
USING RANDOM MATRIX THEORY TO DETERMINE THE NUMBER OF ENDMEMBERS
IN A HYPERSPECTRAL IMAGE

K. Cawse1,2, M. Sears3, A. Robin1, S.B. Damelin1,4, K. Wessels2, F. van den Bergh2, R. Mathieu5

1School of Computational and Applied Maths 2Remote Sensing Research Unit
University of the Witwatersrand Meraka Institute, CSIR

South Africa South Africa

3School of Computer Science 4Department of Mathematical Science
University of the Witwatersrand Georgia Southern University

South Africa USA

5Ecosystems and Earth Observation
Natural Resources and the Environment, CSIR

South Africa

ABSTRACT

Determining the number of spectral endmembers in a hyper-
spectral image is an important step in the spectral unmixing
process, and under- or overestimation of this number may
lead to incorrect unmixing for unsupervised methods. In this
paper we discuss a new method for determining the number of
endmembers, using recent advances in Random Matrix The-
ory. This method is entirely unsupervised and is computa-
tionally cheaper than other existing methods. We apply our
method to synthetic images, including a standard test image
developed by Chein-I Chang, with good results for Gaussian
independent noise.

Index Terms— Hyperspectral Unmixing, Random Ma-
trix Theory, Linear Mixture Model, Virtual Dimension.

1. INTRODUCTION

Determining the number of endmembers in an image is im-
portant for the processing of many different types of data, in-
cluding chemical unmixing [1], extracting speech signals in
a noisy band [2], unmixing minerals [3] and unmixing en-
vironmental landscapes [4], among many others. This is an
important first step in unmixing a hyperspectral image, and
this step is often overlooked in image unmixing algorithms
[5].

A common model used to unmix hyperspectral images
is the linear mixing model, introduced by [6]. This model
assumes that each pixel in the image is made up of a linear
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combination of “endmembers”. Mathematically, measure-
ment xi ∈ Rp for each pixel i, 1 ≤ i ≤ p, where p ≥ 1 is the
number of spectral bands, is represented as:

xi =
K∑

j=1

aijvj + ni (1)

where aij represents the proportion of endmember vj in the
mixed pixel xi, ni represents some noise function, and K
is the number of endmembers. We assume Gaussian noise
following the methods of [1] [5].

The first step in unmixing the image is to determine how
many endmembers or constituents are contained in the scene.
This is known as the Virtual Dimension of the image. An in-
correct estimation of this number, K, can seriously detriment
the accuracy of many unmixing methods [5], and in prac-
tice, algorithms do not perform well when endmembers are
included that are not present in the image [7].

There are several existing methods for determining the
Virtual Dimension of the image. Most of these methods use
the eigenvalues of the observation covariance matrix S, where
S is given by

S =
1
N

N∑
i=1

(xi − x̄)(xi − x̄)T , (2)

where N is the number of pixels in the image and x̄ ∈ Rp is
the mean spectral vector over all the pixels in the image. This
matrix is used to distinguish the eigenvalues due to signal and
the eigenvalues due to noise. This procedure is not unique to



hyperspectral unmixing — it is used to unmix, for instance,
signals [2], chemical mixtures [1] or other mixtures [3][4].

In an ideal case, there should be a clear distinction be-
tween eigenvalues due to signal and eigenvalues due to noise.
However, in a realistic situation, it is extremely difficult to dis-
tinguish between a small signal eigenvalue and a large noise
eigenvalue. Several methods have been developed to address
this problem.

Wu et al [5] have provided a summary of methods to de-
termine the number of endmembers, among which are An
Information Criterion (AIC) [8] and Minimum Description
Length (MDL) [9] which both determine K by minimising
some function depending on the eigenvalues of S, the cen-
tered observation covariance matrix. Both of these methods
assume that the noise is independent identically distributed
(i.i.d.) and Gaussian. These noise assumptions are not ap-
propriate for hyperspectral imagery and are seen as a dis-
advantage of these methods. Wu et al. [5] also discuss the
Gerschgorin Radius-Based method [10] (assuming only i.i.d.
noise), and Signal Subspace Estimation (SSE) [11] (assuming
only Gaussian noise). Next, the paper discusses the Neyman-
Pearson Detection Method [12] which assumes white noise
with zero mean. All the methods discussed only use the eigen-
values of S or the eigenvalues for the non-centered obser-
vation covariance matrix. In all cases, nothing needs to be
known about the endmember vectors, which is an advantage
over supervised methods.

From real and synthetic experiments described in [5],
the authors determined that the best methods were Neyman-
Pearson, SSE and Gerschgorin Radius-Based method, and
the methods with the strictest noise assumptions (i.e. that the
noise is Gaussian and i.i.d.) performed the worst. Several
of these methods were very sensitive to user-defined values.
The difference between noise and signal eigenvalues can be
very subtle.

In the area of chemical unmixing, Kritchman and Nadler
[1] have worked with new results in Random Matrix Theory
to determine which eigenvalues are due to noise and which are
due to signal. The advantage to this method is that there are
no parameters that need to be set by the user. Also, it appears
to perform better than other methods in finding the thresh-
old between noise and signal eigenvalues. Random Matrix
Theory principles that are used are quite recent [13] and are
proving to be extremely useful in chemical unmixing [1].

The chemical unmixing method is not directly applicable
to hyperspectral imagery, but this method shows promise and
we will attempt to adapt it for the hyperspectral case. In this
paper, we propose a new approach to determine the threshold
between noise and signal eigenvalues, using Random Matrix
Theory. In Section 2 we will introduce our model, before
showing some experiments in Section 3 and we will then draw
some conclusions in Section 4.

2. MODEL FORMULATION

In Random Matrix Theory, research has been done into the
first (largest) eigenvalue of a Random Matrix. Since we are
assuming Gaussian noise, the first observed eigenvalue due to
noise can be thought of as the first eigenvalue in a Random
Matrix. According to Johnstone [13], the first eigenvalue of a
Random Matrix fulfills the condition

λ ≤ σ2(µN,p + s(α)σN,p) (3)

where σ is the variance of the Gaussian noise, α is a signifi-
cance level, s(α) may be found by inverting the Tracy-Widom
distribution (in [1] α = 0.5%) and for real valued data,
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1
N
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Note that these functions do not depend on the number of
endmembers, K.

Then, if the eigenvalues, {λj}pj=1, of the non-centered
observation covariance matrix are sorted in descending or-
der, so that λ1 ≥ λ2 ≥ . . . ≥ λp, K is defined so that
λj > σ2(µN,p + s(α)σN,p) for all j ∈ Z, 1 ≤ j ≤ K.

Mathematically, the most reasonable approximation to the
noise is the average of all the noise eigenvalues (see [1]),
given by

σ2
REF =

1
p−K

p∑
j=K+1

λj . (6)

Kritchman and Nadler [1] found this approximation to be
too low for their chemical unmixing application, and so they
considered a new noise estimate, given by

σ2
0 =

σ2
REF

1− K
N

. (7)

However, in hyperspectral cases, N is large in proportion
to K and so the extra denominator in σ2

0 tends to one. Kritch-
man and Nadler [1] also derived other noise approximations,
but their experiments are based on the assumption that N is
small. Since for hyperspectral imagery the number of pixels,
N , is large, we will consider σ2

REF in our experiments.



Our approach has many advantages for hyperspectral im-
agery. Firstly, in this case, N is very large in proportion to p,
so σN,p in equation (5) becomes very small, and therefore the
right hand side of equation (3) is not sensitive to the choice of
the confidence interval α. This is in contrast to several meth-
ods examined by Wu et al. [5], where the user-defined thresh-
old had a large impact on the results. Secondly, this method
is computationally efficient when compared to other methods
that performed well in [5]. Some of those require the solution
to an optimization problem, the computation of eigenvectors,
or the computation of eigenvalues for more than one large ma-
trix. The Random Matrix Theory approach only requires the
eigenvalues for the observation covariance matrix.

3. EXPERIMENTS

Fig. 1. Synthetic image created according to the instructions
in [14].

Chang et al. have created a synthetic test dataset to stan-
dardise algorithm testing [14]. This dataset is an image of
size 200×200 pixels, with pure pixels, mixed pixels and sub-
pixel elements inserted into a background (see Figure 1). The
image contains five minerals and a background (derived from
the five minerals). Wu et al. [5] used the dataset to test sev-
eral reviewed methods for finding the number of endmembers
in an image. In this image, there are 5 rows of panels (where
each row is associated with a mineral) and 5 columns of pan-
els (where each column represents different size or mixing
scenarios). The first column contains 4 × 4 pure pixels, the
second column contains 2 × 2 pure pixels, the third column
contains 2× 2 mixed pixels, and the fourth and fifth columns
contain sub-pixel elements. For the mixed pixels, every pixel
in the panel has a value comprised of half the mineral of that
row, and for each of the four pixels, the remaining half comes
from one of the four other minerals. For the sub-pixel ele-

ments, in the fourth column, the pixel value is half the mineral
of that row, and the other half is made up of the background
value; for the fifth column, the pixel is 25% mineral and 75%
background. Zero-centered, i.i.d, additive Gaussian noise is
then added to the image.

We created a first dataset using the following minerals:
Alunite; Buddingtonite; Calcite; Kaolinite; and Muscovite
(taken from the JPL spectra library [15]). The background
is the mean of all five minerals (as in [5]). We also com-
piled a second synthetic dataset, made up of 5-20 minerals,
again chosen from the JPL spectral library [15]. The num-
ber of endmembers, K, is randomly selected, and the propor-
tions of each endmember in each pixel is also random, with
the only restrictions being the positive and sum-to-one condi-
tions that are enforced on the proportions. Then, by iterating
this method, testing may be done on many different “images”,
sinceK and the proportions differ for each iteration, and both
are randomly selected from a uniform distribution for each
iteration.

The random matrix evaluation in (3), with the noise given
as in (6), may be rewritten as

f(p,K) < 1 for signal eigenvalues, where

f(p,K) =

p∑
j=K+1

λj

λK(p−K)
(µN,p + s(α)σN,p). (8)

In order to test this formula, we compiled a test image as
suggested by [14], and a set of synthetic images for various
number of endmembers, K, where 5 ≤ K ≤ 20. For each K,
a hundred different images were generated, with uniformly
distributed abundance values. For these test images, we used
a noise standard deviation of 0.001, which translates to SNR
of 500:1, using the definition in [5]. This SNR is typical of
modern airborne sensors.

We also tested our formula on an AVIRIS flight scene col-
lected over Cuprite, Nevada in 1997. This dataset is available
online1. The image contains 350 × 350 spatial pixels, with
189 spectral bands. Wu et al. [5] determined the number of
endmembers in this scene to be between 22 and 28.

The validity of this formula for synthetic data is displayed
in Figure 2. Only three synthetic images were displayed for
clarity, but the same behavior was observed for all the syn-
thetic images generated. For the synthetic images, the line
f(p,K) = 1 is a good threshold between signal and noise
eigenvalues, as expected from the Random Matrix behavior.
But the Cuprite scene behaved differently.

For the synthetic data, it is assumed that the noise is zero-
centered Gaussian, i.i.d. and uncorrelated with the signal. In
a simple experiment where the variance of the noise in one of
the synthetic images is made to depend in some way on the

1aviris.jpl.nasa.gov/html/aviris.freedata.html



band number, the synthetic graph approximates the Cuprite
graph (as in Figure 2) much more closely, especially in terms
of amplitude. By this experiment it appears that our noise
assumptions are unrealistic for the Cuprite image. However,
Random Matrix Theory can be adjusted for different noise
conditions, and further work will focus on how to make these
adjustments.

This paper presents a successful application of Random
Matrix Theory to hyperspectral imagery in synthetic images.

Fig. 2. Using Random Matrix Theory to threshold hyperspec-
tral data, where equation (8) is displayed for synthetic im-
ages and a Cuprite scene. For clarity, the synthetic images are
shown with low noise (standard deviation = 0.001).

4. CONCLUSION

We have presented a new and innovative method for deter-
mining the number of endmembers in a hyperspectral image.
Our method uses Random Matrix Theory in order to sepa-
rate signal and noise eigenvalues from the observation covari-
ance matrix, and it is computationally efficient. This method
is not sensitive to user-defined thresholds and performs well
on simulated images. The preliminary experiments show that
the noise assumptions need to be adjusted for real images, but
the Random Matrix Theory does allow for different noise as-
sumptions.
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