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ABSTRACT

This study used remotely-sensed phenology data derived 
from Advanced Very High Resolution Radiometer 
(AVHRR), in a fully supervised decision-tree classification 
based on the new biome map of South Africa. The
objectives were: (i) to investigate the long-term spatial 
patterns and inter-annual variability in satellite-derived
vegetation phenology in relation to the recently revised 
biome map and (ii) to identify the phenological attributes 
that distinguishes between the different biomes. The long 
term phenometrics gave ecologically-meaningful results 
which reflect our current understanding of the spatial 
patterns of production and seasonality of vegetation growth 
in southern Africa. Regression tree analysis based on 
remotely-sensed phenometrics performed as good as, or 
better than, previous climate-based predictors of biome 
distribution.

Index Terms — AVHRR, phenology, biomes, 
vegetation mapping

1. INTRODUCTION 

Vegetation biomes are traditionally mapped in one of two 
ways: (i) top-down – based on vegetation structural types 
and their association with regional climate [1], or (ii) 
bottom-up – by grouping vegetation types together based on 
composition and structure measured at the plot level [2]. 
There is a huge discrepancy between the scales and the 
measurement of regiona climate data and plot-level floristic 
data. Satellite-derived vegetation phenology data have 
tremendous potential for bridging the afore-mentioned gap 
in measurements, since they capture the spatial patterns of 
vegetation dynamics through repetitive observations at 
regional scales [3, 4]. Remotely sensed phenology are the 
ideal data on which to base regional vegetation 
classifications since they represent consistent measurements 
of vegetation processes and function and can be applied 
across vast areas with limited floristic data [5, 6]. This study 
used remotely-sensed phenology data in a fully supervised 
decision-tree classification based on the new biome map of 

South Africa [2]. This allowed a quantitative assessment of 
which phenological attributes are most characteristics of the 
newly defined biomes of South Africa. 

The objectives of this study were therefore: 
1. To investigate the long-term spatial patterns and 

inter-annual variability in satellite-derived vegetation 
phenology in relation to the recently revised biome map of 
South Africa 

2. To identify the phenological attributes that 
distinguishes between the different biomes. 

2. METHODS 

2.1. AVHRR data 

Advanced Very High Resolution Radiometer (AVHRR) 
data consisting of 10-day maximum value composite NDVI 
values (decads) at 1-km2 was used for the period 1985 - 
2000. The processing and calibration of this Local Area 
Coverage (LAC) dataset is described in full elsewhere [7]. 

2.2. Data filtering and phenometrics extraction 

A number of numerical methods have been developed to 
extract phenology metrics from long-term satellite 
vegetation index data [3, 4]. These typically fit models to 
filter or smooth the noise in the time-series data (varying 
atmospheric conditions and sun-sensor-surface viewing 
geometries) [8] and then extract various metrics (referred to 
as phenometrics) from these models, e.g. start of growing 
season, peak of growing season, end of growing season, 
length of growing season, rate of greenup and integrated 
estimations of net primary production (NPP) (for review see 
[9]). 

A widely used time-series analysis program, TIMESAT, 
was employed to calculate phenometrics from the AVHRR 
data [4]. An adaptive Savitsky-Golay filter, that uses a local 
polynomial fit together with small moving windows in two 
fitting steps to reduce noise and fit curves to the data. The 
threshold method used by TIMESAT provides a robust and 
computationally simple method for identifying SGS and  
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Figure 1. Phenometrics extracted from the seasonal NDVI 
curve, as defined in TIMESAT (after [4]). 

Table 1.  Date-related and productivity (NPP) – related 
phenometrics.

Date-related metrics NPP-related metrics 
a.  Start of growing season 
(SGS)

d. Maximum NDVI value 
(MAX)

b.  End of growing season 
(EGS)

e. Small Integral (SI) 

c.  Length of growth season f. Large Integral (LI) 
d.  Mid position of growth 
season 

g. Amplitude 

EGS of growing season as 20% of the seasonal amplitude 
(Fig. 2). The other seasonal phenometrics were calculated 
accordingly (Fig. 2)(Table 1). 

Transformed areas such as cultivated land, 
plantations and built-up areas mapped in National Land 
Cover 2000 were excluded from further analyses which 
were only concerned with natural vegetation. A buffer of 
1km around the transformed areas was also excluded to 
avoid adjacency effects. 400 pixels per biome were 
randomly selected from the remaining untransformed areas. 
The same points were used for the savanna bioregion 
analysis.

2.3. Phenology-based regression tree analyses 

A random forest regression tree was run using a range of 
phenometrics as the input variables and the biomes (Mucina 
& Rutherford, 2006) respectively as dependent variables. 
No prior probabilities were used. The results of the 
phenology-based regression tree was compared to those of 
the a climate-based regression tree analyses (Mucina & 
Rutherford, 2006). The resulting random forest model was 
used to run a prediction which mapped the biomes and 
savanna bioregions based on the phenometric data which 
was then assessed in terms of users and producers accuracy. 

a
b

c
d

e

f

g

3. RESULTS 

Figure 2. Mean start of the growing season (SGS).

3.1. Phenometrics 

Phenometrics for each of the growing season were extracted  
and long-term means, standard deviations (SD) or 
coefficients of variation (CV) were calculated and mapped 
for all phenometrics across the periods 1985-1993 and 
1995-2000 (data gap 1994). The SGS clearly reflect the 
east-west trend in start of growing season from summer to 
winter (Fig. 2) 

The difference in seasonality is also clearly captured in 
Fig. 3. The majority of the pixels in the Savanna have a start 
of growing season in late October, midposition in February 
and end in June (Fig. 3).  In contrast, the winter rainfall 
Succulent Karoo have a start of growing season in early 
June, midposition in August and end in December (Fig. 3). 
The Fynbos, though predominantly in a winter rainfall 
region is known to span from winter in the west to summer 
rainfall regions in the east (Figs 2, 3). The areas in the 
western Fynbos with later start dates (Oct) are mainly wheat 
fields where the pattern of planting and harvesting gives 
very uniform phenologies that are distinctly different from 
the surrounding fynbos vegetation. 

3.2. Regression tree analysis 

The regression tree initially split the biomes based on 
vegetation production and then by the seasonality of growth 
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(Fig. 4). The three arid biomes (Desert, Succulent and Nama 

 Figure 3. Frequency histograms of the mean START, 
midposition (MID) and END date of the growing season, 
per biome (South Africa). Numbered decads are named by 
the first letter of the month (J, F,…D) followed by the decad 
number (1-3). 

Karoo) were isolated as having LARGE integrals less than 
4.7 and the two high-biomass biomes (Forest and Coastal 
vegetation) were isolated as having LARGE integrals 
greater than 10.9. These broad NPP-defined vegetation units 
were then sub-categorised using the timing of the growth 
season.

The winter rainfall Succulent Karoo biome is separated 
from the summer rainfall Nama Karoo biome by the 
midpoint of their growing seasons (pixels with midpoints 
before July were identified as Nama Karoo). The winter 
rainfall Fynbos is separated from the summer rainfall 
Grassland and Savanna by having a mean START date 
before the 1st of October (decad 27.5).

Large Integral

Small IntegralSmall Integral

Amplitude

SD Length

Midposition

Start Date

CV Maximum

Amplitude

Desert

Succulent
Karoo

Nama
Karoo Forest Indian Ocean

Coastal Belt

Fynbos Thicket Thicket

Grassland Savanna

Figure 4. Phenology-based regression tree indicating split 
parameters for predicting biomes. 

It is appropriate that Thicket was identified in both the 
winter and summer rainfall split, as this biome bridges the 
divide between the two climate regions. Thicket is identified 
as having a higher amplitude than Fynbos and a more 
variable growing season length than Grassland or Savanna. 
The split between Grassland and Savanna indicated that  
Grassland has a lower inter-annual coefficient of variation 
in its MAX value than Savannas (Fig. 4). This is due to the 
fact that the Savanna stretches into very arid areas in the 
north-western Kalahari resulting in the Savanna having a 
higher CV MAX. 

The overall accuracy of the climate-based biome 
prediction (Mucina & Rutherford, 2006) (Fig. 5) and the 
phenometric-based biome prediction (Fig. 4) were quite 
similar: 78% and 75% respectively (Table 3).  
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Figure 5. Climate-based regression tree indicating split 
parameters for predicting biomes. 
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However, the broad-scale climatic-based tree is unable 
to resolve the Forest biome, as in South Africa Forests occur 
in the same regional climate bounds as both Savanna and 
Grassland, while other factors such as micro-climate, 
topography, fire history and land use determine where 
Forest patches occur in this region.  

In the climate-based tree rainfall divided by evaporation 
is used as a surrogate for productivity (Rutherford et al., 
2006) and was used to separate the more productive Thicket 
from the arid Nama Karoo; and the more productive Fynbos 
from the arid Succulent Karoo. Number of high soil 
moisture days in summer versus winter were used to sub-
categorise, but this measure conflates productivity and 
season of growth the splits were less clear than in the 
phenology-based tree, with several different combinations 
of climatic conditions resulting in the same biome 
prediction. 

Table 2.  Accuracy of the random forest regression tree 
model developed on 3400 sample points from nine biomes. 
Values represent proportion of the sample points which 
were correctly classified by the Phenology-based model.  

Biome NPP-related
phenometrics

Date-specific 
phenometrics

All
phenometrics

Desert 0.83 0.72 0.89
Succulent 
Karoo

0.50 0.58 0.69

Nama Karoo 0.39 0.49 0.67
Fynbos 0.43 0.43 0.66
Albany 
Thicket

0.47 0.56 0.70

Grassland 0.71 0.67 0.76
Savanna 0.15 0.62 0.71
Forests 0.80 0.68 0.79
Indian Ocean 
Coastal Belt 

0.65 0.77 0.90

Total 0.54 0.61 0.75

4. CONCLUSIONS 
The long term phenometrics gave ecologically-meaningful 
results which reflect our current understanding of the spatial 
patterns of production and seasonality of vegetation growth 
in southern Africa. Regression tree analysis based on 
remotely-sensed phenometrics performed as good as, or 
better than, previous climate-based predictors of biome 
distribution. The results suggest that phenometrics capture 
sufficient functional diversity to classify and map vegetation 
based on function. They furthermore indicate a convergence 
of vegetation structure and function at the biome level. 
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