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Abstract

An imitation system that promises applicability to a wide
range of problems and platforms is presented. The system’s
structure is inspired by the Robot Programming by Demonstra-
tion (RPD) paradigm. It statistically characterizes demonstra-
tion trajectories in the task or joint space. Two sets of infor-
mation are captured. The first, relational interest points, which
are milestone locations taken relative to scene objects, are used
to capture important behavioural requirements. The second set
of information comes from between these interest points, where
the reasons behind a behaviour are less clear, a Gaussian mix-
ture model is used to statistically model the subtrajectories.

In behaviour reproduction nonlinear optimization is used
to produce a path of highest likelihood. This approach allows
other influences such as collision avoidance to be incorporated
into the planner. The statistical model can also be used in be-
haviour recognition. A simple drawing experiment is used to
demonstrate the proposed system and its performance.

1. INTRODUCTION

Suppose a designer needs to implement behaviour in a robotic
platform. He or she may do this through hard coding or attempt
to use machine learning techniques. These two options are ex-
tremes on either end of a spectrum. Hard coded, deterministic
methods are typically not adaptive and can be time consum-
ing to implement. Code maintenance may also be prohibitively
costly. Pure machine learning techniques such as reinforcement
learning are adaptive and do not require extensive user inter-
vention, but suffer from requiring many trial iterations and of-
ten obtain poor convergence. Imitation based behaviour sits in
the middle of this spectrum. This field of research, also called
Robot Programming by Demonstration (RPD), is receiving in-
creasing attention [1]. Of the well documented advantages this
approach has to offer, the author considers the most important
being that an ideal imitation system will do exactly what the
user (or teacher) “expects”. This is especially true in industrial
applications where emergent behaviour could disrupt a process.

In the past, many complete imitation systems have been
proposed. A number require a user to specify behavioural
primitives in hard code and the systems use these to segment
demonstration traces [2] [3]. For specific applications this ap-
proach does have an important advantage in the ability to op-
timize portions of the behaviour for better accuracy or higher
speed. It may, however, filter away important nuances in train-
ing data and generally requires a fair amount of user inter-
vention. For more general imitation capability statistical ap-
proaches have been applied. Amongst these are Hidden Markov
Model (HMM) [4] and Gaussian Mixture Model (GMM) [5]

[6] based approaches. The former tends to suffer from pro-
ducing discontinuities during reproduction from the statistical
model. It is, nonetheless, finding application in the imitation
of human motion captured from a monocular camera. The
GMM approach has been used with Gaussian Mixture Regres-
sion (GMR) to produce smooth reproductions of a number of
fairly complex behaviours including food preparation and play-
ing pong with a joystick.

This paper proposes an imitation system which character-
izes a particular behaviour into a statistical model, reproduces
the behaviour smoothly and can recognize recurrence of that be-
haviour. It relies on a similar GMM approach to the above cited
work [5], but differs in how reproduction is conducted and in
how relational milestones are specified. The system is designed
to require as little user intervention as possible with the excep-
tion of a few demonstrations of a particular behaviour. The
system makes use of a relational interest point (RIP) detector
to identify what locations in the task/joint space are important.
The idea of identifying relational milestones in a demonstration
so that reproduction can be faithful to a user’s intention is an old
one [7]. In the proposed system these milestones are defined
with a fair amount of generality to capture a broad range of in-
tentions. They are treated as hypotheses that can be rejected as
newer trajectories are added to the dataset.

Traces or subtrajectories between RIPs are then character-
ized statistically using Gaussian Mixture Models. A powerful
variant of the Expectation Maximization algorithm is used to
determine the model parameters. Unlike [5], which also uses
GMMs, the proposed system does not use GMR to reproduce
subtrajectories between RIPs. GMR will typically provide some
form of mean path, however a mean path may not be highly
probable in the density. Instead, nonlinear optimization is used
to produce a path of high likelihood. A variant of Nelder-Mead
is applied where the cost function is set up so that unlikely
points are expensive. There are a number of advantages to this
approach. Firstly, the algorithm can be modified to perform col-
lision avoidance much like elastic path planning algorithms [8].
Collision avoidance, in the form of something like a potential
field, would be another cost term. Secondly, other characteris-
tics of paths may be tailored such as minimum radius of curva-
ture.

The paper presents the entire system and thus will not fo-
cus too heavily on any one component. Its structure is as fol-
lows. Firstly, the idea of relational interest points is discussed in
the next subsection. Section 2 elaborates on the imitation sys-
tem architecture by looking at its two major components sepa-
rately: characterization and reproduction. Experimental results
are used to illustrate explanations in Section 2, but are also dis-
cussed in detail in Section 3. Section 4 presents the conclusions



and future work.

1.1. Relational Interest Points

To copy a task, one must identify locations relative to surround-
ing objects that are consistently reached or acted from. An ex-
ample could be lifting a hot coffee cup. A person will tend to
lift the cup by the handle. He or she will do this consistently.
A learner who is trying to decifer what is important in such a
demonstration, with task reproduction in mind, should note this
strategic lifting point.

These characterizations would also need to be defined as
random variables because if they are used to describe a set of
task demonstrations then they must make allowances for low
precision. The term given to these location descriptions in their
statistical sense is Relational Interest Point (RIP).

It is assumed that there are many possible types of RIPs that
may influence the demonstrator’s behaviours. A more complex
example shown in Fig. 1 could be characterized with
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where the bar denotes a vector quantity, Z,.1 is the position of
the green circle, Z,. 2 the blue.
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Figure 1: A relative RIP

2. SYSTEM ARCHITECTURE

The system architecture can be divided into two major compo-
nents: the behaviour characterization component and the repro-
duction component. The first produces a statistical model of a
behaviour given a number of demonstrations. The model’s sta-
tistical nature allows it to be used in recognition of a behaviour.
Reproduction relies on this model and additional environmental
observations to reproduce the behaviour. This section discusses
each of these two components separately.

2.1. Behaviour Characterization

The explanation of the characterization process will be by
means of an example. The experimental setup used is the fol-
lowing. A 6 DOF (Degree of Freedom) Phantom Premium hap-
tics input device was used as both the recording device and as
the reproduction platform. During reproduction the Phantom
was controlled with a PD (Proportional-Derivative) set point
controller that was fed points provided by imitation architec-
ture. A paint brush was attached to the mid limb to enable
the setup to draw. A photo of the setup is shown in Fig. 4.
For simplicity only the cartesian location of the paint brush nib

was recorded. The algorithms provided in the paper can handle
more degrees of freedom. Each measurement was stored with a
timestamp.

The example is a line drawing exercise. In the demonstrated
behaviour, the paint brush is moved into a ink cup, then toward
a sheet of paper and finally used to draw a line. Fig. 2 shows
the three recorded trajectories.

Three Sample Trajectories

Figure 2: Three sample trajectories with each in a different
colour. The black circles indicate the start of a recording. In
the demonstration the nib was taken to an ink cup and then a
line was draw on the paper.

The input requirements of the characterization process are
the recorded trajectories as well as the coordinates of all relevant
objects. By “relevant”, “necessary for proper reproduction” is
meant. The name used to refer to these coordinates is “fiducial”
(a term often used in NC machine literature). In the example
case, these would be: the ‘ink cup’, the ‘paper’ and the start

position. The characterization process proceeds as follows.

2.1.1. RIP extraction

In the system, RIPs are considered characteristics of a be-
haviour that must be reproduced faithfully. The statistical mod-
els (density functions) used to characterize subtrajectories be-
tween RIPs are rough approximations of what has been seen
before so that even in the event of misunderstanding some use-
ful behaviour may be obtained.

The simplest RIP used is relative displacement

Frip = o + Fa. @
The Z, is a random variable vector. To determine if it exists in
a set of demonstrations the following algorithm is used:
(1) For every fiducial 5 do the following:
(1.1) Subtract the fiducial position from the manipulator’s
position in each of the demonstration trajectories.
The resulting quantities are
Tret,j(t) = Tm(t) — Zfia,;(t) ©)
where Z, () is the manipulator’s position with time
and Z f44,; is the j’th fiducial’s location.

(1.2) For every possible permutation (71,7%,...,Tn),
where T represents a sample time of trajectory 4, do
the following:



Table 1: An Example Raw Set of Relational Interest Points

RIP No. | Time in traj. 1. | Time in traj. 2. | Time in traj. 3.
1 223 221 158
2 248 186 123
3 315 98 109
4 319 90 103
5 457 401 252

(1.2.1) Suppose that there are N demonstration tra-
jectories. The N points’ variance and mean
are calculated empirically:

1 N
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(1.2.2) If the variance is below a threshold, which
is scaled according to the entire demonstra-
tion workspace size, then the permutation
(Th, T3, ..., Tn) is taken as a relation inter-
est point which obeys (2).

This RIP is one of many that may be used as a search tem-
plate. Each type of RIP is really a hypothesis of what the user
is trying to demonstrate in some point of the demonstration. He
may not know himself what he is showing.

The more RIPs that are provided the more behaviours the
system can capture. There is, however, a trade-off. Step 1.2.1
and 1.2.2 of the search algorithm above will execute I times
where [ is the number of points sampled in each trajectory. This
scale of algorithmic complexity is very costly and may grow
substantially when searching for a complex RIP. Heuristics may
be used to narrow the proposed algorithm’s search.

2.1.2. Culling of RIPs

Once a set of RIPs is extracted from the demonstration the next
step is enforcement of temporal consistency. We assume that
each demonstration consists of subtasks performed in the same
order. Consider an example list of RIPs in Table 1.

RIP 1 occurs at time 223 in demonstration trajectory 1 and
221 in trajectory 2. RIP 2, however, occurs at time 248 in
trajectory 1 and 186 in trajectory 2. We have assumed that
each demonstration’s component milestones were reached in
the same order, thus these two RIPs contradict. To resolve these
contradictions the approach taken is to select RIPs according to
a metric and eliminate weaker RIPs that contradict.

The metric used took the following form. The number of
times a particular RIP occurs in each trajectory is divided by
the total corresponding demonstration time. This normalizes
the time so that each may be compared to see whether they oc-
curred at more or less the same point in each demonstration.
The metric was calculated by determining a mean of all these
normalized values and then calculating the empirical variance.
The smaller the variance the greater chance they occurred at
more or less the same relative time in each demonstration and
thus the more likely the RIP.

An example result of the 2 stages of characterization dis-
cussed may be seen in Fig. 3. The RIP locations are plotted on
one of the recorded trajectories in Fig. 2.

1st Demonstration trajectory and culled IPs
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Figure 3: The result of culling RIPs with temporal inconsis-
tency. Red circles indicate RIP locations with the path in blue.

2.1.3. Segmentation and normalization of demonstration tra-
Jectories

The previous step provides a set of RIPs that are used to seg-
ment each of the demonstration trajectories. The set of seg-
ments between a pair of RIPs will have different starting and
end points depending on the location of the fiducials in each
element’s demonstration. They may also have different orien-
tations. It is thus necessary to normalize the set. The scheme
used procedes as follows. Every sample subtrajectory is shifted
so that the starting point is at the origin. The subtrajectory is
then rotated so that the end point is along the x-axis. Finally,
the z-coordinate of each sample point is scaled so that the end
points sit at 1 on the z-axis.

2.1.4. Gaussian mixture modelling of subtrajectories

In the next step of the architecture, the sets of corresponding
normalized subtrajectories (between the same RIPs), such as
from the start to the first RIP in each demonstration, are com-
bined and converted into a probability density function. Spa-
tial coordinates as well as time are modelled. The model used
is the Gaussian mixture model and the algorithm applied to fit
the model is a specialized expectation maximization (EM) algo-
rithm. A Gaussian mixture model (GMM) of a density function
takes the following form

M
G(@) =Y mN(Z|mi, ) (6)
1=0

where IV is a Gaussian probability density function of M dimen-
sions. For the model to be a valid density function the scaling
factors, 7r;, must sum to 1. Symbols p; and 33, represent the
mean vector and covariance matrix of mixture component ¢.
The standard EM algorithm is not well-suited to the task
of fitting the subtrajectories to a GMM for a number of rea-
sons. Firstly, the standard algorithm assumes a fixed number of
density components. This value can be determined empirically



[10] or through trial-and-error with some best fit metric. Such
approaches, however, offer few guarantees. Secondly, densities
may fit data poorly inspite of convergence. This arises from
the fact that the EM algorithm guarantees convergence to only
a local likelihood maxima. Fortunately, there are a number of
powerful EM variants arising from the fields of pattern recog-
nition and neural networks. The algorithms SMEM (Split and
Merge Expectation Maximization) [9] and CEM (Competitive
Expectation Maximization) [10] inspired the version used. It
operates as follows:

(1) Initialization. A GMM with 1 mixture component is ini-
tialized randomly.

(2) Standard EM algorithm. The standard EM algorithm is ap-
plied until the likelihood of the data using the current GMM
converges:

(2.1) Expectation step:
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(2.2) Maximization step:
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(3) Keep covariance matrices positive definite. The eigenval-
ues of each component’s covariance matrix is kept above
some minimum. This ensures that the covariance matrices
are invertible.

(4) Elimination. Suppose K is the number of parameters re-
quired to fully specify a mixture component and S is the
number of samples. If a scaling factor, m;, of any mixture
component drops below K/S then that component is de-
stroyed. The idea was inspired by [10].

(5) Merge. Any density components with similar covariance
matrices and very near means are fused.

(6) Split. To determine which density component is best to split
the Kullback-Lieber divergence is calculated for each using

- fe(@)

J(k) / fi@)tog L B (12)
In the equation fx(Z) is a histogram discrete density func-
tion and px (Z) is the sampled Gaussian density at the his-
togram bucket centers. Only points within two standard de-
viations of a density component are used in the calculation.
The component with the maximum divergence is split and
each new component is randomly initialized in the vicin-
ity of the parent. This step is not executed if it is the last
iteration of the algorithm.
The purpose of this step is to encourage densities to cover
data that is likely to be generated from a Gaussian density.

(7) Iteration limit check. The iteration count is checked to see if
the limit is exceeded and, if so, the algorithm is terminated.

(8) Loop. If a specified number of algorithm iterations has not
been reached go to step 2.

A result from the algorithm is shown in Fig. 5. Each blob
represents a mixture component. The ellipsoids illustrate each
components standard deviation.

In summary, the characterization process yields a set of
RIPs and Gaussian mixture models that characterize subtrajec-
tories between these RIPs.

2.2. Reproduction

The reproduction process proceeds as follows:

2.2.1. Determination of Start and End Points of Subtrajectories

To produce a complete behaviour trajectory the first require-
ment is for the user to specify the locations of all relevant ob-
jects. Using the object locations the most likely positions of all
the behaviour model RIPs are calculated.

2.2.2. Generation of Subtrajectories

A likely subtrajectory needs to be generated between every pair
of RIPs using the appropriate GMM. To do this, the following
algorithm is used:

(1) T = 0, where T is the relative time-of-arrival from the
starting RIP of the current point.

(2) Optimize p(Z,T), where T is the point’s location. Use
Nelder-Mead to calculate the most likely location of this
point given the GMM and that its time is fixed at T. The
cost function also optimizes for likelihood of some mid-
points between the last and current point. The last point is
not changed. This ensures that the optimizer follows a sub-
trajectory mode and that sequential points do not straddle a
region of low likelihood.

(3) Accept T if p(z,T) > L, where L is a threshold which pre-
vents very unlikely points from adding to the generated sub-
trajectory. In situations where the GMM components have
means away from the current 7" and small enough tempo-
ral variances, p(Z,T') can be negligible everywhere. These
time locations must be skipped.

4) Increment T if T < Tena and go to step 2, where Tepq is
the last points temporal location. Otherwise, terminate and
return the set of accepted points.

The optimization problem cannot be tackled with Newton’s
method and related nonlinear optimizers such as Levenberg-
Marqualdt because it does not satisfy their convergence criteria.

A low pass filter is used to smooth the resulting path and
then a spline fit provides the ultimate subtrajectory.

3. EXPERIMENTAL RESULTS

The example problem was characterized with the following pa-
rameters. The complete SMEM-variant algorithm was run for
45 iterations to characterize each subtrajectory. The maximum
number of standard EM iterations was 500.

During reproduction, 100 points where optimized to create
a path. Any point with a likelihood less than 1076 was dis-
carded.



Figure 4: The experimental setup: A cup containing ink, paper
and a brush attached to the Sensable Phantom.

3.1. Characterization

Fig. 5 shows three recorded trajectories in the upper plot be-
tween two sequential RIPs. A GMM was fitted using the dis-
cussed EM algorithm and is also shown in the plot. The yellows
blobs are the GMM’s components’ ellipses of constant standard
deviation (1 standard deviation).

The figure illustrates the result of characterizing three sub-
trajectories with density functions. Although not shown in the
plots, each component has a time mean and variance as outputs
from the EM algorithm. Components with ‘early’ means and
smaller time variances capture behaviour early in the subtrajec-
tory. This plays an important role in the reproduction phase.

A problem with the scheme is illustrated in the results.
Gaussian densities cannot precisely model a density over tra-
jectories. They can only provide an approximation. A precise
stopping condition for the proposed EM algorithm is hard to nail
down unless one assumes a single modal model and falls back
on to the simpler Bayesian Information Criterion or resorts to
Bayesians methods in general. This is left for future work.

3.2. Reproduction

In the lower plot of Fig. 5 is the Nelder-Mead generated path
alongside the density function. The black dots illustrate inter-
vals of time evenly spaced through the subtrajectory. They are
also the points optimized. A cubic spline (red) is fitted through
the result of the path planning algorithm to produce the result in
the figure. This smooth spline is used to move the manipulator.

An important characteristic of the path is that it follows a
particular ridge of high probability and does not skip across ar-
eas of low probability. Fig. 6 shows a complete reproduction
of a behaviour. Each fiducial (black circle) has been labelled.
While demonstrating, the author avoided the lip of the cup and
this motion was imitated by this system. It also captured a “dip-
ping motion” in the ink.

The reproduced curves have a ‘squared’ appearance. This
is an artifact of the reproduction method and GMMs. Paths tend
to run along the central axis of dominant mixture components.
A strategy to correct this could be the use of another type of
mixture model with components that can adopt curves.

Trajectories with Ghih

Figure 5: Top) The three recorded subtrajectories in blue, black
and cyan with the generated GMM density components high-
lighted, bottom) A generated path in red with blacks dots de-
noting intervals of equal time
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Figure 6: A complete reproduction of the “line drawing” be-
haviour. The large black circles indicate fiducials and the red
star indicates the end of a demonstration.



4. CONCLUSIONS AND FUTURE WORK

An imitation system was proposed that uses relational inter-
est points and Gaussian mixture models to characterize a be-
haviour. The model extracted can also be used to identify a be-
haviour. Reproduction is done through nonlinear optimization
using a variant of the Nelder-Mead algorithm which produces
a highly probable path given the behaviour model. The sys-
tem was successfully demonstrated on a line drawing task. Al-
though simple, it illustrates that the imitation system will gener-
alize when accuracy in a task is not required and satisfy precise
requirements when identified. A great many behaviours would
require similar abilities as the example task.

Given that reproduction merely requires the parameters of
each GMM and the RIPs with their parameters, it is clear that
the imitation system is effectively a behaviour compression sys-
tem. With the first example the storage space amounts to around
100 floating point double precision variables. This allows a de-
signer to store many taught behaviours in a single system.

For future work the Phantom haptics input device will func-
tion as a master to a slave manipulator (such as a Barrett Whole
Arm Manipulator). A vision system will be added to capture
fiducial locations.

As mentioned earlier, the scheme’s major weaknesses are
the imprecise stopping condition of the EM algorithm and the
fact that RIPs are not continuous. A continuous spatial con-
straint which captures regions of trajectories would produce
smoother reproduction results. These problems are currently
being investigated.
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