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Methodology for deriving 
optimal exploration target zones

by Pravesh Debba, CSIR, and Emmanual Carranza, Alfred Stein, 
and Freek van der Meer, International Institute for Geo-information Science and Earth Observation

This research describes a quantitive methodology for deriving optimal exploration target zones based on a 
probalistic mineral prospectivity map.

Occurrences of mineral 
deposits, which could be in 
the form of mines, prospects 

or even showings, are considered 
samples of a mineralised landscape. 
Occurrences of mineral deposits of 
the type sought are used for training 
in data-driven predictive mapping of 
mineral prospectivity. Basically, mineral 
prospectivity mapping is a tool for 
delineating of targets, whereabouts 
probability for occurrence of mineral 
deposit-type of interest is high, which 
might warrant more detailed survey in 
a further stage of mineral exploration. 
In regional- to district-scale mineral 
prospectivity mapping the objective 
is to delineate exploration target 
zones (polygons), whereas in local- to 
deposit-scale the objective is to define 
exploration target locations (points). A 
logical question regarding usefulness 
of a regional- to district-scale mineral 
prospectivity map is: “Which areas 
are optimal exploration target zones 
for further surveying of undiscovered 
occurrences of the mineral deposit-type 
sought?”

Study area and data used

Geology and mineralisation of the 
Rodalquilar mineral district

The Rodalquilar mineral district is located 
in the Sierra del Cabo de Gata volcanic 
field, in the south-eastern part of Spain 
(Fig. 1), consisting of pyroxene andesites 
to rhyolites of the late Tertiary age. 
Extensive hydrothermal alteration of the 
volcanic rocks resulted in formation of 
high to low temperature minerals as: 
silicaÆaluniteÆkaoliniteÆilliteÆ
chlorite. Occurrences of high- or low-
sulphidation epithermal precious- and 
base-metal deposits are in veins 
or in hydrothermal breccias (i.e. 
fracture controlled) associated with 
hydrothermally altered rocks [1]. High-

sulphidation precious-metal deposits 
are associated with advanced argillic 
(alunite±kaolinite) and intermediate 
argillic (kaolinite±illite) zones, whereas 
low-sulphidation precious- and 
base-metal deposits are associated with 
argillic to pyropylitic (illite±chlorite) 
zones [1]. The epithermal minerals are 
localised along faults and fractures that 
cut through the volcanic host rocks. 
Based on these generalised geological 
characteristics of the discovered 
occurrences of epithermal mineral 
deposits in the district, we apply 
two recognition criteria in mapping 
prospectivity for epithermal mineral 
deposits, (i) hydrothermal alteration 
evidence and (ii) structural evidence.

Data for hydrothermal alteration 
evidence

We used a sub-scene, consisting 
of 2640 × 1300 pixels, of airborne 
imaging spectrometer data acquired 
by the Hyperspectral Mapper 
(HyMAP) in July 2003. HyMap is a 
126-band sensor that records the 
reflected solar radiation within the 
0,4 — 2,5 μm wavelength region of 
the electromagnetic spectrum. Data 

Fig. 1: A generalised geological map of the Rodalquilar area mineral district.

acquired by the shortwave-infrared 
(SWIR) 2 detector, within the 1,95 – 
2,48 μm spectral range covers the most 
prominent spectral absorption features 
of hydroxyl-bearing minerals, sulfates 
and carbonates, which are common 
to many hydrothermal alteration 
assemblages [2]. SWIR 2 data are 
useful for mapping hydrothermal 
alteration assemblages as well as for 
regolith characterisation [3].

In order to delineate predominant 
minerals in hydrothermal alteration 
zones associated with the epithermal 
deposits, hyperspectral band ratio 
images [4] were created. Band 
ratioing is a way to enhance the 
presence of a material of interest from 
spectral images by dividing data in 
a spectral band with data in another 
spectral band. We used an arctan 
transformation on the band ratios [4], 
which considers the gradient of spectral 
data between two bands. Fig. 2 displays 
the band ratio images used as evidence 
layers in the weights-of-evidence (WofE) 
modeling.

Pixels in the image of band ratio 
1 (2,100/2,171 μm) are brighter (i.e. 
higher ratios) for alunite, kaolinite and 
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pyrophyllite but slightly darker (i.e. 
lower ratios) for illite (Fig. 2a). The 
first three minerals are predominant 
in advanced argillic zones. For band 
ratio 2 (2,171/2,205 μm) pixels are 
brighter for illite and kaolinite but are 
darker for alunite and pyrophyllite 
(Fig. 2b). The brighter pixels in this 
image thus enhance predominant 
minerals associated with intermediate 
argillic zones. Pixels in the image of 
band ratio 3 (2,357/2,258 μm) are 
darker for minerals predominant in 
advanced argillic zones but brighter 
for minerals predominant in argillic to 
pyropylitic zones (Fig. 2c).

Data for structural evidence

Mapped faults and fractures were 
screen-digitised on georeferenced 
raster-scanned maps, which were 
obtained from published [5, 1] and 
unpublished sources. In addition, faults 
and fractures were interpreted and 
screen-digitised on shaded-relief images 
of a digital elevation model (DEM) 
derived from Advanced Spaceborne and 
Thermal Emission Radiometer (ASTER) 
data acquired on 26 May 2002. A map 
of distances to mapped and interpreted 
faults and fractures was then created 
(Fig. 2d) and used in WofE modeling.

Mineral occurrence data for WofE 
Modeling

Two sets of locations of mineral 
deposit occurrences were used in WofE 

Fig. 2: Input layers for WofE modeling. Map coordinates are in metres (UTM projection, zone 30N).

A: Band Ratio 1: arctan transformation on bands 
103/107 (2,100/2,171 μm).

B: B. Band Ratio 2: arctan transformation on bands 107/109 
(2,171/2,205 μm).

C: Band Ratio 3: arctan transformation on bands 118/112 
(2,357/2,258 μm).

D. Distance to fault and fracture. Increasing pixel brightness in

this image indicates increasing distance from a fault or fracture.
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C D

modeling. One set, of 14 epithermal 
deposit occurrences, was digitised from 
a 1:50 000 scale geological map of 
Spain [5]; and from a map in Arribas et 
al [1].  The other set, of 47 epithermal 
deposit occurrences, was digitised 
from the mineral prospectivity map of 
Rigol-Sanchez et al [6], which actually 
shows 49 epithermal occurrences 
although two of these fall outside 
our study area. In this latter set, 11 
epithermal deposit occurrences were 
discarded because each of them lie 
within 25 m of an epithermal deposit 
occurrence in the first set, which 
indicates high likelihood that these 
are the same 11 of the 14 in the first 
set. Each of the two sets of epithermal 
deposit occurrences were then used for 
training and for cross-validation of a 
WofE model. A training set is assumed 
to represent discovered mineral 
deposits, whereas a cross-validation set 
is assumed to represent undiscovered 
mineral deposits.

Methodology

Generation of prospectivity map: 
weights-of-evidence (WofE) modeling

Initially, we created a mineral 
prospectivity map via the WofE method 
[7], which is based on a Bayesian 
probability framework to update prior 
probability of occurrence of mineral 

deposits of the type sought in every 
unit cell or pixel in a study area. We 
used a set of training mineral deposit 
occurrences of the type sought (say D) 
and a number of thematic geological 
evidences (say Bt with a threshold at 
t) having positive spatial association 
with such type of mineral deposits. The 
estimated prior probability of mineral 
occurrence is P(D).

It can be shown that the weight of 
evidence for the presence of Bt is
W+ = ln[P(Bt | D)/P(Bt | D)] and the 
weight of evidence for the absence of 
Bt is W− = ln[P(Bt | D)/P(Bt | D)] and 
the variances are given as

and s2 (W-)=   [1]

If s2 (Wi) is either s2 (Wi
+) or s2 (Wi

-) 
then the variance of the posterior odds 
is defined as s2 (O) = Σ s2 (Wi)  [2]

The output mineral prospectivity 
map is a map of posterior probability 
(Pj=Pj(D|Bl,…,Bk) of occurrence of 
mineral deposits of the type sought. In 
such a map, we considered individual 
pixels to be prospective if their 
posterior probability is greater than 
the estimated prior probability. The 
posterior probabilities and prediction 
rate of WofE were used to determine 
the optimal exploration target zones.

+

i=l

k
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Derivation of focal points and target 
zones

In order to derive optimal exploration 
target zones, the posterior probabilities 
in a mineral prospectivity map are used 
(a) to estimate a reasonable number of 
exploration focal points (or pixels) and 
(b) as weights in an objective function 
to derive optimal exploration focal 
points via simulated annealing (SA). 
Each of the optimal exploration focal 
points is then buffered with a reasonable 
distance in order to derive a set of 
optimal exploration target zones. For 
(a) above, to estimate the number of 
exploration focal points, we employed 
the binomial distribution because mineral 
deposit occurrence is a binary variable, 
being either present or absent. Thus, 
estimation of n exploration focal points 
so as to discover at least r mineral 
deposit occurrences, with a probability 
of success p , at a 95% confidence, 
requires a solution for the following 
equation:

Deriving the optimal exploration focal 
points requires definition of an objective 
function, called the fitness function. 
For (b) above, for a two-dimensional 
region A divided into N(A) unit cells, let 
the spatial configurations of n optimal 
exploration focal points be denoted by 
Sn. We denote the posterior probability of 
mineral deposit occurrence per unit cell 
in A derived from WofE modeling by

                                where    is the 
location vector of the unit cell in A, 
with a corresponding pixel in an image 
I, for unique condition j. In SA [8], a 
fitness function                     , which 
is an extension to the weighted means 
shortest distance (WMSD)-criterion [9], 
is minimised to optimise the search for n 
exploration focal points.

Fig. 3: Optimal exploration target zones defined by buffering to 238 m 
each of the optimal.

Equation 4 where Qsn (X) is the location 
vector of an optimal exploration focal 
point in Sn nearest to x , and s2(Os

n) is 
the variance of the posterior odds at 
every optimal exploration focal point in 
Sn. The objective function optimised, 
considered not only the magnitude of 
the posterior probability but also the 
uncertainty of the posterior probability. 
The λ Є [0,1] is a constant controlling 
the effect of the posterior probability 
and the variance of the posterior odds in 
finding and selecting optimal exploration 
focal points.

Results and discussion

The study area consists of 65253 
unit cells of 25 × 25 m, based on 
the spatial resolution of the ASTER 
DEM. All the maps/images used in the 
analyses were resampled to this spatial 
resolution, which is adequately small and 
appropriate for WofE modeling [10]. The 
estimate of P(D)based on training set 2 
is 0,00055. Based on prospective pixels 
and on training set 2, the WofE model 
derived has a prediction rate of 0,64. The 
rather low prediction rate (of 64%) of 
the probabilistic prospectivity map shown 

in Fig. 3 is attributable partly to the 
(a) small number of evidential datasets 
used and (b) presence of two (precious- 
and base-metal) sub-types of epithermal 
deposits used in modeling prospectivity.

We estimated the number of exploration 
focal points by solving for n in Equation 
3. We first assumed that r = 9 based 
on the nine predicted out of 14 
undiscovered epithermal occurrences in 
training set 1 and that p = 0,0025 based 
on the average posterior probabilities 
of prospective pixels in the input 
WofE prospectivity model. With these 
assumptions we derive n = 6280. This 
number of exploration focal points is 
intractable. However, we interpret and 
show later that 6280 is approximately 
the total number of unit cells within 
plausible exploration target zones. 
Instead of p = 0,0025, we used p = 0,6 
based on the approximate prediction rate 
of the input WofE model. Accordingly, 
n = 22, which is a plausible number 
of exploration focal points as centroids 
of individual exploration target zones 
wherein to search further for the nine 
(assumed) undiscovered epithermal 
deposit occurrences.

Ø (Sn):Sn   ℜ+

ØWMSD+V (S
n)=      Σ (  ) P(  )||      -  QS  (  )|| +(1-λ) s2 (OS )    [4]λ
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n
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n
i
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Equation 4: Finding exploration focal points.
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By using the posterior probability map 
as input and by specifying n = 22 and 
λ = 0,5 in Equation 4, the locations of 
the optimal exploration focal points were 
derived. The value of λ = 0,5 was chosen 
instead of being estimated automatically 
in order to avoid computational time. 
Each of the derived optimal exploration 
focal points (Fig. 3) occupies a unit cell 
with the highest posterior probability 
value based on training set 2 in a 
circular neighbourhood of unit cells with 
posterior probabilities greater than the 
prior probability estimate. Each of the 
derived optimal exploration focal points 
does not fall exactly on but is proximal to 
a unit cell representing an undiscovered 
epithermal mineral deposit occurrence 
belonging to the set of epithermal 
deposit occurrence data in training set 1.

In order to define optimal exploration 
target zones around each of the derived 
optimal exploration focal points, the 
following analysis was performed. We 
quantified proximity to an undiscovered 
deposit occurrence by utilising the 
estimated number of 6280 unit cells 
required to delineate the nine predicted 
out of the 14 cross-validation deposit 
occurrences and using p = 0,0025 in 
Equation 3. The total area represented 
by the 6280 unit cells is approximately 
6280 × 252 = 3 925 000 m2. If each 
of the nine undiscovered deposit 
occurrences, predicted by the WofE 
model, out of the 14 cross-validation 
undiscovered deposit occurrences, is 
within a delineated sub-area of 
3 925 000/22 = 178 409 m2 containing 
each of the optimal exploration focal 
points, then this indicates that an 
optimal exploration target zone is 
proximal to at least one undiscovered 
deposit occurrence. This also means 
that, if each of the nine predicted 
undiscovered deposit occurrences, 
delineated by the WofE model, out of 
the 14 cross-validation undiscovered 
deposit occurrences, is within a radius 
of √178 409/∏ = 238 m (area of 
circle = ∏ × radius2 ) around a derived 
optimal exploration focal point, then an 
optimal exploration focal point is in close 
proximity to at least one undiscovered 
deposit occurrence.

Each of the 22 derived optimal 
exploration focal points was then 
buffered with a radius of 238 m in order 
to delineate optimal exploration target 
zones. Seven of the nine (assumed) 
undiscovered deposit occurrences, 
delineated by the WofE model out of the 
14 cross-validation undiscovered deposit 
occurrences, are within the delineated 
optimal exploration target zones. The 
result of this analysis indicates that 
the derived optimal exploration focal 

points are proximal to undiscovered 
epithermal deposit occurrences. The 
average of posterior probabilities of 
unit cells within each of the delineated 
optimal exploration target zones is 
0,010, which is higher than the average 
posterior probability (0,0024) of unit 
cells representing discovered epithermal 
deposit occurrences (training set 2) 
and the average posterior probability 
(0,0029) of unit cells representing 
(assumed) undiscovered epithermal 
deposit occurrences (training set 1).

These indicate that the algorithm is 
efficient in finding and selecting optimal 
exploration focal points in prospective 
ground. The results also suggest that 
within the delineated exploration target 
zones there is much higher probability of 
mineral deposit occurrence than would 
be expected due to chance, which is 
translatable theoretically to increased 
chance of mineral deposit discovery.

Until now, there is no objective 
procedure for demarcating and 
prioritising of new exploration target 
zones based on regional- to district-scale 
mineral prospectivity maps that have 
been determined subjectively. That is, 
portions of predicted prospective ground 
that are distal to and not containing 
discovered mineral deposit occurrences 
are considered, based on subjective 
judgement, new exploration target 
zones. In this study, new exploration 
target zones are determined based on 
the spatial distribution of estimated 
posterior probabilities of mineral deposit 
occurrence, which are used as weights in 
an objective function in SA to determine 
optimal exploration focal points.

In district-scale mineral prospectivity 
mapping, as in the present case 
study, one does not aim to define 
drilling targets as individual pixels 
but prospective zones defined by 
neighbourhood of pixels of high 
prospectivity for further exploration 
work. Therefore, after deriving optimal 
exploration focal points as individual 
pixels based on a probabilistic mineral 
prospectivity map, we defined 
exploration target zones around them. 
The analysis presented is based upon 
available datasets and geo-information 
derived from them, but avoids subjective 
expert opinion.

Conclusions

The proposed methodology provides 
for objectively, and with reasonable 
accuracy, demarcation and selection 
of optimal exploration target zones for 
further investigation of undiscovered 
mineral deposit occurrences based on a 
given probabilistic mineral prospectivity 

map. In the study area, nine out of 14 
(assumed) undiscovered epithermal 
deposit occurrences, predicted correctly 
by a WofE predictive model of mineral 
prospectivity, are either within or at most 
30 m away from a buffered zone of an 
optimal exploration focal point.
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