What role can Life Cycle Assessment play in the selection of green construction materials?

N. L. AMPOFO-ANTI

Outline

- Environmental sustainability in perspective
- Life Cycle Assessment (LCA) in a nutshell
- Construction life cycle phases and environmental impacts
- LCA-based considerations for materials selection

Prerequisites for environmentally sustainable "green economy"

- ✓ Preserve input capability
- ✓ Absorb pollution (air, water, soil)

Slide 4

Slide 5 © CSIR 2006

www.csir.co.za

our future through science

Attributes of the "construction economy"......

Inputs (global)

✓ Raw materials: 50%

✓ Energy : 50%

Outputs (global)

✓ Solid waste: 50%

✓ Air pollution: 40%

........... are not aligned with the purpose of Sustainable Construction, i.e.

"Creation and operation of a healthy built environment based on ecological principles and resource efficiency".

The challenge: mismatch between intents and practice.....

- Renewability = no environmental impact ?
- Low embodied energy = low GHG emissions?
- Recycled content = material efficiency ?

Wrong answers may carry as much weight as the right ones

...... Life Cycle Assessment (LCA) can help

LCA in a nutshell

what is LCA?

- Environmental decisionsupport tool since 1970s
- Central to sustainable consumption and production (UNEP)
- Essential for a "life cycle" (green) economy (WSSD)
- International standard: ISO 14040 series from late 1990s

LCA in a nutshell - what is LCA?

Slide 10 © CSIR 2006 www.csir.co.za

LCA in a nutshell

Why LCA?

LCA principles

- Pollution prevention 21st
 Century policy approach
- Systems perspective whole life cycle (supply chain) approach
- Scientific (performance oriented) and quantitative

"Green" principles

- Pollution control "end-of-pipe" outdated policy approach
- Fragmented perspective dissociates product from supply chain
- Performance oriented intents versus prescriptive requirements

LCA applications

Life Cycle Thinking (Conceptual LCA) Product-oriented regulation e.g., IPP (DfE + CP + EPR)

Life Cycle Management (Simple LCA) Product-oriented industry strategies e.g., DfE, CP. Product-oriented decision support for industry e.g, eco-labelling

LCA applications in construction Tools and what they do

Level 1B tools: Specification

 Materials and components e.g., BEES (North America)

Level 2 tools: design concept

 Whole buildings and complex assemblies e.g., Athena EIE (North America)

Level 3 tools: rating/ certification

Whole building e.g. BREEAM (UK)

Slide 13 © CSIR 2006 www.csir.co.za

Construction life cycle phases and environmental impacts – energy use profile

- Pre-use phase: 10-20% of total life cycle energy
- Use phase: 80-90% of total life cycle energy
- End-of-life: less than 1% of total life cycle energy

Environmental problems associated with energy use:

Acidification, climate change, eutrophication, human toxicity, smog

CSIR our future through science

Construction life cycle phases and environmental impacts - materials use profile

Pre-use phase

- Depletion of energy (embodied + transportation)
- Depletion of virgin raw materials (extraction + construction waste)
- Land use impacts (loss of habitat, etc)
- Toxic emissions to soil and water

Construction life cycle phases and environmental impacts – materials use profile

Use phase

Service life (replacement, maintenance) is critical due to long life of buildings

Structural elements

- No replacement factor, low maintenance
- High embodied energy = lower operational energy

Non-structural elements

- High replacement and maintenance factors
- Significant impacts (materials, energy, pollution, costs)

Construction life cycle phases and environmental impacts – materials use profile Use phase (High impact materials/ components)

Material /component	Reasons
Steel-based products (galvanised, reinforced, etc)	High embodied energy, large quantities, high emissions
Cement-based products (concrete, plaster, render, screed)	
Carpets	High embodied energy, high emissions, frequent replacement / maintenance
Paints	
Copper products	Toxic contents (even in small quantities)
PVC flooring	

Slide 18 © CSIR 2006 www.csir.co.za

Construction life cycle phases and environmental impacts – materials use profile Use phase (service life considerations)

Material /component	Assumed service life (years)
Bricks and blocks	50
Concrete	50
Structural steel	50
Roof assembly	15
Carpet	10
Paint	10

Slide 19 © CSIR 2006

www.csir.co.za

Construction life cycle phases and environmental impacts – materials use profile

End-of-life phase

 Approximately 90% of extracted stock of materials may be contained in the built environment, making it a potential future resource, or alternatively, a potential future source of waste

Construction life cycle phases and environmental impacts – materials use profile End-of-life phase

Key challenges

- No waste management hierarchy even "green" buildings are not designed for decoupling or disassembly
- Landfilling = wasted materials + embodied energy

Environmental consequences

- Resource depletion (energy and materials)
- Land use impacts
- Pollution soil and water

LCA limitations

LCA is not the answer to all material-related problems. Does not easily address:

- Indoor environmental quality
- Land-use impacts
- Uncertainty and risks related to toxic releases

LCA barriers

- Accessibility and availability of life cycle inventory (LCI) data
- Mindset dominance of prescriptive "green" approaches

The reality

- Environmentally sustainable (green) materials do have environmental impacts
- "Green" materials function in systems the supply chain, from materials production to green building certification needs to go "green"
- Meeting regulatory requirements e.g. Waste Management Bill, carbon taxes, etc has shifted from subjective to objective, science-based data

Select "green" materials in consideration of trade-offs:

- •Multiple life cycle stages and phases; and
- Material combinations which reduce long-term impacts

Slide 25

Select "green" materials in consideration of multiple environmental inputs:

- Materials
- Energy
- Water
- Land

Select "green" materials in consideration of their contribution to multiple environmental issues of concern to society, i.e.,

- Acidification
- Climate change
- Eutrophication
- Ecotoxocity
- Human toxicity
- Stratospheric ozone depletion
- Photochemical Oxidant formation

Questions??

our future through science

Thank you

our future through science