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ABSTRACT
This paper evaluates a spectral unmixing method for estimating the
partial abundance of spectrally similar minerals in complex mix-
tures. The method requires formulation of a linear function of in-
dividual spectra of individual minerals. The first and second deriva-
tives of each of the different sets of mixed spectra and the individual
spectra are determined, at signal-to-noise ratios of 50:1, 200:1 and
500:1. The error is minimized by means of simulated annealing. Ex-
periments were made on several different mixtures of selected end-
members, which could plausibly occur in real situations. We con-
clude that in the method proposed, the use of the original and first
order derivatives provides a valuable contribution to unmixing pro-
cedures provided the signal-to-noise ratio is between 50:1 and 200:1.
When the signal-to-noise ratio increases, the second derivative of the
observed spectrum and the second derivatives of the end-member
spectra give most precise estimates for the partial abundance of each
end-member. This can often be seen when the signal-to-noise ratio
is of the order 500:1.

Index Terms— abundance, unmixing, derivatives, signal-to-
noise ratio, spectrally similar, hyperspectral

1. BACKGROUND AND OBJECTIVE

Spectral unmixing of hyperspectral remote sensing images is prov-
ing useful in determining abundances of different minerals. Most
spectral unmixing techniques are variants of algorithms involving
matrix inversion [1, 2, 3, 4]. A major problem in spectral unmixing
is the non-orthogonality of end-members. Theories behind this are
becoming well-established [5, 1].

The ability to estimate abundances in complex mixtures through
spectral unmixing techniques is further complicated when con-
sidering very similar spectral signatures [6]. It is known that
iron-bearing oxide/hydroxide/sulfate minerals have similar spectral
signatures. When considering a mixture of the iron-bearing ox-
ide/hydroxide/sulfate minerals, the complexity of estimating these
abundances would be related to (a) selection of end-members of
iron-bearing oxide/hydroxide/sulfate minerals based on only image
data (for a “true” remote sensing case), (b) estimation of partial
abundances of end-members and (c) the signal-to-noise ratio (SNR)
of the image.

This paper addresses the following two questions, (a) how
could estimates of abundances of spectrally similar iron-bearing
oxide/hydroxide/sulfate minerals in complex mixtures be obtained
using hyperspectral data? and (b) what is the effect of the proposed
method based on the SNR of the image?

To address the above two questions, a spectral mixture was
generated with varying linear proportions of individual spectra of

a set of iron-bearing oxide/hydroxide/sulfate minerals. The set of
end-members is commonly associated with sulphide-bearing mine
wastes. Prior to unmixing, the mixed spectrum was first subjected to
smoothing, using B-Splines, as the derivatives will not necessarily
exist in the case of nonsmooth curves. Hyperspectral images, for ex-
ample DAIS, HyMap and Hyperion each have very different SNR’s.
In this paper I therefore used SNR of 500:1, 200:1 and 50:1 to see
the effect of the proposed method in terms of its accuracy.

The first and the second derivatives were then calculated for the
different mixed spectrum and the individual spectra of the minerals.
In [6] it has been shown that most pairs of the derivatives for indi-
vidual spectra have lower correlation coefficients than the pairs of
original individual spectra. The sum and the variance, of the differ-
ence between the estimated and actual mixed spectrum is minimized
by means of simulated annealing.

2. METHOD OF SPECTRAL UNMIXING

Spectral unmixing is a deconvolution process for estimating the con-
tribution of individual e (e = 1, . . . , ||E||) component spectra to
an observed spectrum containing a set M of unknown ||M || spec-
tral end-members, where E ⊂ M , ||E|| and ||M || are the number
of end-member spectra in E and in M , respectively. Each com-
ponent spectrum e, which can be derived from a spectral library,
consists of L discrete wavelengths λl (l = 1, . . . , L). It is denoted
by Re = (Re(λ1), . . . , R

e(λL)), where Re(λl) is the reflectance
value at wavelength λl.

An observed spectrum U = (U(λ1), . . . , U(λL)) is assumed
to be a linear combination of the ||M || end-members plus an error
term. It is difficult, if not impossible, to model U for all possible
components or end-members in a complex spectral mixture. Instead
an exhaustive set of end-members of interest (subset E of M ) is con-
sidered. The proportion contribution of each of these end-members
can then be estimated.

The details of this method can be found in [6]. The advantage
of the method proposed in [6] is (i) the fractional abundance is be-
tween 0 and 1, (2) the total abundance due to end-members in E is
at most equal to 1, and (3) the method does not require matrix in-
version in deriving a solution. Comparisons for this study was made
using the sum of the variance of the differences between the ob-
served spectrum and the end-member spectra (VarSpec), the sum of
the variance of the differences between the first derivatives of the ob-
served spectrum and the first derivatives of the end-member spectra
(VarDeriv) and the sum of the variance of the differences between the
second derivatives of the observed spectrum and the second deriva-
tives of the end-member spectra (Var2Deriv). These functions were
then minimized through simulated annealing [7].



3. END-MEMBER SPECTRA AND SYNTHETIC
MIXTURES

Synthetic spectral mixtures were created to test the proposed spec-
tral unmixing methodology and its accuracy with several differ-
ent SNR’s. Four secondary iron-bearing oxide/hydroxide/sulfate
minerals that could from pyrite-rich mine wastes were selected to
compose a set of end-members, namely: ferrihydrite; copiapite;
jarosite and goethite. Although each secondary iron-bearing ox-
ide/hydroxide/sulfate mineral within a weathering sulfide-bearing
mine waste shows distinctive spectral features in the 0.4–2.5 µm
regions of the electromagnetic spectrum, this study was limited to
the spectral range 0.5–1.1 µm, because this is where most of the
iron-bearing oxide/hydroxide/sulfate minerals of interest have many
and strong spectral features.

The individual spectrum of each of the four end-members was
selected from the USGS spectral library [8] and then linearly mixed
with each other according to some proportions of each end-member.
The mixed spectrum was then degraded to an approximate 15 nm
spectral resolution. Error from the Uniform distribution was then
added to the spectra. The resampling was performed (a) to simu-
late data with lower spectral resolution hyperspectral sensors (e.g.,
HyMap, DAIS, etc.) as compared to the spectral resolution of the
original end-members in the library, (b) to reduce dimensionality of
the data, and (c) because it is a practical technique found effective for
prediction of different soil properties [9]. It is acknowledged, how-
ever, that spectral channel degradation potentially increases correla-
tion between end-members, which would undermine spectral unmix-
ing [1]. For this reason, it is proposed and demonstrated to “decorre-
late” end-members using either their first or their second derivative.

Experiments were made on several different mixtures of selected
end-members, which could plausibly occur in real situations: (a) the
observed spectrum is a pure end-member spectrum and is included in
the set of end-members considered for unmixing (Re ∈ E); (b) the
observed spectrum is a pure end-member spectrum but is excluded
(because, e.g. not identified or not known) in the set of end-members
considered for unmixing (Re ∈ M\E); (c) the observed spectrum is
a mixture of end-member spectra and all end-members are included
in the set of end-members considered for unmixing (all Re ∈ E) and
(d) the observed spectrum is a mixture of end-member spectra and
some end-members are excluded (for similar reasons as in (b)) in the
set of end-members considered for unmixing (some Re ∈ M\E).
For (c) and (d), two simple mixtures of the end-member spectra were
considered, namely, mixed spectrum 1 with 50% goethite and 50%
jarosite, and mixed spectrum 2 with 15% goethite, 25% jarosite, 25%
copiapite and 35% ferrihydrite (the figures can be seen in [6]). For
each mixture, error from the U(−0.02, 0.02), U(−0.005, 0.005)
or U(−0.002, 0.002) was added, with corresponding SNR of 50:1,
200:1 or 500:1, respectively, in the visible to near infrared regions.
Note that (c) also considers the case where the mixed spectrum re-
sults from a smaller set of end-members in E. This is useful if prior
information suggests including end-members in the set E, when in
fact these end-members does not contribute to the mixed spectrum.
The resulting abundance for these end-members, in such a case,
should then be equal to zero.

Note also that prior to unmixing, the mixed spectra were first
subjected to smoothing as the derivatives will not necessarily exist
in the case of non-smooth curves. Graphs of the end-member spectra
and the mixed spectra can be found in [6] and is not repeated here.

4. ABUNDANCE ESTIMATION FROM SPECTRA

Tables 1–3 show the results of the experiments using observed spec-
tra, first and second derivatives of spectra, using VarSpec, VarDeriv
and Var2Deriv [6] and SNR of 50:1, 200:1 or 500:1.

If the observed spectrum is a pure end-member, and is included
in the set of end-members considered for unmixing, application of
the proposed method is able to estimate abundance of all materials
in set E (table 1) with a high degree of accuracy, with estimated
abundance ≥ 0.73 for the correct end-member and ≤ 0.19 for an
incorrect end-member. These estimates are further increased as the
SNR increases, with estimated abundance ≥ 0.90 for the correct
end-member and ≤ 0.06 for an incorrect end-member for SNR of
at least 200:1. Abundance estimates by using the first derivative
of the spectra are comparable to the abundance estimates by using
the original spectra at a SNR of 50:1 (slight decrease for goethite
and ferrihydrite). As the SNR increase to 200:1, the abundance es-
timates by using the first derivative of the spectra is more accurate
than the abundance estimates by using the original spectra in most
cases. Abundance estimates by using the second derivative of the
spectra are much worse when compared to the abundance estimates
by using the original or first derivative spectra at a SNR of 50:1. As
the SNR increases to 500:1, the abundance estimates by using the
second derivative is more accurate than the abundance estimates by
using the original and first derivative spectra in most cases.

If the observed spectrum is a pure end-member, but is excluded
from the set of end-members considered for unmixing, application
of the proposed method results in estimated abundances of the mate-
rials with poor accuracies. Estimated abundances vary between 0.01
and 0.92 for the correct end-member (see the columns M\E) and
between 0.00 and 0.92 for an incorrect end-member. It is interesting
to note that the results are very similar across the various SNR but
there is a substantial improvement when using the second derivative
of the spectra as opposed to the observed spectra or even the first
derivative of the spectra (table 1). The exception was for jarosite,
where both the SNR and higher order derivatives had virtually no
effect (in terms of improvement) on the estimates.

If the end-member spectra contributing to the observed mixed
spectrum are included in the set of end-members considered for un-
mixing (all Re ∈ E), the estimated abundances increases as the
SNR increases. High accuracies can be observed for the first deriva-
tive of the spectra when the SNR is at least 200:1 and for the second
derivative of the spectra when the SNR is at least 500:1 (table 2).

If some end-member spectra contributing to the observed spec-
trum are excluded from the set of end-members considered for un-
mixing (some Re ∈ M\E), estimated abundances have a low ac-
curacy for each end-member (table 3). What is noticeable, is that
the accuracies remain fairly consistent for the various SNR but there
seems to be a slight improvement in using the second derivative of
the spectra as opposed to the original or first derivative of the spec-
tra. Using the second derivative with a SNR of 500:1 produced the
most accurate abundance estimates.

5. CONCLUSIONS

We conclude that in the method proposed, the use of the original and
first order derivatives provides a valuable contribution to unmixing
procedures provided the SNR is between 50:1 and 200:1. When the
SNR increases, the second derivative of the observed spectrum and
the second derivatives of the end-member spectra give most precise
estimates for the partial abundance of each end-member. This can
often be seen when the SNR is of the order 500:1.
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Table 2. Estimated mineral abundance based on the observed,
first derivative and second derivative spectra of mixtures containing
known proportions of four iron-bearing minerals with SNR of 50:1,
200:1 and 500:1. The end-member spectrum is included in the set E
consider for unmixing.

Known abundance Estimated abundance
Goe Jar Cop Fer Goe Jar Cop Fer M\E1

Using observed spectra
SNR of 50:1

0.50 0.50 0.00 0.00 0.47 0.46 0.07
0.50 0.50 0.00 0.00 0.17 0.37 0.00 0.32 0.14
0.15 0.25 0.25 0.35 0.03 0.58 0.00 0.33 0.06

SNR of 200:1
0.50 0.50 0.00 0.00 0.49 0.50 0.01
0.50 0.50 0.00 0.00 0.46 0.50 0.02 0.01 0.01
0.15 0.25 0.25 0.35 0.06 0.28 0.24 0.41 0.01

SNR of 500:1
0.50 0.50 0.00 0.00 0.49 0.50 0.01
0.50 0.50 0.00 0.00 0.44 0.52 0.00 0.03 0.01
0.15 0.25 0.25 0.35 0.15 0.25 0.24 0.35 0.01

Using 1st derivative spectra
SNR of 50:1

0.50 0.50 0.00 0.00 0.11 0.53 0.36
0.50 0.50 0.00 0.00 0.15 0.30 0.11 0.43 0.01
0.15 0.25 0.25 0.35 0.02 0.50 0.09 0.38 0.01

SNR of 200:1
0.50 0.50 0.00 0.00 0.50 0.49 0.01
0.50 0.50 0.00 0.00 0.45 0.49 0.00 0.05 0.01
0.15 0.25 0.25 0.35 0.10 0.27 0.24 0.38 0.01

SNR of 500:1
0.50 0.50 0.00 0.00 0.50 0.49 0.01
0.50 0.50 0.00 0.00 0.47 0.49 0.02 0.00 0.02
0.15 0.25 0.25 0.35 0.13 0.25 0.25 0.35 0.02

Using 2nd derivative spectra
SNR of 50:1

0.50 0.50 0.00 0.00 0.00 0.31 0.69
0.50 0.50 0.00 0.00 0.09 0.12 0.24 0.40 0.15
0.15 0.25 0.25 0.35 0.01 0.21 0.30 0.39 0.09

SNR of 200:1
0.50 0.50 0.00 0.00 0.51 0.44 0.05
0.50 0.50 0.00 0.00 0.50 0.38 0.11 0.00 0.01
0.15 0.25 0.25 0.35 0.08 0.14 0.39 0.38 0.01

SNR of 500:1
0.50 0.50 0.00 0.00 0.51 0.49 0.00
0.50 0.50 0.00 0.00 0.51 0.49 0.00 0.00 0.00
0.15 0.25 0.25 0.35 0.13 0.25 0.25 0.35 0.02

1 represents the set of end-member spectra that are in the exhaus-
tive set containing all possible end-member spectra but excluding
the end-member spectra used for unmixing.
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