories to make the results more realistic1.  

 

Figure 2.  3-D view of point scatterer boat target 

B. Simulation Results using simulated motion data 
This section presents results of the simulations performed 

to illustrate the outputs of the proposed technique under 
different motion conditions. In the simulations the threshold for 
detecting significant eigenvalues was set to k=6dB. 

Case 1: 2-D motion with only a single significant eigenvalue 
 

The target is rotating around only the z-axis, producing a 
top view image (θ(t) = t (deg), φ(t) = 0). Figure 3 shows the 
largest 10 eigenvalues as normalised by the first, in a log 
scale. Hence the first eigenvalue is at 0 dB. 

It is clear from the Figure 3 that there is only 1 significant 
eigenvalue. The ISAR image associated with this motion is 
shown in Figure 4. It is clear that the motion is not significant 
enough to produce an image with a good cross range 
resolution. 

 
                                                           

1 Admittedly, this circumvents the problem of estimating scatterer 
ranges from the coherent HRR profiles. However, as shown in [9], 

there are techniques that can perform this task quite accurately under 
certain conditions. 

 
Figure 3.  Normalised eigenvalues for Case 1  

 

Figure 4.  Simulated ISAR image for Case 1 

Case 2: 2-D motion with two significant eigenvalues 
 

In this case, the target is now experiencing significant 2-D 
rotation. The rate of rotation was chosen such that the image 
should have approximately equal range and cross range 
resolution. To achieve this, θ(t) = 7.64t (deg), φ(t) = 0. 

 

Figure 5.  Normalised eigenvalues for Case 2  

Figure 5 shows the eigenvalues from this case; Figure 6 
shows the corresponding ISAR image. It is clear that there now 
are two significant eigenvalues, and the corresponding image 
confirms this, and as expected the target is imaged with 
approximately equal range and cross-range resolutions. 



 

Figure 6.  Simulated ISAR image for Case 2. 

Case 3: Non-significant 3-D motion 
 

In this case, the target is now experiencing some 
insignificant 3-D rotation. The rate of linear rotation is still 
chosen such that the image should have approximately equal 
range and cross range resolution. However, the rotation around 
the Y axis now is causing some 3-D motion. θ(t) = 7.64t (deg), 
φ(t) = 2t. The two motion components however are still 
linearly dependent.  

 

Figure 7.  Normalised Eigenvalues for Case 3 

 

Figure 8.  Simulated ISAR image for Case 3 

Figure 7 shows the eigenvalues from Case 3; Figure 8 
shows the corresponding ISAR image. It is clear that there are 
still only two significant eigenvalues, and the corresponding 
image confirms this, and as expected the target is imaged with 
approximately equal range and cross-range resolutions without 
significant blurring. 

Case 4: Significant 3-D motion (3 eigenvalues) 
 

The target now experiences significant 3-D motion. Figure 
9 shows the eigenvalues, and it is clear that there are now 3 
eigenvalues that are significant. Figure 10 shows the 
corresponding ISAR image which is severely blurred due to the 
3-D motion. Figure 11 shows the relative 3-D positions of the 
point scatterers as extracted from the first three eigenvectors. 
The angular motion of theta and phi was set to θ(t) = 7.64t 
(deg) and φ(t) = 20(t - 0.3)2 (deg).  

 

Figure 9.  Normalised Eigenvalues for Case 4 

 

Figure 10.  Simulated ISAR image for Case 4 

 

Figure 11.  Relative 3-D positions of scatterers as extracted from the 
eigenvectors for Case 4 

From Figure 11 it is clear that the 3-D structure of the target 
can be recognised, and that scatterers remain in the same 
approximate relative location to each other, even though the 
complete target is rotated at some random position in space. 



C. Simulation results using measured motion data 
Lastly, we will show how the analysis fares on range 

history data generated using measured motion data from an 
INS / GPS system for a boat of size similar to that of the 
simulated target. The data for the instrumented boat comes 
from an inbound run, where the target is experiencing both a 
change in heading and also significant pitch and roll motion. In 
this case, the simulation is fed only with the heading data for 
θ(t) and the pitch data for φ(t), since these are the two rotations 
that could cause significant range histories. 

Figure 12-14 shows the results of the simulation for two 
cases. Figure 12-14 (a) shows motion, as well as the 
eigenvalues and corresponding simulated image for the case 
where the boat is experiencing significant 3-D motion. From 
the eigenvalues it is clear that the target is experiencing 3-D 
motion and thus the image is completely blurred.  

Figure 12-14 (b) shows an imaging interval for the case 
where the 3rd eigenvalue is not significant and the first basis 
function is estimated to be a good approximation of uniform 
linear rotation. It is clear that in this case, the image is not 
blurred anymore and the shape of the boat becomes 
recognisable. 

  
                  (a)              (b) 

Figure 12.  Measured motion data containing 3-D motion 

  
                  (a)              (b) 

Figure 13.  Eigenvalues for real motion data containg 3-D motion 

VII. CONCLUSIONS AND FUTURE WORK 
Principal component analysis of the range histories of 

scatterers shows promise as a technique to both detect the 
presence of 3-D target motion, as well as to extract information 
about the relative positions of scatterers. This paper shows in 
simulation that the technique could prove to be quite useful. 

  
                    (a)                 (b) 

Figure 14.  ISAR image for real motion data containg 3-D motion 

However more research is required to characterise the 
technique as well as to understand its limitations. It is 
proposed that this be done in a follow on publication. 
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