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Abstract— In this paper we present a topological map build-
ing algorithm based on a Vocabulary Tree that is robust
to features present in dynamic or similar environments. The
algorithm recognises incorrect loop closures, not supported by
the odometry, and uses this information to update the feature
weights in the tree to suppress further associations from these
features. Two methods of adjusting these feature entropies
are proposed, one decreasing entropy related to incorrect
features in a uniform manner and the other proportional to
the contribution of the said feature. Preliminary results showing
the performance of the proposed method are presented where
it is found that by adjusting the feature entropies, the number
of incorrect associations can be reduced while improving the
quality of the correct matches.

I. INTRODUCTION

In the field of autonomous vehicles, mapping and local-

isation are some of the essential tasks, without which full

autonomy would not be possible. One common class of

localisation methods employs a form of image similarity

to perform appearance-based localisation [1], [2], [3], [4].

When this image similarity relies purely on the presence

of local features, and not their geometric arrangement, false

associations may occur.

Office scenarios are classical examples of this phe-

nomenon, where most offices often contain similar, if not

identical, furniture and equipment but in different config-

urations. Appearance-based methods relying only on local

features in these environments will form incorrect association

hypotheses in these cases. The problem also appears in

unstructured outdoor environments, where unique features

often appear on objects that provide bad location information

(eg. vehicles, signage).

Most appearance-based matching algorithms compensate

for frequently observed features (and objects) though the use

of some form of feature entropy that discourages matching

based solely on these “common” features. However, this

method does not cater for features that appear rarely but

still provide poor appearance-based cues.

To overcome this problem, we present an algorithm based

on the vocabulary tree by Nister et al. [5], that modifies the

feature entropy to discourage the use of features that have
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previously given bad localisation hypotheses. This approach

also caters for features present on objects that are likely to be

moved around (eg. chairs, parked cars), learning that these

features are not to be trusted for future metric localisation.

The next section contains a brief discussion of related

work. Thereafter, we present the algorithm (Section III) and

experimental work (Section IV). Finally, in Section V we

close with the conclusions.

II. RELATED WORK

Initially, Simultaneous Localisation and Mapping or

SLAM algorithms focused predominately on range devices

(such as sonar and laser range scanners) as their accuracy

was good and their low data rates were easy to process.

However, as environments grew in size, perceptual aliasing

problems became apparent. Vision sensors, by comparison,

give far more information and so, were able to better

distinguish various environments, but at a much greater

computational cost. Initial vision-based SLAM algorithms

focused on easily computable global image properties such

as histograms [6], image gradients [7], principal component

analysis [8] and combinations of simple features [1]. The

advent of reliable local feature detectors and descriptors, such

as SIFT [9], allowed SLAM algorithms to build feature-based

environment representations (eg. [10]). These local features

were soon incorporated back into topological mapping al-

gorithms where similarity between collections of features

were used for localisation. The emergence of ever improving,

fast, visual appearance matching techniques such as Video-

Google [11] and later the Vocabulary Tree [5] and Fab-

MAP [12], allowed real-time appearance-based map building

and localisation using local features. These appearance-based

methods typically include some form of feature entropy or

importance weight to flag features as being common in the

environment and not useful for association. However, these

approaches fail to capture items that, while unique within

their environments, appear several times in different places.

Several implementations integrated the appearance-based

information with a graphSLAM representation to recover

metric information. GraphSLAM, originally considered off-

line [13], has also gained new popularity based on several

algorithms to greatly speed up the convergence process.

Algorithms such as Multi-level Relaxation [14] and Tree Net-

work Optimisation [15] have closed exceedingly large loops
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successfully. These methods have lead to appearance-based

SLAM algorithms that included metric information [16], [3].

While these methods have proved highly successful, the

problem of incorrect loop closures are still a problem. As

mentioned in the introduction, these problems occur increas-

ingly in unstructured, outdoor and dynamic environments.

To mitigate this, some algorithms have specified stringent

matching thresholds to ensure that no incorrect loop closures

are obtained at the cost of fewer total loop closures. This

being said, the matching process is of a statistical nature,

and therefore, this problem will always exist.

In addition to the problems of perceptual aliasing, dynamic

environments have posed their own problems within the

SLAM community. Using features on dynamic obstacles

leads to poor localisation and inconsistent maps. Current

methods of handling dynamic environments centre largely

around tracking moving objects within the immediate envi-

ronment and removing them from the map [17], [18]. This

poses a problem when the dynamic obstacles are stationary

during mapping or move slowly over time. In contrast to

the above approach, we attempt to identify incorrect loop

closures that are not supported by the odometry. Through

doing this we hope to be able to learn which features are

typically found on dynamic objects, and exclude them from

the mapping process, regardless of whether or not the object

is moving when we observe it.

III. ALGORITHM

In this section we discuss the mapping algorithm that

ultimately results in entropy reduction in the vocabulary tree

for features that lead to poor localisation.

We begin with an image stream from a perspective camera

from which we extract SIFT features. These images and

their associated features are loaded into a vocabulary tree

that performs appearance-based associations to all previous

frames. When an appearance-based link is found, the relative

motion between the two frames is estimated using Structure

from Motion (SFM). This motion hypothesis is then used in

a graph relaxation framework to determine its support by the

odometry. If the motion hypothesis is deemed to be unlikely,

given the prior map, the entropy in the vocabulary tree asso-

ciated with the features that lead to the incorrect hypothesis

are reduced to prevent future appearance-based associations

by the same collection of features. This approach accentuates

appearance-based matches using background information

rather than the more salient dynamic features.

A. Feature Extraction and Map Building

We begin with a raw image stream from a perspective

camera mounted on the front of a mobile platform. To reduce

the computational load, we sample the images equally in

space approximately 1m apart and compute SIFT features

without the initial doubling of the images.

1) Map Representation: In our algorithm, our map is

represented as a graph where nodes represent the pose of the

robot, or equivalently, locations in space and edges represent

known connections between poses. These connections are

calculated from one of two sources, either directly from

the measured odometry between poses (only for nearby

poses) or by using Structure from Motion. Links between

poses are represented by Gaussian distributions indicating

the uncertainty in the relative motion between the two poses.

Following on the work of Frese et al. in [14], we represent

the link between two poses by the vector connecting the two

poses, rotated into the frame of the second pose; and the

change in heading between the two poses. Given two poses

a = [ax, ay, aφ]
T and b = [bx, by, bφ]

T, we determine the

edge f(a, b) as,

f(a, b) =





(ax − bx) cos(bφ) + (ay − by) sin(bφ)
−(ax − bx) sin(bφ) + (ay − by) cos(bφ)

aφ − bφ



 ,

(1)

and define a suitable covariance matrix to capture the uncer-

tainties in the platform model.

Given a map consisting of a set,

R = {(µr, Cr) | r = 1 · · · |R|},

of links and associated covariances between poses. A

maximum-likelihood map hypothesis may be found by min-

imising the negative log likelihood or χ2 energy function;

χ2(x) =
∑

r∈R

zTr C
−1

r zr, (2)

where,

zr = f (xar
, xbr )− µr.

2) Vocabulary Tree: The appearance-based similarity

scoring method we use is based on the Vocabulary Tree of

Nister [5]. In this algorithm, the feature space is clustered

using a hierarchical K-means algorithm to form a tree.

Descriptors in the images are then replaced by a node

sequence from the root of the cluster tree to one of the leaf

nodes.

For each node in the tree, a feature entropy is calculated

as,

wi = ln(N/Ni),

where N is the total number of documents used during

training and Ni is the number of documents that had at least

one descriptor pass through node i. As expected, the entropy

weights increase from 0 at the root of the tree towards the

leaf nodes.

To calculate the similarity score between two images, we

determine the number of times each node in the vocabu-

lary tree is touched when descending the image descriptors

through the tree structure. This count is multiplied by the

node entropy and the vector is normalised in the Euclidean

sense. This results in an image vector with as many elements

as nodes in the tree.

To compare two images, we calculate the image vectors

based on the feature clustering and entropy and then calculate

the cosine similarity between these two vectors.1 This results

1For the case of normalised vectors, this is equivalent to the scalar-vector
or dot product.
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in an image similarity score between 0 and 1 where 0 implies

no common feature descriptors and 1 implies an identical set

of feature descriptors between the two images.

Several methods exist to improve the performance of

this image similarity computation. The interested reader is

referred to [5].

3) Map Building Algorithm: The map building algorithm

is centred around a vocabulary tree where the comparison

and insertion stages are separated by a guard-band to prevent

premature associations with recently added frames. The

pseudo-code for the map building algorithm is given in

Algorithm 1.

Algorithm 1 Map-Building Algorithm using Vocabulary

Tree Associations

Require: Guardband > 0, Matching threshold thresh > 0
and a vocabulary tree V T .

score← zeros(1, Guardband)
for all image in Image Sequence do

Add odometry link between current and previous frame

to map

s← maximum similarity score for image in V T .

if score(1) == max(score) and

score(1) > threshold then

Add association link to map
score← zeros(1, Guardband)

else

Add image associated with score(1) to V T .

end if

score← [score(2 : end) s]
end for

B. Motion Estimation from SFM

When an appearance-based match has been found in the

environment, the edge in (1) is estimated from the matched

frames using Structure from Motion. The operation of the

algorithm is as follows:

1) Calculate the fundamental matrix relating the two

images using the 7-point algorithm in a RANSAC

(Random Sampling Consensus) framework. Extract the

rotation and translation information between the two

frames from the fundamental matrix. [19].

2) Use this motion hypothesis to reconstruct the 3D

locations of the feature points [19].

3) Use a perspective n-Point algorithm [20] to estimate

the location of a third frame taken at a known distance

from one of the initial frames.2

4) Use the estimated translation vs. known translation

extracted from odometry to calculate unknown scale

in initial reconstruction.

5) Scale the initial motion hypothesis from step 1 using

the scale computed in the previous step.

2Typically a neighbouring frame from the input image sequence is used
where the odometry is considered to be reasonably accurate.

The inliers returned by the RANSAC algorithm in step

1 above are maintained for use later when calculating the

uncertainty and adjusting the feature entropy.

1) Uncertainty Calculation: Before this motion hypoth-

esis can be integrated into the map of Section III-A.1, an

associated uncertainty, in the form of a covariance matrix,

needs to be estimated. Due to the complexity of the SFM

algorithm, we calculate the uncertainty using a Monte-Carlo

simulation method.

To accomplish this, we assume that the transfer function

from the feature point locations to the final SFM hypoth-

esis is locally linear. We then apply a zero-mean gaussian

perturbation to the feature points and recompute the motion

hypothesis using these new feature locations. The estimated

covariance of the motion model may then be calculated from

multiple trials and normalised by the known covariance of

the input noise.

To determine an estimate of the uncertainty in the locations

of the detected features, we use the fundamental matrix from

the SFM motion hypothesis calculated above to find optimal

feature locations x̂i. These points satisfy the fundamental

matrix relation x̂i
TF x̂i = 0 and minimise the Euclidian

distance ||x̂i− xi|| between the original and optimal feature

locations. The covariance of these offsets, x̂i − xi, is then

used as an estimate of the noise present on the detected

features.

C. Map Relaxation and Hypothesis Validation

The purpose of map relaxation is to find the values for the

robot poses {x1, x2, . . . , xn} that minimises the Chi-Squared

function (2) given the mean and covariance of all measured

translations between two poses.

In the case where no loop closures have been observed,

this is equivalent to the measured odometry and χ2(x) = 0.

However, when a loop closure is observed and integrated

into the map representation, the accumulated error in the

odometry between the two poses that are involved in the loop

closure must be distributed over the odometry relations. This

is equivalent to minimising the equation in (2).

To do this we use the multi-level relaxation algorithm of

Frese et al. [14]. Relaxation refers to the tendency of the

graph to slowly ease into a configuration that represents

a local minimum of (2). This is achieved by calculating a

locally linear representation of the χ2(x) function, about the

current graph and solving for the value of x that yields a

local minimum using the Gauss-Seidel method.

1) Hypothesis Validation: Integral to our algorithm is the

ability to determine that a proposed motion hypothesis is

valid. To do this, we consider the likelihood of the map after

the loop closure hypothesis has been integrated, as well as

the likelihood of the loop closure.

To evaluate the “correctness” of a loop closure hypothesis,

we consider the likelihood of the graph before and after the

loop closure has been integrated. Assuming all the links in

the graph are represented by Gaussian random variables, we
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may calculate the likelihood of the map as,

PM (x) =
1

(2π)
3|R|

2

∏

r∈R det (Cr)
exp

{

−
1

2
χ2 (x)

}

.

(3)

In the case where there are no loop closures, the map

follows the odometry exactly and χ2(x) is zero. In this

case, the likelihood function PM (x) takes on its maximum

value. When a loop closure is integrated into the map, the

exponential term in (3) decreases, which could result in a

lower likelihood, even for correct associations. To overcome

this, we scale the map likelihood function by the probability

of a correct loop closure to obtain a joint likelihood,

PM∩O = PM |OPO, (4)

where PM |O is the map likelihood once the loop closure has

been added and PO is the probability of the loop-closure

hypothesis being correct. We estimate PO as,

PO = m/M,

where m is the number of feature matches that satisfy the

SFM motion hypothesis and M the total number of matches

between the two images.

This allows us to compare the likelihoods of the map

representation with and without the loop closure hypothesis

by comparing PM−{O} = PM × (1− PO) and PM∩O. The

higher value is then chosen as the correct hypothesis.

D. Feature Entropy Adjustment

Once we have determined that a set of features has lead

to an incorrect loop closure hypothesis, we would like to

reduce the entropy of these features in the vocabulary tree

to inhibit future matches from the same set of features. To

do this we propose two methods. The first is to reduce the

entropy of the features in a uniform manner related only to

their magnitude. The second, is to reduce the entropy of a

feature depending on its contribution to the incorrect motion

hypothesis.

1) Uniform Entropy Adjustment: To perform uniform

entropy adjustment, we consider the sets of descriptors of

the features in both images corresponding to the motion

hypothesis individually. For each set of descriptors, we

determine the list of nodes in the vocabulary tree that the

descriptors passed through during classification. For each of

these nodes, we multiply the node entropy by a constant

scaling factor k.

2) Weighted Entropy Adjustment: In this method, we

modify the entropy of the various nodes of the vocabulary

tree by a factor related to the contribution of that node to

the image similarity score. This allows us to, within reason,

specify the desired similarity score between two images.

We begin with the definition of an image vector calculated

for image k as, sk = {ski | s
k
i = nk

iwi}, where nk
i is the

number of times node i is touched by descriptors of image k
and wi is the entropy of node i. We then define a contribution

vector for image k as c
k = {cki | c

k
i = n̂k

i /n
k
i }, where

n̂k
i is the number of times node i is touched by descriptors
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Fig. 1. Map of robot path showing visual associations obtained from a
conventional vocabulary tree using the map building algorithm.

that satisfy the SFM hypothesis. The contribution vector

represents the degree to which each element of the image

vector contributed to the matching score caused by the “bad”

features. We will try to adjust the entropies of the nodes

involved to reach a desired similarity score d.

Given two images defined by image vectors s1 and s
2, the

process involved in updating the feature entropies to achieve

the desired score may be summarised as follows:

1) Determine the amount by which the total score must

be altered as ∆ = d−
∑

i s
1
i s

2
i .

2) Calculate the contribution of each of the terms of the

score vector to the “bad” match as s′i = s1i s
2
i

√

c1i c
2
i .

3) Scale the individual term contribution by the desired

change in score as, s′′i =
(

1 + ∆

Σs′
i

)

s′i.

4) Calculate the scaling factor required to effect the

desired change in component score terms as, ki =
s′′i /s

1
i s

2
i .

5) Modify the entropy weight of each node in the tree by

multiplying it with the scale factor ki.

When calculating the final scaling coefficients, care should

be taken to avoid NaN and infinite values resulting from a

divide by zero. The scaling terms should only be applied to

nodes where the contribution term
√

c1i c
2
i is non-zero.

IV. EXPERIMENTAL RESULTS

To simulate a dynamic environment where the robot would

often encounter a feature rich object that could lead to poor

loop closing performance, we drove the platform around

a parking lot for several loops while periodically placing

a checker board in the robot’s field of view. The robot

was driven over roughly 600m collecting 370 images. After

feature extraction, we obtained an average of 251.9 features

per frame with a standard deviation of approximately 98.

We started by constructing a vocabulary tree for the

features extracted from the images and used this together

with the map building algorithm of Section III-A.3 with a

matching threshold of 0.25 and a guard band of 10. The
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Fig. 2. Updated map showing associations obtained after unreliable features
have been learnt.

resulting map and associations may be seen in Figure 1.

In this map, the vocabulary tree made seven correct and

nine incorrect associations. These associations could have

been greatly improved by increasing the matching thresh-

old; however, a low threshold was chosen to illustrate the

performance of the suggested algorithm. In this map, the

bottom-right association that appears to be correct failed as

the SFM algorithm proposed a motion hypothesis based on

the checker boards in the scene, rather than the background

information. This led to a poor relative distance estimate that

the mapping algorithm threw out.

After performing entropy reduction using the poor associ-

ations with the weighted entropy adjustment of Section III-

D.2, we obtain the refined map in Figure 2. In this map

we have one incorrect and eleven correct associations. We

also notice that the quality of the matches has been greatly

improved — including the addition of several matches not

seen before. This is due to the maximum similarity score se-

lection of the map building algorithm. While the association

scores of regions containing a checker board are higher than

neighbouring similarities, the algorithm rejects the correct

matches with the lower score.

The performance of the matching algorithm before and

after feature entropy updates can also be seen by com-

paring the similarity matrices generated for frames in the

dataset using the original and updated feature entropies. The

similarity matrix for the dataset using the original feature

entropies returned by the vocabulary tree is shown in Figure

3. In this similarity matrix we can see all the off-diagonal

matches relating to scenes where the checker board was

visible. Once the feature entropy has been updated according

to the proposed algorithm, the similarity matrix in Figure 4

is obtained. In this figure, we see that the general structure

of the similarity matrix has not been affected that much;

however, the off-diagonal spots (and hence the incorrect

associations) have been removed.

To illustrate the effect of incorrect associations on the
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Fig. 3. Similarity matrix of frames in the dataset computed using the
original vocabulary tree feature entropy weights.
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Fig. 4. Similarity matrix of frames in the dataset after the feature entropy
of unreliable features has been adjusted.

similarity score, we consider the matching example shown

in Figure 5. In this example, we have extracted an image

from the dataset that includes a checker board and consider

the similarity score between this image and an image of the

background scene as well as one of only a checker board.

Similarity scores between images 1 and 2 are represented by

solid lines in the graph while those between images 2 and

3 are represented by a dashed line. Using the initial vocab-

ulary tree feature entropies, the similarity score associated

with the checker board is much higher than of that with

the background features. As the algorithm identifies poor

matches, the feature entropies are updated and the similarity
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Fig. 5. Plot showing the evolution of similarity scores as the algorithm
detects poor matches in the dataset.

score to the background image improves while the match to

the checker board degrades.

The result is shown for uniform entropy reductions of

5%, 10% and 20% as well as for the weighted entropy

adjustment. As expected, the lower the percentage in the

uniform entropy adjustment, the slower the similarity score

declines and the more incorrect associations are required.

The weighted entropy adjustment algorithm also has the

advantage of being able to specify the desired upper bound

on the similarity score, while the uniform entropy adjustment

will perform differently depending on the initial similarity

score.

The slight decrease in similarity score between images 1

and 2 towards the end of the 20% and weighted adjustment

cases is as a result of the last remaining incorrect association

in the map. This association is attributed mostly to features

associated with windows similar to those on the building in

image 1. As such, the entropies of these features are reduced

resulting in the observed reduction in similarity score.

V. CONCLUSIONS

In this paper, we have presented a method for updating

the feature entropy weights in a vocabulary tree to cater

for features that provide poor metric localisation informa-

tion. Two methods for updating the feature entropy were

provided. One that reduces feature entropy in a uniform

manner regardless of the contribution to the poor match

and the second that adjusts feature entropy depending on its

contribution. The results of the algorithm on a preliminary

dataset show that it is capable of reducing the number of

incorrect associations while simultaneously improving the

match quality for good associations. This method should

work in areas where pure appearance-based methods could

fail based on the presence of similar objects, such as office

environments. The approach also lends itself to applications

in environments where appearance-based matches are highly

influenced by dynamic objects.
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