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ABSTRACT

A new active fire event detection algorithm for data collected
with the Spinning Enhanced Visible and Infrared Imager (SE-
VIRI) sensor, based on the extended Kalman filter, is intro-
duced. Instead of using the observed temperatures of the spa-
tial neighbours of a pixel to detect anomalous temperatures,
the new algorithm only considers previous observations at the
current pixel. The algorithm harnesses the Kalman filter to
obtain a prediction of the expected brightness temperature at
a given location, which is then compared to the actual SE-
VIRI observation. An adaptive threshold is used to determine
whether the observed difference is indicative of a potential fire
event. Initial tests show that the performance of this method
is comparable to that of the EUMETSAT FIR product.

Index Terms— Fires, Nonlinear detection

1. INTRODUCTION

Geostationary sensors, such as the SEVIRI instrument found
on the Meteosat Second Generation (MSG) satellites, allow
the monitoring of earth surface properties at a high tempo-
ral resolution. This high temporal update rate allows for the
construction of a brightness temperature profile referred to as
the Diurnal Temperature Cycle (DTC), which enables the de-
velopment of a promising type of fire event detection algo-
rithm. In this paper, a change detection algorithm is proposed
which detects abnormal increases in temperature in the ob-
served DTC; these increases are typically indicative of fire
events. This approach considers an individual pixel without
taking into account the condition of its neighbouring pixels, in
contrast with the typical contextual fire detection algorithms.

Two different change detection algorithms are compared:
one based on the Kalman filter, and another based on the ex-
tended Kalman filter. The Kalman filters are used to predict
brightness temperatures one step ahead; the difference be-
tween the observed and predicted temperatures can then be
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used to flag potential fires.

Section 2 briefly discusses related active fire detection al-
gorithms that have been developed for SEVIRI data. The for-
mulation of the new extended Kalman filter based algorithm
is presented in Section 3, followed by comparative results in
Section 4, and concluding remarks in Section 5.

2. BACKGROUND

The SEVIRI instrument has a 3.9 pym channel, which is well
suited to observing temperatures in the range of the earth’s
surface temperature, which implies that this channel can re-
veal regions with abnormally high temperatures. Several ac-
tive fire detection methods have been applied to SEVIRI data,
with contextual algorithms appearing to be quite popular de-
spite SEVIRI’s large pixel size. These contextual methods
often depend on fixed thresholds that may have to be adjusted
either regionally, or seasonally, such as the approach used in
the AFIS system [1]. Alternatively, conservative thresholds
(different thresholds for nighttime and daytime) can be used,
such as the approach used by the EUMETSAT FIR prod-
uct [2, 3], but this may not yield optimal detection rates for
smaller fires. Another algorithm that relies on a combination
of solar zenith angle heuristics and fixed thresholds was pre-
sented by Roberts et al. [4].

In a departure from the contextual approach, several
change detection based methods for SEVIRI have been pro-
posed. A Kalman filter tracking approach was introduced
by Van den Bergh and Frost [5]; this idea will be further
developed in this paper. Another change detection based
method has been introduced by Calle et al. [6]; their method
approximates the emissivity in the 3.9 pm channel, which
allows the solar contribution to be removed. After this pre-
processing step, a potential fire can be detected by comparing
the current brightness temperature to that of the previous day
at the same time of day. Lastly, a method that directly tests
the difference between successive brightness temperatures
against fixed thresholds has been proposed by Laneve et al.
[7].



Table 1. Symbols used in the DTC model

Parameter Meaning

Ty (K)

T, (K)

w (minutes)
t,n (solar time)
ts (solar time)
7 (minutes)
6T (K)

Residual temperature (before sunrise)
Temperature amplitude

Half-period of cosine term

Time of maximum temperature

Start of decay function

Attenuation constant

To — T'(t — oo) where ¢ represents time

3. METHOD

3.1. Algorithm Overview

The potential fire detection algorithm described here tracks
the evolution of temperature at a given location through time.
A Kalman filter [8] is used to obtain an estimate of the ex-
pected temperature using all previous observations. A test is
performed to determine whether the most recently observed
temperature is significantly higher than the expected temper-
ature predicted by the Kalman filter.

The Kalman filter requires an underlying model to drive
the evolution of temperature through time in the absence of
observations, such as would occur during extended periods of
cloud cover. In Section 3.2 a suitable model for driving the
Kalman filter is introduced. Section 3.3 proceeds to describe
the details of the Kalman filter fire detection algorithm.

3.2. Diurnal Temperature Cycle Model

The brightness temperature observed at a given location (e.g.
a SEVIRI pixel) over a 24-hour period describes a curve
called the diurnal temperature cycle (DTC). One of the mod-
els that has been proposed to approximate the shape of this
curve is that of Gottsche and Olesen [9], which expresses the
brightness temperature as a function of time such that

T(t) =Ty + 0T
Tocos (Z(t—ty)) — 6T ift <t
(Tucos (E(ty —t)) — 6T) e 5 ift > t,,
(D

with the various model parameters as described in Table 1.
DTC model parameters can be obtained by fitting the model to
observed data with the Nelder-Mead simplex optimization al-
gorithm using the minimum average deviation criterion [10].

The analytical DTC model is a powerful tool to mitigate
the influence of observation noise, such as that owing to atmo-
spheric effects. Figure 1 illustrates actual SEVIRI brightness
temperature observations, together with a fitted DTC model.
The figure also illustrates that short segments of missing val-
ues have little impact on the ability of the model to fit the
remaining observations correctly.
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Fig. 1. SEVIRI brightness temperature observations (3.9 ym
band) over a 24-hour period, with a fitted DTC model overlay.

3.3. Change Detection Algorithm

The method proposed by Van den Bergh and Frost [5] used
an empirically derived DTC approximation to drive a Kalman
filter. The Kalman filter models the expected temperature as
a linear process, such that

T = Ap—1Th—1 + Np—1, )

where x; represents the state of the system (expected temper-
ature, in this case) at time step k, Ay_1 is the state transition
coefficient, and nj_ represents the process noise. Although
the filter is linear, the value of Ay is allowed to vary with k,
thus the non-linear DTC is approximated as a piecewise lin-
ear function. In the original algorithm proposed by Van den
Bergh and Frost [5], the { Ay} coefficients were derived em-
pirically from observed brightness temperature values. Poten-
tial fires were detected by testing the difference between the
observed temperature and the predicted temperature against a
fixed threshold (Figure 2).

The method introduced in this paper extends that method
by using a more sophisticated analytical DTC model, devel-
oped by Gottsche and Olesen [9] to serve as the underlying
model for the Kalman filter. The { A} and process noise co-
variance parameters are derived from the seven most recent
DTCs with realistic DTC model parameters, with A com-
puted as (M (k41) (mod 96))/ (M (mod 96)) Where m denotes
the mean DTC value derived from the seven cycles.

A second version of the algorithm replaces the Kalman fil-
ter with an extended Kalman filter (EKF) [11]. The extended
Kalman filter models the state as

xp = f(@p—1,nk—2) + Np—1, 3)

where f is a non-linear function. The underlying process is
assumed to correspond with the analytical model of Gottsche



Table 2. Results of change detection using the standard Kalman filter (SKF) and the extended Kalman filter (EKF) at the time
of the MODIS overpass, compared to the MODIS MOD14 and MYD14 fire products.

Date MOD14+ SKF-Change detection EKF-Change detection
MYD14  True Positive Unconfirmed True Positive Unconfirmed
2007/07/31 645 488 (76%) 38 506 (78%) 42
2007/08/01 740 577 (78%) 39 575 (78%) 32
2007/08/02 1168 868 (74%) 45 964 (83%) 29
2007/08/03 1049 770 (73%) 16 803 (77%) 11
2007/08/04 318 231 (73%) 53 254 (80%) 55

Table 3. Results of change detection using the standard Kalman filter (SKF) and the extended Kalman filter (EKF), compared
to the EUMETSAT FIR product (“probable” + “possible” FIR detections).

Date FIR SKF-Change detection EKF-Change detection
(all) True Positive Unconfirmed True Positive Unconfirmed
2007/07/31 363 253 (70%) 73 287 (79%) 65
2007/08/01 847 632 (75%) 97 664 (78%) 46
2007/08/02 895 611 (68%) 71 688 (77%) 48
2007/08/03 1339 870 (65%) 115 1004 (75%) 84
2007/08/04 196 129 (66%) 32 146 (74%) 18

and Olesen, so (1) is used directly to construct the extended
Kalman filter update equations. It is expected that this non-
linear formulation of the process update step in the Kalman
filter will allow the filter to track the behaviour of the ob-
served values with greater accuracy.

A residual temperature is computed at each time step by
subtracting the one-timestep prediction of the Kalman fil-
ter from the observed temperature. Instead of using a fixed
threshold to detect abnormally large residuals, an adaptive
threshold is computed using a sliding window. The window
includes residuals immediately preceding the current sample,
as well as samples from a similar window at a 24-hour lag
(i.e., from the same time the previous day). This adaptive
threshold is able to compensate for the diurnal changes in the
variance of the residuals. The residuals (at each time step)
were experimentally found to have a t-distribution, which is
in agreement with previous experiments [5]. This distribution
can be used to assign a confidence value to an observed resid-
ual, which can be used to derive an overall indication of the
algorithm’s confidence of detecting a potential fire.

4. RESULTS

Data collected using the SEVIRI instrument were used be-
cause of the sensor’s high temporal resolution (15 minutes).
MSG level 1.5 data were obtained from the EUMETSAT
archive' over the region (20 S, 23 E) to (33 S, 38 E). The
data correspond to a period spanning from 2007/07/23 to

'All MSG Data © 2007 and 2008 EUMETSAT.

2007/08/14. There were numerous fire events in this region
during this time.

As a first experiment, the potential fire events reported
by the two Kalman filter based algorithms have been com-
pared to the fires reported by the MODIS MOD14/MYD14
fire products. Only fires reported for observations closest
in time to the MODIS overpass were considered to make
the comparison more meaningful. The result of this com-
parison is presented in Table 2. The true positive columns
denote potential fires that were detected in SEVIRI pixels
that overlapped with corresponding MODIS fire events in
the MOD14/MYD14 fire product. The unconfirmed columns
denote potential fire events that were reported by the Kalman
filter based algorithms that did not correspond to active fire
events in the MOD14/MYD14 product. These detections
could be false positives, or they could be fire events that were
missed by MOD14/MYD14 but picked up by SEVIRI right
after the MODIS overpass. Validation using a burned area
product is still underway, so these are considered potential
false positives.

Comparisons of the Kalman-based algorithms to the EU-
METSAT FIR product are presented in Tables 3 and 4. From
these tables it can be seen that the extended Kalman filter is
able to detect almost all the “probable” fires reported in the
FIR product. The “possible” fires reported in the FIR prod-
uct have not yet been confirmed with burned area products
for this specific dataset, and may therefore contain some false
positive detections.
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Fig. 2. An example of the Kalman filter detecting abnormally
high brightness temperatures, flagged as fires here.

Table 4. Results of change detection using the standard
Kalman filter (SKF) and the extended Kalman filter (EKF),
compared to the EUMETSAT FIR product (only “probable”
FIR detections).

Date FIR SKF-CD EKF-CD
(prob.) True Positive True Positive
2007/07/31 204 151 (74%) 200 (98%)
2007/08/01 515 471 (91%) 508 (99%)
2007/08/02 576 485 (84%) 534 (93%)
2007/08/03 923 794 (86%) 914 (99%)
2007/08/04 101 76 (75%) 94 (93%)

5. CONCLUSION

A new potential fire event detection algorithm, based on an
extended Kalman filter driven by an analytical DTC model,
was proposed. This version of the algorithm was experimen-
tally compared to an older version based on the Kalman filter.

The extended Kalman filter algorithm was able to detect
anomalies in the DTC profile, indicating potential fires, that
could not be detected by the standard Kalman filter algorithm.
Despite these algorithms’ lower detection rate, compared to
MODIS, they have the advantage of a much more frequent
updates. The performance of the extended Kalman filter algo-
rithm was demonstrated to compare favourably to the “prob-
able” category of detections offered in the EUMETSAT FIR
product.

Future work will focus on validating the unconfirmed de-
tections, and optimising the adjustable parameters found in
the Kalman algorithm.
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