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ABSTRACT

The paper describes a novice method for sampling geochemicals to
characterize mine tailings. We model the spatial relationships be-
tween a multi-element signature and, as covariates, abundance es-
timates of secondary iron-bearing minerals in mine tailings dumps.
The covariates of interest, are readily, but less accurately obtainable
by using airborne hyperspectral data and estimated through spectral
unmixing. Via simulated annealing an optimal prospective sampling
scheme for a new unvisited area is derived based on the variogram
model of a previously sampled area.

Index Terms— Sampling, mine tailings, remote sensing, hyper-
spectral, unmixing, external drift kriging, variogram

1. BACKGROUND AND OBJECTIVE

Geochemical characterization of mine waste impoundments is im-
portant for rehabilitation, or for remediation, to protect the surround-
ing environment and ecosystems. For effective geochemical charac-
terization, this would entail surface (to subsurface) sampling, which
could be labor or cost intensive, especially if not properly planned.
Metals in mine waste impoundments are usually hosted by acid-
generating sulphide-rich minerals, for e.g., pyrite, pyrrhotite, or ad-
sorbed onto surfaces of weathering products of such sulphide-rich
minerals. Unfortunately, such minerals are difficult to detect or iden-
tify by using current remote sensing techniques including multispec-
tral or even hyperspectral data. It has been shown, however, that cer-
tain sulphide-rich minerals, particularly pyrite, weathers to a series
of iron-bearing sulfates, hydroxides and oxides [1]. Such secondary
iron-bearing sulfates/hydroxides/oxides have diagnostic spectral fea-
tures [2], which enable their detection or identification with analyti-
cal techniques using hyperspectral data.

Debba et. al. (2006) [3] demonstrated the potential of using
hyperspectral data to estimate abundances of spectrally similar
iron-bearing sulfates/hydroxides/oxides. It has also been shown
that heavy metal contamination in soils can be quantified using
reflectance spectroscopy [4]. Thus, remote sensing technology po-
tentially provides an indirect tool for surface characterization of
mine waste impoundments with oxidizing sulphide-rich materials;
namely, for mapping spatial distributions of secondary iron-bearing
sulfates/hydroxides/oxides and thereby modeling the spatial distri-
bution of heavy metals. Hence, given a model of spatial distribution
of secondary iron-bearing oxides/hydroxides, the problem is how to
design a sampling scheme that would adequately capture the spatial
distribution of certain groups of metals.

In this paper, a prospective sampling scheme is derived for
nearby unsampled areas based on the variogram model of the ad-
jacent sampled area. The present case study area is in the Recsk-
Lahóca copper mining area in Hungary. The Recsk-Lahóca mining
area is situated in the Mátra Mountains, about 110 km northeast of
Budapest, Hungary. Mining of ore deposits in the Recsk-Lahóca
area resulted in the exposure of sulphide bearing-rocks to surface
water and atmospheric oxygen, which accelerate oxidation, leaching
and release of metals and acidity. Mine tailings and waste rock
dumps resulting from the two-century mining of copper and gold
are present in the area.

2. DATA

In this study, a subset of the Digital Airborne Imaging Spectrometer
(DAIS-7915) is used. The resulting data is a 79 channel hyper-
spectral image, acquired over Recsk on 18th August 2002 and
is shown in Figure 1 at 5 m nominal resolution on the ground.
Not all 79 channels were useful as many channels were too noisy
and could not be corrected efficiently. Fortunately, the first 32
channels, spectral range 406-1035 nm, where iron-bearing ox-
ides/hydroxides/sulphates have diagnostic features were found use-
ful for this study.

Samples from the tailings (Figure 1) were collected a few min-
utes shortly after collection of the DAIS hyperspectral data. Fifty-
three samples were collected in the East Tails and 44 in the West
tails. Samples of tailings were collected at 10m×10m grid points
in portions of the tailings dumps with almost no vegetation cover
within 3 m radius. Portions of the tailings dumps, close to the active
stream have steep slopes and were not sampled. Samples were col-
lected from the top surface of the tailings and were analyzed in the
laboratory. Concentrations of As, Cd, Cu, Fe, Mn, Ni, Pb, Sb and
Zn in the decomposed samples were determined using the ICP-AES
analyzer.

3. METHODOLOGY

The East Tails and the West Tails have different geochemical char-
acteristics, hence it was decided to split the data into two sets. The
small stream between the East Tails and the West Tails provides a
natural boundary to do so. Data from either sub-area are used to
model a relationship between heavy metal associations and relative
abundances of secondary iron-bearing minerals. The latter data are
derived from spectral unmixing of hyperspectral data. A model rela-
tionship between heavy metal associations and mineral abundances



Fig. 1. The “East Tails” and the “West Tails” shown in a color com-
posite image of the DAIS data. Ratios of ch17 to ch28 (represent-
ing ferrihydrite reflectance and absorption peaks) was used as red
band, ch13 to ch25 (representing jarosite reflectance and absorption
peaks) was used as green band and ch32 to ch1 (representing non-
iron-bearing minerals) was used as blue band. Red dots are locations
of mine tailings samples. Short dashed lines indicates drainage lines
of either active or non-active streams.

in one sub-area is then used as basis for optimal sampling design
in the other sub-area. Division of the area and the data thus pro-
vides calibration analysis and prediction/validation analysis for op-
timal sampling design.

3.1. Estimation of mineral abundance

Spectral unmixing of hyperspectral data was performed to estimate
relative abundance or proportion, per 5 m pixel, of secondary iron-
bearing minerals, with which metals in the mine tailings could be
associated. Spectral unmixing is a deconvolution process for esti-
mating proportional contributions of each end-member to spectra.
Debba et. al. (2006) [3] suggested that better abundance estimates
are obtained if materials, not necessarily of interest but are probably
present, and contribute to a pixel spectrum is also included in an end-
member set for spectral unmixing. Accordingly, copiapite, jarosite,
goethite, ferrihydrite, hematite, kaolinite, anhydrite, gypsum, quartz,
and tumbleweed (grass) was considered to consist the end-member
set. Abundance estimates were determined according to the method
of [3], which involves minimization of variance of the differences
between the first derivative of an estimated spectrum and the first
derivative of an actual spectrum after smoothing the spectra.

3.2. Modeling of heavy metal associations

Concentrations of several metals in soils can be estimated using re-
flectance spectroscopy [4]. In addition, geochemical sampling ad-
dresses a suite of metals, which reflect intrinsic processes in a sys-
tem, like a mine tailings dump. It was thus decided to model a
heavy metals association reflecting scavenging of metals by sec-
ondary iron-bearing minerals in the mine tailings dumps. A fac-
tor component analysis with varimax rotation was performed on the
logarithmic-transformed heavy metal concentrations to obtain the
heavy metal association of interest. The scores of FA2E and FA2W

are then linearly transformed to [0, 1], for numerical compatibil-
ity with the mineral abundance estimates, and labeled FA2ET and
FA2WT, respectively.

3.3. Kriging with external drift

Kriging with external drift is applicable to estimate primary variables
of interest, which are practically measurable at only few sample
sites, based on linearly related ancillary variables, which are mea-
surable at much higher sampling density than the primary variables.
Wackernagel (1998) [5] suggests that such ancillary variables can be
incorporated into a kriging system as external drift functions. Krig-
ing with external drift is ideal if a primary variable could be mea-
sured more precisely and practically at a few locations, whereas pos-
sibly less accurate measurements of linearly related ancillary vari-
ables are available everywhere in the spatial domain. The present
case study applies kriging with external drift to model a relationship
between heavy metal association of interest and metal-savenging
minerals in the mine tailings dumps. The distribution of heavy metal
associations, represented as factor scores, were used as the primary
variable of interest and is based on field sampling. The relative abun-
dances of metal-scavenging iron-bearing minerals, which were ob-
tained from hyperspectral data, are the ancillary variables.

For the modeling, consider x ∈ A ⊂ R2 to be a generic data
location (xu, xv) in 2-dimensional Euclidean space and suppose the
domain Z(x) at spatial location x is a random quantity. The mul-
tivariate random field {Z(x) : x ∈ A}, is generated by letting x
vary over index set A ⊂ R2. A realization of this is denoted by
{z(x) : x ∈ A}.

The semi-variogram γ(h) is defined as half the average squared
difference between values separated by a given lag h, where h is a
vector in both distance and direction, that is,

γ(h) =
1

2
E[Z(x)− Z(x + h)]2 . (1)

The experimental semi-variogram γ?(h) may be obtained from
κ = 1, 2, . . . , P (h) pairs of observations {z(xκ), z(xκ + h)} at
locations {xκ,xκ + h}, as:

γ?(h) =
1

2 · P (h)

P (h)X
κ=1

[z(xκ)− z(xκ + h)]2 . (2)

Suppose that precise measurements are available for a primary
variable Z(x) with nB observations, which is assumed to be a
second order random function with known covariance function
C(h), hence the variogram γ(h) = C(h)/C(0) is assumed to be
known. The k ancillary variables represented as regionalized vari-
ables yi(x), i = 1, . . . , k with nA observations, are less accurate
measurements covering the whole domain A at small scale and are
considered as deterministic. The values {yi(x)} needs to be known
at all locations xα of the samples as well as at the nodes of the
estimation grid.

Since Z(x) and the set of {yi(x)} are two ways of expressing
the same phenomenon, assume that Z(x) is on average equal to a
linear function of the set of {yi(x)} up to a constant b0 and coeffi-
cients bi, i = 1, . . . , k,

E[Z(x)] = b0 +

kX
i=1

bi · yi(x) =

kX
i=0

bi · yi(x) , (3)

where y0(x) = 1. The method of merging both sources of informa-
tion uses {yi(x)} as an external drift function for the estimation of



Z(x). The drift of Z(x) is defined externally through the ancillary
variables {yi(x)} rather than some smooth version of Z(x) itself,
[6].

Assuming Z(x) is a second order stationary random function,
then

Z∗(x0) =

nAX
α=1

λαZ(xα) (4)

where λα denotes the weight of the αth observation and is constraint
to unit sum.

In estimating the external drift coefficients, the following condi-
tions,

nAX
α=1

λαyi(xα) = yi(x0) , i = 1, . . . , k , (5)

are added to the kriging system independently of the inference of the
covariance function, hence the term “external”. The kriging variance
can then be written as

σ2
KED(x0) = Var[Z(x0)− Z∗(x0)] . (6)

The only factor influencing the kriging variance are the variogram
γ(h), the number of observations nA, the sampling locations xα and
the location x0. This means that the kriging variance does not de-
pend on the observations themselves, but rather only on their relative
spacing. The advantage is that in can be used to optimize sampling
schemes in advance of data collection.

In this paper, the location and the covariates as external drift
were used to estimate the heavy metal concentration,

E[Z(x)] = b0 + b1 · xu + b2 · xv + b3 ·GOE(x)

+b4 · JAR(x) + b5 · FER(x) + b6 ·HEM(x)

+b7 ·KAO(x) + b8 · COP(x) , (7)

namely, a first order polynomial on the coordinates and the abun-
dance estimates of the metal-scavenging minerals. In Equation 7,
GOE is abundance estimates for goethite, JAR is for jarosite, FER is
for ferrihydrite, HEM is for hematite, KAO is for kaolinite, and COP
is for copiapite.

3.4. Sampling scheme optimization

For a two-dimensional area A, let the collection of all possible sam-
pling schemes with n observations on A be denoted by Sn. A fitness
function φ(Sn) : Sn → R+ is minimized through simulated anneal-
ing. In terms of sampling, the initial step in simulated annealing is to
randomly select a set of points in A. A new point in A is then ran-
domly selected and replaces a randomly selected old point from the
current collection. This replacement occurs, based on a probabilistic
criterion, if the fitness function decreases and if the fitness function
increases. Hence, the process allows inferior moves. Initially, the
probabilistic criterion is high, allowing a large probability of infe-
rior moves. A parameter in the annealing process is then reduced by
a factor of 0.95 at each successive step, thereby decreasing the prob-
ability of accepting inferior moves until the process stabilizes. The
final solution is independent of the initial random selection of points
as the process reaches the global optimum.

A variogram model for a previously sampled area can be used
to estimate σ2(x) (Equation 6) in an unvisited area, if the latter is
considered to have similar, if not the same, spatial characteristics as
the former. In this case, estimates of σ2(x) in the unvisited area can
be used to derive the optimal prospective sampling scheme. The
optimization procedure by simulated annealing is then performed

by application of a criterion called the Mean Kriging Variance with
External Drift (MKVED), the fitness function of which is defined as

φMKVED(S) =
1

nA

nAX
j=1

σ2
KED(xA,j |S) , (8)

where nA is the number of raster nodes for which data for each
of the covariates are available. The MKVED-criterion is ideal for
deriving optimal prospective sampling schemes, since it does not
depend on the actual data for the primary variable. It depends, how-
ever, on a covariance function, the spatial configuration of sampling
locations and data locations of the covariates (Equation 6). Hence,
the MKVED-criterion is proposed to derive the optimal prospective
sampling scheme in an unvisited area based on a relevant model from
a previously sampled area.

4. RESULTS OF OPTIMAL PROSPECTIVE SAMPLING
SCHEMES

By way of simulated annealing, a prospective sampling scheme for
the West Tails is derived based on a model for the East Tails. As an
illustration, it was decided to derive a prospective sampling scheme
having 30 samples in the West Tails using the 53 samples from the
East Tails. The exponential variogram was estimated with the data
from the East Tails and is shown in Figure 2(a). To verify that this
variogram is also appropriate for the West Tails, the East and West
Tails data were combined and the variogram is shown in Figure 2(b).
The similarity of the two variograms indicate that the variogram for
the East Tails could be appropriate for modeling the West Tails.

Variogram model for the East Tails was applied to the West
Tails data to derive a prospective sampling scheme via simulated
annealing to minimize Equation 8. The resulting prospective sam-
pling scheme, with 30 samples for the West Tails, is shown in Fig-
ure 3. The optimal sampling scheme constructed using the kriging
external drift variance approach are spread over the West Tails re-
gion while retaining some close pairs of samples. These close pair
samples are to improve the estimation of the variogram model. The
mean kriging with external drift variance for the West Tails, using
the combined East and West Tails sampling data, as illustrated in
Figure 1, is 6.8 × 10−4 for the West Tails. This mean kriging vari-
ance was approximately the same when either of the two variograms
was used. The optimal sampling scheme resulted in a mean kriging
with external drift variance for the West Tails of 3.3×10−4 using the
variogram derived from the East Tails data. This indicates that the
optimal sampling scheme contains samples that reduces the mean
kriging with external drift variance for the previously designed grid
sampling scheme in the West Tails.

5. DISCUSSION AND CONCLUSIONS

Surface characterization of mine tailings could provide essential in-
formation for protection of surrounding ecosystems. Planning where
tailings samples should be collected is therefore a crucial task. This
is so because spatial distributions of undesirable heavy metals in
mine tailings must be determined accurately. This study has demon-
strated usefulness of airborne hyperspectral data to support optimiza-
tion of sampling schemes for surface characterization of mine tail-
ings.

Analysis of hyperspectral data can yield information about spa-
tial distributions of secondary iron-bearing and clay minerals asso-
ciated with weathering of pyrite-rich mine wastes. Heavy metals



(a) East Tails

(b) East and West Tails combined

Fig. 2. The exponential variogram for the East Tails, combined East
& West Tails.

usually reside in such secondary minerals. Nevertheless, field sam-
ples are necessary to model spatial relationships between heavy met-
als and secondary minerals in mine tailings. The data collected in
an orientation grid sampling program must allow determination of
(a) spatial distributions of heavy metals, (b) spatial distributions of
secondary metal-scavenging minerals, (c) spatial relationships be-
tween heavy metals and secondary metal-scavenging minerals, and
(d) a variogram model of heavy metal associations due to metal-
scavenging minerals. These four types of spatial information are es-
sential to optimize a prospective sampling scheme to be carried out
during a main sampling program, especially for large mine tailings.

This study has shown that spatial relationships between heavy
metals and metal-scavenging minerals can be modeled adequately
by kriging with external drift. The kriging variance, being depen-
dent only on the variogram, the spatial configuration of the sampling
locations and the data locations, could then be used to derive optimal
sampling schemes. In conclusion, the use of secondary information
in designing optimal sampling schemes was also illustrated. Often

Fig. 3. Prospective optimal sampling scheme in the West Tails using
East Tails samples.

these secondary information can be achieved at a relatively low cost
and available over a greater region. These are the primary reasons
for incorporating this information into the sampling design. Opti-
mized sampling schemes using the mean kriging with external drift
variance will result in sampling schemes that explicitly take into ac-
count the nature of spatial dependency of the data and together with
hyperspectral data can be used to design sampling schemes in nearby
unexplored areas.
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