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Abstract
Most belief change operators in the AGM tradition
assume an underlying plausibility ordering over
the possible worlds which is transitive and com-
plete. A unifying structure for these operators,
based on supplementing the plausibility ordering
with a second, guiding, relation over the worlds
was presented in [Booth et al., 2004]. However it
is not always reasonable to assume completeness
of the underlying ordering. In this paper we gener-
alise the structure of [Booth et al., 2004] to allow
incomparabilities between worlds. We axiomatise
the resulting class of belief removal functions, and
show that it includes an important family of re-
moval functions based on finite prioritised belief
bases. We also look at some alternative notions
of epistemic entrenchment which become distin-
guishable once we allow incomparabilities.

1 Introduction
The problem of belief removal [Alchourrón et al., 1985;
Booth et al., 2004; Rott and Pagnucco, 1999], i.e., the prob-
lem of what an agent, hereafterA , should believe after being
directed to remove some sentence from his stock of beliefs,
has been well studied in philosophy and in AI over the last 25
years. During that time many different families of removal
functions have been studied. A great many of them are based
on constructions employing total preorders over the set of
possible worlds which is meant to stand for some notion ≤
of relative plausibility [Katsuno and Mendelzon, 1992]. A
unifying construction for these families was given in [Booth
et al., 2004], in which a general construction was proposed
which involved supplementing the relation ≤ with a second,
guiding, relation � which formed a subset of ≤. By varying
the conditions on � and its interaction with ≤ many of the
different families can be captured as instances.

The construction in [Booth et al., 2004] achieves a high
level of generality, but one can argue it fails to be general
enough in one important respect: the underlying plausibility
order ≤ is always assumed to be a total preorder which by
definition implies it is complete, i.e., for any two worlds x, y,
we have either x ≤ y or y ≤ x. This implies that agent A is
always able to decide which of x, y is more plausible. This is

not always realistic, and so it seems desirable to study belief
removal based on plausibility orderings which allow incom-
parabilities. A little work been done on this [Bochman, 2001;
Cantwell, 2003; Katsuno and Mendelzon, 1992; Rott, 1992]
but not much. This is in contrast to work in nonmono-
tonic reasoning (NMR), the research area which is so of-
ten referred to as the “other side of the coin” to belief
change. In NMR, semantic models based on incomplete or-
derings are the norm, with work dating back to the sem-
inal papers on preferential models of [Kraus et al., 1991;
Shoham, 1987]. Our aim in this paper is to relax the com-
pleteness assumption from [Booth et al., 2004] and to inves-
tigate the resulting, even more general class of removal func-
tions.

The plan of the paper is as follows. In Section 2 we give
our generalised definition of the construction from [Booth et
al., 2004], which we call (semi-modular) contexts. We de-
scribe their associated removal functions, as well as mention
the characterisation from [Booth et al., 2004]. Then in Sec-
tion 3 we present an axiomatic characterisation of the family
of removal functions generated by semi-modular contexts. In
Section 4 we discuss some different notions of epistemic en-
trenchment which collapse into the same notion for the re-
movals from [Booth et al., 2004], but which differ for the
more general family. Then, in Section 5 we mention a couple
of further restrictions on contexts, leading to two correspond-
ing extra postulates. In Section 6 we mention an important
subfamily of the general family, i.e., those removals which
may be generated by a finite prioritised base of defaults, be-
fore moving on to AGM style removal in Section 7. We con-
clude in Section 8.

1.1 Preliminaries
We work in a finitely-generated propositional language L.
The set of non-tautologous sentences in L is denoted by L∗.
The set of propositional worlds/models is W . For any set of
sentences X ⊆ L, the set of worlds which satisfy every sen-
tence in X is denoted by [X]. Classical logical consequence
and equivalence are denoted by ` and ≡ respectively.

As above, we let A denote some agent whose beliefs are
subject to change. A belief set for A is represented by a sin-
gle sentence which is meant to stand for all its logical con-
sequences. A belief removal function (hereafter just removal
function) belonging to A is a unary function > which takes



any non-tautologous sentence λ ∈ L∗ as input and returns a
new belief set > (λ) for A such that > (λ) 0 λ. For any re-
moval function > we can always derive an associated belief
set. It is just the belief set obtained by removing the contra-
diction, i.e., > (⊥).

1.2 Orderings
The following definitions about orderings will be useful in
what follows. A binary relation R over W is:

• reflexive iff ∀x : xRx

• transitive iff ∀x, y, z : xRy & yRz → xRz

• complete iff ∀x, y : xRy ∨ yRx
• a preorder iff it is reflexive and transitive

• a total preorder iff it is a complete preorder

The above notions are used generally when talking of “weak”
orderings, where xRy is meant to stand for something like “x
is at least as good as y”. However in this paper, following
the lead of [Rott, 1992], we will find it more natural to work
under a strict reading, where xRy denotes “x is strictly better
than y”. In this setting, the following notions will naturally
arise. R is:

• irreflexive iff ∀x : not(xRx)

• modular iff ∀x, y, z : xRy → (xRz ∨ zRy)

• a strict partial order (spo) iff it is both irreflexive and
transitive

• the strict part of another relation R′ iff ∀x, y : xRy ↔
(xR′y & not(yR′x))

• the converse complement of R′ iff ∀x, y : xRy ↔
not (yR′x)

We have that R is a modular spo iff it is the strict part of a
total preorder [Maynard-Zhang and Lehmann, 2003]. So in
terms of strict relations, much of the previous work on belief
removal, including [Booth et al., 2004], assumes an under-
lying strict order which is a modular spo. It is precisely the
modularity condition which we want to relax in this paper.

Given any ordering R and x ∈ W , let ∇R (x) =
{z ∈W | zRx} be the set of all worlds below x in R. Then
we may define a new binary relation vR from R by setting:

x vR y iff∇R (x) ⊆ ∇R (y) .

That is, x vR y iff every element below x inR is also below y
in R. It is easy to check that if R is a modular spo then x vR

y iff not (yRx), i.e., vR is just the converse complement of
R.

2 Contexts, modular contexts and removals
In this section we set up our generalised definition of a con-
text, show how each such context yields a removal function
and vice versa, and recap the main results from [Booth et al.,
2004].

2.1 Contexts
We assume our agent A has in his mind two binary relations
(<,≺) over the set W . The relation < is a strict plausibility
relation which forms the basis for A’s actionable beliefs, i.e.,
x < y means that, to A’s mind, and on the basis of all avail-
able evidence, world x is strictly more plausible than y. We
assume < is a strict partial order. In addition to this there is
a second binary relation ≺. This relation is open to several
different interpretations, but the one we attach is as follows:
x ≺ y means “A has an explicit reason to hold x more plau-
sible than y (or to treat x more favourably than y)”. We will
use � to denote the converse complement of <, i.e.,

x � y iff y ⊀ x.

Thus x � y iff A has no reason to treat y more favourably
than x. Note � and ≺ are interdefinable, and we find it con-
venient to switch between them freely.

What are the properties of ≺? We assume only two things,
at least to begin with: (i) an agent can never possess a reason
to hold a world strictly more plausible than itself, and (ii)
an agent does not hold a world x to be more plausible than
another world y, i.e., x < y, without being in possession of
some reason for doing so. (Note this latter property lends a
certain “foundationalist” flavour to our construction.) All this
is formalised in the following definition:

Definition 2.1. A context C is a pair of binary relations
(<,≺) over W such that:

(C1) < is a strict partial order

(C2) ≺ is irreflexive

(C3) <⊆≺

If < is modular then we call C a modular context.

We will later have grounds for strengthening (C3).
How doesA use his context C to construct a removal func-

tion >C? In terms of models, the set [>C (λ)] of models of
his new belief set, when removing a sentence λ, must include
some ¬λ-worlds. Following the usual practice in belief revi-
sion, he should take the most plausible ones according to <,
i.e., the <-minimal ones. But which, if any, of the λ-worlds
should be included? The following principle was proposed
by [Rott and Pagnucco, 1999]:

Principle of Weak Preference
If one object is held in equal or higher regard than
another, the former should be treated no worse
than the latter.

[Rott and Pagnucco, 1999] use this principle to argue that
the new set of worlds following removal should contain all
worlds x which are not less plausible than a <-minimal ¬λ-
world y, i.e., y ≮ x. We propose to apply a tempered version
of this principle using the second ordering≺. We include x if
there is no explicit reason to believe that y is more plausible
than x, i.e., if y ⊀ x.

Definition 2.2. (> from C) Given a context C we define the
removal function >C by setting, for each λ ∈ L∗, [>C(λ)] =⋃
{∇�(y) | y ∈ min< ([¬λ])}.



It can be shown that different contexts give rise to different
removal functions, i.e., the mapping C 7→ >C is injective.

The case of modular contexts was the one which was stud-
ied in detail in [Booth et al., 2004], where it was shown
how, by placing various restrictions on the interaction be-
tween < and ≺, this family captures a wide range of removal
operations which have been previously studied, for example
both AGM contraction and AGM revision [Alchourrón et al.,
1985], severe withdrawal [Rott and Pagnucco, 1999], sys-
tematic withdrawal [Meyer et al., 2002] and belief liberation
[Booth et al., 2005]. For the general family in that paper the
following representation result was proved.

Theorem 2.3. [Booth et al., 2004] Let C be a modular con-
text. Then >C satisfies the following rules:1

(>1) >(λ) 0 λ
(>2) If λ1 ≡ λ2 then >(λ1) ≡ >(λ2)

(>3) If >(λ ∧ χ) ` χ then >(λ ∧ χ ∧ ψ) ` χ
(>4) If >(λ ∧ χ) ` χ then >(λ ∧ χ) ` >(λ)

(>5) >(λ ∧ χ) ` >(λ) ∨>(χ)

(>6) If >(λ ∧ χ) 0 λ then >(λ) ` >(λ ∧ χ)

Furthermore if> is any removal function satisfying the above
6 rules, there exists a unique modular context C such that
> = >C .

All these rules are familiar from the literature on belief
removal. Rule (>1) is the Success postulate which says the
sentence to be removed is no longer implied by the new belief
set, while (>2) is a syntax-irrelevance property. Rule (>3) is
sometimes known as Conjunctive Trisection [Hansson, 1993;
Rott, 1992]. A slight reformulation of it can be found already
in [Alchourrón et al., 1985] under the name Partial Antitony.
It says if χ is believed after removing the conjunction λ ∧ χ,
then it should also be believed when removing the longer con-
junction λ ∧ χ ∧ ψ. Rule (>4) is closely-related to the rule
Cautious Monotony from the area of non-monotonic reason-
ing [Kraus et al., 1991], while (>5) and (>6) are the two
AGM supplementary postulates for contraction [Alchourrón
et al., 1985].

Note the non-appearance in this list of the AGM con-
traction postulates Vacuity (> (⊥) 0 λ implies > (λ) ≡
> (⊥)),Inclusion (> (⊥) ` > (λ)) and Recovery (> (λ)∧λ `
> (⊥)), none of which are valid in general for removal func-
tions generated from modular contexts. Vacuity has been ar-
gued against as a general principle of belief removal in [Booth
et al., 2004; Booth and Meyer, 2008]. Inclusion has been
questioned in [Booth et al., 2005], while Recovery has long
been regarded as controversial (see, e.g., [Hansson, 1991]).
Nevertheless we will see in Section 7 how each of these three
rules may be captured within our general framework.

The second part of Theorem 2.3 was proved using the fol-
lowing construction.

1The appearance of the rules is changed from [Booth et al., 2004]
due to the fact that we now take removal functions to be unary. Also
one redundant rule from the list in [Booth et al., 2004] is removed
(see [Booth and Meyer, 2008]).

Definition 2.4. (C from >) Given any removal function >
we define the context C(>) = (<,≺) as follows: x < y iff
y 6∈ [>(¬x ∧ ¬y)] and x ≺ y iff y 6∈ [> (¬x)].2

[Booth et al., 2004] showed that if > satisfies (>1)-(>6)
then C (>) is a modular context and > = >C(>).

3 Characterising the general family
Now we want to drop the assumption that < is modular and
assume only it is a strict partial order. How can we charac-
terise the resulting class of removal functions? We focus first
on establishing which of the postulates from Theorem 2.3 are
sound for the general family, modifying our initial construc-
tion as and when necessary. Clearly we cannot expect that all
the rules remain sound. In particular rule (>6) is known to
depend on the modularity of < and so might be expected to
be the first to go. However we might expect to retain weaker
versions of it, for instance:
(>6a) If >(λ ∧ χ) ` χ then >(λ) ` >(λ ∧ χ).
Indeed we have:
Proposition 3.1. If C is a general context then >C satisfies
(>1), (>2), (>4), (>5) and (>6a) but not (>6) in general.

Surprisingly, we lose (>3), as the following counterexam-
ple shows:
Example 3.2. Assume L = {p, q} and let the four valua-
tions of L be represented as W = {00, 11, 01, 10}, where
the first and second numbers denote the truth-values of p, q
respectively. Let <= {(00, 10)} and �= {(10, 01)} (strictly
speaking the reflexive closure of this). We have [>C(p∧q)] =
{00, 10, 01} and [>C(q)] = {00}. Hence 10 ∈ [¬q ∧>C(p∧
q)] but 10 6∈ [>C(q)].

This leaves us with a problem, since whereas (>6) is to
be considered dispensible, (>3) is a very reasonable property
for removal functions. Is there some way we can capture it? It
turns out we can capture it if we strengthen the basic property
(C3) to:
(C3a) �⊆v<

In other words if z < x and x � y then z < y. On a con-
trapositive reading, (C3a) is saying that if there is a world z
which A judges to be more plausible than x but not to y then
Amust have a reason to treat y more favourably than x. Note
that for modular contexts (C3) and (C3a) are equivalent, but
in the general case they are not.
Proposition 3.3. Let C be any context which satisfies (C3a)
then >C satisfies (>3).

Thus (C3a) seems necessary. And in fact without it we
don’t get the following important technical result, which pro-
vides the means to describe <-minimal λ-worlds purely in
terms of the removal function:
Proposition 3.4. Let C be any context which satisfies (C3a).
Then for all λ such that ¬λ ∈ L∗ we have [>C (¬λ) ∧ λ] =
min< ([λ]).

2When a world appears in the scope of a propositional connec-
tive, it should be understood as denoting any sentence which has that
world as its only model.



Example 3.2 provides a counterexample show-
ing this might not be possible in general, for there
we have [>C (p ∧ q) ∧ ¬ (p ∧ q)] = {00, 10, 01} but
min< ([¬ (p ∧ q)]) = {00, 01}.

Note rule (C3a) may also be interpreted as a restricted
form of modularity for <, since it may be re-written as

∀x, y, z (z < x→ (y ≺ x ∨ z < y)) .

For this reason we make the following definition:
Definition 3.5. A semi-modular context is any context C sat-
isfying (C3a).

In the rest of the paper we will work only with semi-
modular contexts.

3.1 Going the other direction
So far we have a list of sound properties for the removal
functions defined from semi-modular contexts. They are
the same as the rules which characterise modular removal,
but with (>6) replaced by the weaker (>6a). It might be
hoped that this list is complete, i.e., that any removal func-
tion > satisfying these 6 rules is equal to >C for some semi-
modular context C. Indeed we might expect to be able to show
> = >C(>), where C (>) is the context defined via Definition
2.4. The following result gives us a good start.
Proposition 3.6. Let > be any removal function satisfying
(>1)-(>5) and (>6a). Then C (>) is a context, i.e., satisfies
(C1)-(C3).

However to get (C3a) it seems an extra property is needed:
(>C) If >(λ) ∧ ¬λ ` >(χ) ∧ ¬χ then >(λ) ` >(χ)
We can rephrase this using the Levi Identity [Levi, 1991].
Definition 3.7. Given any removal function>we may define
the function >R by setting, for each consistent sentence λ ∈
L, >R(λ) = >(¬λ) ∧ λ.

The function >R is the revision function obtained from >.
Then rule (>C) may be equivalently written as:
(>C′) If >R(¬λ) ` >R(¬χ) then >(λ) ` >(χ)
Thus (>C′) is effectively saying that if revising by ¬λ leads
to a stronger belief set than revising by ¬χ, then removing λ
leads to a stronger belief set than removing χ. The next re-
sult confirms that this rule is sound for the removal functions
generated by semi-modular contexts, and that this property is
enough to show that C (>) satisfies (C3a).
Proposition 3.8. Let C be a semi-modular context. Then >C
satisfies (>C). Furthermore if > is any removal function
satisfying (>C) then the context C(>) satisfies (C3a).

Rule (>C) is actually quite strong. In the presence of
(>3) it implies (>4):
Proposition 3.9. Any removal function which satisfies (>3)
and (>C) also satisfies (>4).

This means that, in the axiomatisation of >C we can re-
place (>4) with (>C).

To show that the list of rules is complete, it remains to
prove > = >C(>). It turns out that here we need one more
additional property which does not seem to follow from the
list we have so far:

(>E) ¬(λ ∧ χ) ∧>(λ) ∧>(χ) ` >(λ ∧ χ)

This rule may be reformulated as “> (λ)∧> (χ) ` (λ ∧ χ)∨
> (λ ∧ χ)”. In this reformulation, the right hand side of the
turnstile may be thought of as standing for all those conse-
quences of the conjunction λ∧ χ which are believed upon its
removal. The rule is saying that any such surviving conse-
quence must be derivable from the combination of > (λ) and
> (χ).

Proposition 3.10. Let C be a semi-modular context. Then
>C satisfies (>E).

Theorem 3.11. Let > be any removal function satisfying
(>1),(>2), (>3),(>C), (>5), (>6a) and (>E). Then
>C(>) = >.

Thus, to summarise, we have arrived at the following rules
which completely chatacterise the family of removal func-
tions defined from semi-modular contexts:

(>1) >(λ) 0 λ
(>2) If λ1 ≡ λ2 then >(λ1) ≡ >(λ2)

(>3) If >(λ ∧ χ) ` χ then >(λ ∧ χ ∧ ψ) ` χ
(>C) If >(λ) ∧ ¬λ ` >(χ) ∧ ¬χ then >(λ) ` >(χ)

(>5) >(λ ∧ χ) ` >(λ) ∨>(χ)

(>6a) If >(λ ∧ χ) ` χ then >(λ) ` >(λ ∧ χ)

(>E) ¬(λ ∧ χ) ∧>(λ) ∧>(χ) ` >(λ ∧ χ)

We will later look at a few more reasonable postulates which
are not covered by the above list. But before that we take
a look at some different notions of epistemic entrenchment
which can be defined within this general family.

4 Notions of entrenchment
In this section we want to point out that widening investiga-
tion from modular to semi-modular contexts uncovers differ-
ent notions of the entrenchment of a sentence. These distinc-
tions were hidden in the previous case of modular removal, in
that for modular removals they collapse into the same notion.
Given a removal function > we may define three notions of
strict entrenchment relation as follows:

• λC1 χ iff > (λ ∧ χ) ` χ
This is the usual definition [Gärdenfors, 1988; Rott,
1992]. χ is strictly more entrenched than λ iff, when
faced with a choice of giving up at least one of λ, χ, A
will give up λ and hold on to χ.

• λC2χ iff ∃ψ[> (λ ∧ χ ∧ ψ) 0 λ& >(λ ∧ χ ∧ ψ) ` χ]
In other words χ is strictly more entrenched than λ iff,
there exists some choice situation in which both λ and
χ are up for selection, and in which χ, but not λ is cho-
sen. This is similar to the “revealed preference” relation
introduced in the theory of rational choice in [Arrow,
1959].

• λC3 χ iff ∃ψ [> (λ ∧ ψ) 0 λ & > (χ ∧ ψ) ` χ]
This one says χ is strictly more entrenched iff there is
some ψ such that χ, but not λ is chosen over ψ.



Note C2 could actually be defined in terms of C1 as follows:

λC2 χ iff ∃ψ [not (χ ∧ ψ C1 λ) & λ ∧ ψ C1 χ] .
while C3 obviously corresponds to:

λC3 χ iff ∃ψ [not (ψ C1 λ) & ψ C1 χ]
For each i we will say Ci is generated by the context C if it is
obtained from the removal function>C . Our first observation
is that, for semi-modular contexts, C2 and C3 coincide.
Proposition 4.1. If C is a semi-modular context and C2,C3

are both generated from C then C2 = C3.
Next, we show how if C1 and C2 are generated by a semi-

modular context, then they may be described directly in terms
of that context.
Proposition 4.2. Let C = (<,≺) be a semi-modular context
and let C1 and C2 be generated from C. Then
(i). λC1 χ iff min< ([¬λ ∨ ¬χ]) ⊆ [χ].
(ii). λC2 χ iff it is not the case that ∀x ∈ min< ([¬λ]) ,∃y ∈
min< ([¬χ]) s.t. y v< x.

Note how both C1 and C2 are independent of ≺. Given
this we can establish the following:
Proposition 4.3. C1 ⊆ C2. The converse is not true in gen-
eral but is true for modular removals.

[Rott, 1992] proposed the following postulates for any
strict entrenchment relation C:3

(GEE1) not(λC λ)
(GEE2↑) If λC χ and χ ` ψ then λC ψ

(GEE2↓) If λC χ and ψ ` λ then ψ C χ

(GEE3↑) If λC χ and λC ψ then λC χ ∧ ψ
(GEE3↓) If λ ∧ χC χ then λC χ

Proposition 4.4. C1 satisfies all the above rules for strict en-
trenchment relations, while C2 satisfies all but (GEE3↑) in
general.
As was shown in [Rott, 1992], any strict entrenchment re-
lation satisfying the above rules is transitive and so forms a
strict partial order. However C2 fails to be transitive. In fact
it fails to be asymmetric, as the next example shows:
Example 4.5. Assume L = {p, q} and let C = (<,≺) be
such that <= {(10, 11) , (01, 00)}. Let λ = ¬ (p ∧ q) and
χ = p ∨ q. Then min< ([¬λ]) = {11} and min< ([¬χ]) =
{00}. We obtain both λ C2 χ and χ C2 λ via Proposition
4.2(ii), using the fact that 11 6v< 00 and 00 6v< 11.

5 Transitivity and Priority
In this section we look at imposing an extra couple of prop-
erties on semi-modular contexts C = (<,≺), both of which
were investigated in the case of modular contexts in [Booth
et al., 2004]. There it was shown how the resulting classes
of removal functions still remain general enough to include
a great many of the classes of removal functions which have
been previously proposed in the context of modular removal.

3Actually Rott’s (GEE1) was “not(> C >)”, which given
(GEE2↑), (GEE2↓) and (GEE3↓) is equivalent to the version here.
We use this version because, unlike Rott, we do not allow removal
of >.

5.1 Transitivity
The first property is the transitivity of �, thus making � a
preorder. (Recall � is the converse complement of ≺.) Ac-
cording to our above interpretation of � this means if there is
no reason to treat y more favourably than x, and no reason
to treat z more favourably than y then there is no reason to
treat z more favourably than x.

Proposition 5.1. (i). If � is transitive then >C satisfies the
following strengthening of (>C):

(>C+) If >(λ) ∧ ¬λ ` >(χ) then >(λ) ` >(χ)

(ii). If > satisfies (>C+) then the relation � in C(>) is tran-
sitive.

Note this property is a great deal simpler than the one
used to characterise transitivity of � in the modular con-
text in [Booth et al., 2004]. It can be re-written as: If
>R(¬λ) ` >(χ) then >(λ) ` >(χ). It says that if the belief
set following removal of χ is contained in the belief set fol-
lowing the revision by ¬λ, then it must be contained also in
the belief set following the removal of λ. This seems like a
reasonable property.

Corollary 5.2. For any removal function>, the following are
equivalent:
(i). > is generated by a semi-modular context C = (<,≺)
such that � is transitive.
(ii). > satisfies the list of rules given at the end of Section 3,
with (>C) replaced by (>C+).

5.2 Priority
Now consider the following property of a context C =
(<,≺):

(CP) If x ≺ y and y ⊀ x then x < y

This, too, looks reasonable: ifA has an explicit reason to hold
x more plausible than y, but not vice versa, then in the final
reckoning he should hold x to be strictly more plausible than
y. Consider the following property of removal functions:

(>P) If >(λ) ` χ and >(χ) 0 λ then >(λ ∧ χ) ` χ
This property is briefly mentioned as Priority in [Bochman,
2001], and is also briefly mentioned right at the end of
[Cantwell, 1999]. It can be read as saying that if λ is ex-
cluded following removal of χ, but not vice versa, then χ is
strictly more entrenched than λ (using the first, usual, notion
of entrenchment from the previous subsection). For the case
of modular removal, we can obtain the following exact cor-
respondence between (CP) and (>P):

Proposition 5.3. (i). If C is a modular context satisfying
(CP) then >C satisfies (>P). (ii). If > satisfies (>P) then
C(>) satisfies (CP).

We remark that in [Booth et al., 2004] the combination of
�-transitivity and (CP) was shown to be equivalent to the
following single property:

(>Conserv) If>(λ) 6` >(χ) then there exists ψ ∈ L∗ such
that λ ` ψ and >(ψ) ∧>(χ) ` λ



The above results prove that, in the presence of rules (>1)-
(>6) from Theorem 2.3, (>Conserv) is equivalent to the
conjunction of (>C+) and (>P).

The proof of Proposition 5.3(i) makes critical use of the
modularity of <. It turns out that (>P) is not sound for ge-
neral semi-modular contexts, even if we insist on (CP).

Example 5.4. Suppose L = {p, q} and that <= {(01, 11)}
while �= {(01, 11)} (strictly speaking the reflexive closure
of this). One can verify that C is a semi-modular context and
that (CP) is satisfied. Now let λ = p ∨ ¬q and χ = ¬p.
Then [>C(λ)] = {01}, [>C(χ)] = {11, 01, 10} and [>C(λ ∧
χ)] = {01, 10} and we have >C(λ) ` χ, >C(χ) 6` λ, and
>C(λ ∧ χ) 6` χ. Hence (>P) is not satisfied.

The question now is, which postulate corresponds to (CP)
for general semi-modular contexts? Here is the answer:

Proposition 5.5. (i). If C is a semi-modular context which
satisfies (CP), then >C satisfies the following rule:

(>P′) If > (λ) ` χ and > (χ) ` > (λ ∧ χ) then > (χ) ` λ
(ii). If > satisfies (>P′), plus (>C) and (>1), then C (>)
satisfies (CP).

It is straightforward to see (>P′) is weaker than (>P)
given (>1), while it implies (>P) given (>6).

6 Finite Base-Generated Removal
In this section we mention a concrete and important subfam-
ily of our general family of removal functions, the ideas be-
hind which can be seen already throughout the literature on
nonmonotonic reasoning and belief change (see in particular
[Bochman, 2001] for a general treatment in a belief removal
context). Given any, possibly inconsistent, set Σ of sentences,
let cons (Σ) denote the set of all consistent subsets of Σ. We
assume agent A is in possession of a finite set Σ of sentences
which are possible assumptions or defaults, together with a
strict preference ordering D on cons (Σ) (with sets “higher”
in the ordering assumed more preferred). We assume the fol-
lowing two properties of D:

(Σ1) D is a strict partial order

(Σ2) If A ⊂ B then A D B

(Σ2) is a monotonicity requirement stating a given set of de-
faults is strictly preferred to all its proper subsets.

Definition 6.1. If Σ ⊆ L is a finite set of sentences and D
is a binary relation over cons (Σ) satisfying (Σ1) and (Σ2).
Then we call � = 〈Σ,D〉 a prioritised default base. If in
addition D is modular then we call � a modular prioritised
default base.

In practice we might expect the ordering D over cons (Σ)
to itself be generated from some (not necessarily total) pre-
order - over over the individual sentences in Σ (again we
equate “higher” with “more preferred”). Let E1, . . . , Ek be
the equivalence classes of cons (Σ) under such a -, them-
selves ordered in the natural way by -, i.e., E1 - E2 iff
α - β for some α ∈ E1 and β ∈ E2. Then to give but two
prominent examples from the lierature (where ≺ is the strict
part of -):

Inclusion-Based [Brewka, 1989] A Dib B iff ∃i s.t. Ei ∩
A ⊂ Ei ∩B and ∀j s.t. Ei ≺ Ej , Ej ∩B = Ej ∩A

Generalised-Lexicographic [Yahi et al., 2008] A Fgl B iff
∀i, if |Ei ∩ B| < |Ei ∩ A| then ∃j s.t. Ei ≺ Ej and
|Ej ∩A| < |Ej ∩B|. Then Dgl is the strict part of Fgl.

We remark that the inclusion-based preference usually as-
sumes the underlying order - over Σ is total. For
the generalised-lexicographic example, note if the preorder
- over Σ is total then Dgl becomes modular and the
generalised-lexicographic example reduces to the standard
lexicographic case familiar from [Benferhat et al., 1993;
Lehmann, 1995].
Proposition 6.2. Let Σ be a finite set of sentences equipped
with some preorder - over its elements, and let Dib and Dgl

be relations over cons (Σ) defined from - as above. Then
both Dib and Dgl satisfy (Σ1) and (Σ2).

How does the agent use a prioritised default base � =
〈Σ,D〉 to remove beliefs? For Σ ⊆ L and λ ∈ L∗ let
cons (Σ, λ) def= {S ∈ cons (Σ) | S 0 λ}. Then from � we
may define a removal function >� by setting, for each λ ∈
L∗,

>� (λ) =
∨{∧

S | S ∈ max
D

cons (Σ, λ)
}
.

In other words, after removing λ, A will believe precisely
those sentences which are consequences of all maximally pre-
ferred subsets of Σ which do not imply λ.

We will now show how the family of removal functions
generated from prioritised default bases fits into our gen-
eral family. From a given � = 〈Σ,D〉 we may define
a context C (�) = (<,≺) as follows. Let sentΣ (x) def=
{α ∈ Σ | x ∈ [α]}. Then
• x < y iff sentΣ (y) D sentΣ (x)
• x ≺ y iff sentΣ (x) * sentΣ (y)

Thus we define x to be more plausible than y iff the set of
sentences in Σ satisfied by x is more preferred than the set of
sentences in Σ satisfied by y. Meanwhile we have the natural
interpretation for ≺ that A has a reason to hold x to be more
plausible than y precisely when one of the sentences in Σ is
satisfied by x but not y.
Theorem 6.3. (i). C (�) defined above forms a semi-modular
context (which is modular if D is modular).
(ii). � is transitive and the condition (CP) from the previous
section is satisfied.
(iii). >� = >C(�).

Thus we have shown that every removal function gener-
ated by a prioritised default base may always be generated by
a semi-modular context which furthermore satisfies the two
conditions on contexts mentioned in the previous section. By
the results of the previous sections, this means we automat-
ically obtain a list of sound postulates for the default base-
generated removals.
Corollary 6.4. Let � be any prioritised default base. Then
>� satisfies all the rules listed at the end of Section 3, as well
as (>C+) and (>P′) from the last section.



Note we have shown how every prioritised default base
gives rise to a semi-modular context satisfying �-transitivity
and (CP). An open question is whether every such context
arises in this way.

7 AGM Preferential Removal
Recall that three of the basic AGM postulates for contraction
do not hold in general for the removal functions generated
by semi-modular contexts, namely Inclusion, Recovery and
Vacuity. In this section we show how each of these rules can
be captured. In [Booth et al., 2004] it was shown already how
they may be captured within the class of modular context-
generated removal. It turns out that more or less the same
constructions can be used for the wider class considered here,
although some complications arise regarding Vacuity.

7.1 Inclusion
The Inclusion rule is written in our setting as follows:

(>I) >(⊥) ` >(λ)

To capture (>I) for any removal generated from any semi-
modular context C = (<,≺), we need only to require the
following condition on C:

(CI) min<(W ) ⊆ min≺ (W )

According to our interpretation of ≺, (CI) is stating that, for
any world x, ifA has some explicit reason favour some world
y over x (i.e., y ≺ x) then in the final reckoning A must hold
some world z (not necessarily the same as y) more plausible
than x (i.e., z < x).

Proposition 7.1. (i). If C satisfies (CI) then >C satisfies
(>I). (ii). If > satisfies (>I) then C(>) satisfies (CI).

Given any removal function > we can always obtain a re-
moval function which satisfies (>I) by taking the incarcera-
tion >I of > [Booth et al., 2005].

>I (λ) def= > (⊥) ∨> (λ) .

Or alternatively we can modify a given context C = (<,≺)
into CI =

(
<,≺I

)
, where x �I y iff either x � y or x ∈

min< (W ). It is easy to check CI = C
(
>I
)
.

7.2 Recovery
The Recovery rule is written as follows:

(>R) >(λ) ∧ λ ` >(⊥)

The corresponding property on contexts C = (<,≺) is:

(CR) If y 6/∈ min< (W ) and x 6= y then x ≺ y
Thus the only worlds∇� (x) contains, other than x itself, are
worlds in min< (W ).

Proposition 7.2. (i). If C satisfies (CR) then >C satisfies
(>R). (ii). If > satisfies (>R) then C(>) satisfies (CR).

Note the combination of (CI) and (CR) specifies≺, equiv-
alently �, uniquely in terms of <, viz.

x �agm y iff x = y or x ∈ min
<

(W ) .

and we obtain the removal recipe of AGM contraction, in
which removal of λ boils down to just adding the <-minimal
¬λ-worlds to the <-minimal worlds:

[>agm (λ)] = min
<

(W ) ∪min
<

([¬λ]) .

It is easy to check that the resulting context C satisfies con-
dition (C3a) and thus forms a semi-modular context. It
is also easy to check (CP) is satisfied and that the above-
defined �agm is transitive. Thus the above >agm also satis-
fies (>C+) and (>P′) from Section 5.

7.3 Vacuity
The Vacuity rule is written as follows:
(>V) If >(⊥) 6` λ then >(λ) ≡ >(⊥)
Unlike in the modular case, where Vacuity is known to fol-
low from Inclusion for modular removal functions [Booth et
al., 2004], (>V) does not even hold in general for the above
preferential AGM contraction>agm. This was essentially no-
ticed, in a revision context, in [Benferhat et al., 2005].
Example 7.3. Let L = {p, q} and <= {(11, 01)}. So
[>agm (⊥)] = {00, 11, 10}. Let λ = p. Then we
have >agm (⊥) 0 λ (because 00 ∈ [>agm (⊥)]), but
min< ([¬λ]) = {00, 01}, so [>agm (λ)] = min< (W ) ∪
min< ([¬λ]) = W 6= [>agm (⊥)].

In order to ensure >agm satisfies (>V) it is necessary, as
is done in [Katsuno and Mendelzon, 1992], to enforce the
following property on <.
(< V) ∀x, y ((x ∈ min< (W ) ∧ y /∈ min< (W ))→ x < y) .
In other words all <-minimal worlds can be compared with,
and are below, every world which is not <-minimal. For gen-
eral semi-modular contexts C = (<,≺) we also require the
following condition, which is weaker than (CI):
(CV) If x, y ∈ min<(W ) then x ⊀ y

This property says that for any two of his <-minimal worlds,
A will not have explicit reason to hold one to be more plausi-
ble than the other.
Proposition 7.4. (i). If C satisfies (CV) and (< V) then >C
satisfies (>V). (ii). If > satisfies (>V) then C(>) satisfies
(CV).

8 Conclusion
In this paper we introduced a family of removal functions,
generalising the one given in [Booth et al., 2004] to allow for
incomparabilities in the plausibility relation < between pos-
sible worlds. Removal is carried out using the plausibility
relation in combination with a second relation ≺ which can
be thought of as indicating “reasons” for holding one world
to be more plausible than another. We axiomatically charac-
terised this general family as well as certain subclasses, and
we showed how this family includes some important and nat-
ural families of belief removal, specifically those which may
be generated from prioritised default bases and the preferen-
tial counterpart of AGM contraction. Our results show the
central construct used in this paper, i.e., semi-modular con-
texts, to be a very useful tool in the study of belief removal
functions.



For future work we would like to locate further subclasses
of interest, for example the counterparts in this setting of
systematic withdrawal [Meyer et al., 2002] and severe with-
drawal [Rott and Pagnucco, 1999]. We would also like to
employ semi-modular contexts in the setting of social belief
removal [Booth and Meyer, 2008], in which there are several
agents, each assumed to have their own removal function, and
in which all agents must remove some belief to become con-
sistent with each other. [Booth and Meyer, 2008] showed that,
under the assumption that each agent uses a removal function
generated from a modular context, certain equilibrium points
in the social removal process are guaranteed to exist. An in-
teresting question would be whether these results generalise
to the semi-modular case. Since semi-modular contexts are
built from strict partial orders, this question should also be of
some relevance to the problem of aggregating strict partial
orders [Pini et al., 2005].
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