
Supporting Scalable Bayesian Networks using
Configurable Discretizer Actuators

Isaac Osunmakinde, SMIEEE and Antoine Bagula
 Department of Computer Science, Faculty of Sciences, University of Cape Town,

18 University Avenue, Rhodes Gift, 7707 Rondebosch, Cape Town, South Africa
{segun, bagula}@cs.uct.ac.za

Abstract. We propose a generalized model with configurable discretizer
actuators as a solution to the problem of the discretization of massive numerical
datasets. Our solution is based on a concurrent distribution of the actuators and
uses dynamic memory management schemes to provide a complete scalable
basis for the optimization strategy. This prevents the limited memory from
halting while minimizing the discretization time and adapting new observations
without re-scanning the entire old data. Using different discretization
algorithms on publicly available massive datasets, we conducted a number of
experiments which showed that using our discretizer actuators with the
hellinger’s algorithm results in better performance compared to using
conventional discretization algorithms implemented in the Hugin and Weka in
terms of memory and computational resources. By showing that massive
numerical datasets can be discretized within limited memory and time, these
results suggest the integration of our configurable actuators into the learning
process to reduce the computational complexity of modeling Bayesian networks
to a minimum acceptable level.

Keywords: Intelligent Systems, Massive datasets, Bayesian Networks,
Discretization, Scalability.

1 Introduction

Bayesian network models often formulate the core reasoning component of some
intelligent systems because of their suitability in handling complex problems [1].
Researchers and practitioners have stressed that learning such models from
environments captured as massive datasets is computationally intensive [2] [3]. In
practice, it is convenient to say that massive datasets are relatively defined based on
the capacity of the machine used for learning and are also dependent on users’
execution urgency. For example 50,000 records of dataset may be massive for a
machine and moderate or small for another. The intensity on the datasets implies that
too much of computational time is expended and limited memory space may crash
during these operations. This affects business and research deliveries, and may hinder
the growing usage of Bayesian networks in industries that keep massive datasets to
build intelligent systems. From our practical knowledge, improving the performance
of discretization is obviously a sound basis for optimizing Bayesian networks’
learning. Intelligent system engineers do not want to wait too long to make the
reasoning component ready for use.

Most of the existing conventional algorithms load entire massive datasets onto the
limited memory for discretizations and a column is processed one at a time. Time is
expended for loading, discretizing and probably saving back, which could otherwise
have been minimized. Carrying out the discretization process on massive datasets
whose size is more than the available allocated memory may currently not be
practically feasible. Achieving this requires scalability of discretization methods
which is very challenging.

A number of fairly recent studies have developed good conventional algorithms to
discretize datasets but they fall short in considering the scalability of their approaches
[4] [5]. Among the rationales in this scalability research is studying how massive are
the datasets used in the existing discretization approaches. For examples, Li et al.[4]
suggested feature selection heuristics for discretizing bio-medical data where they
evaluated it on a notable lung-cancer dataset of 10,000 records. Lee’s supervised
algorithm [6] is similar to Li et al. but he used the entropy of intervals for
discretization. Also, Lee used a maximum of 3,163 records of hypothyroid dataset to
evaluate his work. Out of the 16 datasets used by Dougherty et al. [5], the maximum
size is Australian dataset with 6,650 records.

The computational times and memory usages of the methods described above are
not known though these are two important parameters upon which the scalability of
discretizing massive datasets for learning networks depends. In an attempt to address
scalability of discretizations for the core component of intelligent systems, the
available open source network learning applications (e.g. Weka [7] and Hugin [8])
force users to discretize all numeric values of the attributes present in the datasets.
However, certain numeric attributes in real life are not necessarily required to be
discretized. In this research, we proposed configurable discretizer agent actuators
which dynamically scale limited memory and improve computational time efficiency.
In a number of comparative evaluations, the actuators outperform the conventional
discretization approaches in speed and memory management respectively. Our major
contributions are:

• The development of a new generalized configurable discretizer actuators and its

system model to optimize the core intelligent system component through
discretization processes.

• The evaluation of this configurable actuator on publicly massive datasets using
different discretization algorithms implemented in Weka and Hugin systems.

The rest of this paper is arranged as follows: in section 2, we introduce the

background of Bayesian networks, discretization algorithms, dynamic memory
management scheme and the agent architecture as the theoretical foundations of our
configurable discretizer actuators. Section 3 presents the system model and the
configuration of the discretizer agent actuators. Section 4 presents the experimental
evaluations of the discretization time and memory scalability using publicly available
datasets from UCI [9] (University of California Irvire) repository used by intelligent
systems researchers. We conclude the paper in section 5.

2 Theoretical Background

2.1 Bayesian Network Models

A Bayesian belief network is formally defined as a directed acyclic graph (DAG)
represented as G = {X(G), A(G)}, where X(G) = {X1,…,Xn}, vertices (variables) of
the graph G and)()()(GXGXGA ×⊆ , set of arcs of G. The network requires

discrete random values such that if there exists random variables X1, . . ., Xn with each
having a set of some values x1, . . ., xn then, their joint probability density distribution
is defined in equation 1;

))(|
0

(),...,1(iX
n

i
iXprnXXpr π∏

=
= (1)

where)(iXπ represents a set of probabilistic parent(s) of child Xi [1]. A parent

variable otherwise refers to as cause has a dependency with a child variable known as
effect. Every variable X with a combination of parent(s) values on the graph G
captures probabilistic knowledge as conditional probability table (CPT). A variable
without a parent encodes a marginal probability. Learning the suitable networks from
massive datasets is computationally intensive as stated above.

2.2 Discretization Algorithms

Discretization algorithms are techniques which are used as preprocessing key
operations in learning Bayesian models [5] [6]. They classify numerical data into their
corresponding interval values relatively to the patterns in the data attributes. Weka
and the Hugin systems use discretization algorithms which are built around the simple
binning and minimum description length (MDL) methods [1]. Simple binning include
an equal-width method using an unsupervised discretization approach which divides
attribute values into k equal sizes. The seed k is supplied by users while equal-width
finds maximum and minimum attribute values and they are used to determine data
intervals. The Hellinger-based algorithm uses interval entropy function E(.) as a
justification for quality discretization to accommodate any datasets. The entropy of
any interval between a and b is shown in equation 2 [6].

E([a, b]) ≡ ∑ −
i

abixprixpr 2))|()(((2)

As a basis of the algorithm, the values ix of the target attribute being discretized

are sorted accordingly and they form a column of intervals. The probability
distribution of ix is represented as)(ixpr . The scheme in the next subsection is

therefore adopted to prevent the out-of-memory problems in the learning processes.

2.3 Dynamic Memory Management Scheme

The dynamic memory management scheme used in the Loci framework [10] is an
economical solution which manages the memory by allocation and de-allocation of
data structures based on the lifetime of data structures. Thus, in order to accommodate

discretization of large datasets within a limited memory, we extracted and interpreted
the scheme from [10] as follows: (i) pre-allocation of memory to data structures, (ii)
incorporate relevant memory management operations, (iii) invoke loop scheduling
techniques, and (iv) recycle memory from data structures.

Pre-allocation with partitioning of the entire memory alone in scheme i does not
benefit space saving until the others in the sequence are involved. Many parallel
algorithms exploit scheme i as a trade-off to optimize speed but suffer from peak
memory requirement. A possible relevant management operation in ii is the use of
remote memory or secondary storage devices, for example. These management
operations are generalized concepts of virtual memory. A virtual memory is a
multilevel store which gives a large process an impression that it has more primary
memory to itself, while it actually uses external disk devices as a supplement [11]. In
iii, examples of loop scheduling techniques are multiple nested iterations, recursions,
synchronizations, etc. Also in iv, at the end of every schedule or lifetime, memory is
recovered from data structures after its execution. Thus, this scheme empowers a
system to accommodate massive datasets within a limited memory without a halting
problem. The next subsection also describes the basic agent architecture as
fundamentals of our configurable actuators.

2.4 A Basic Agent Architecture

Among the classes of agents used in intelligent systems, the software agent as related
to this work perceives from the components of environments through sensors and
acting upon the environment through actuators [1]. According to Russell [1], a
software agent can sense its environment using file content or network packets and
also uses writing files or packets as actuators to act on the environment. From
Russell’s illustration, when environment is perceived, some forms of machine
learning algorithms are used to interpret the percepts. They consequently generate the
instructions required by the actuators to carry out actions on the environment.
 The positions of the agent and the environment are often far apart which
possess distributed properties. It illustrates that agents can be sent over a network to
carry out specific tasks and can also provide services to other components on a given
machine. It is deduced from here that agent actuators can be characterized with
mobility as they include their required information in their description. Their
independence influences the design of components for distributed agents which
motivate the development of the configurable discretizer agent actuators in this study.
Section 3 now describes the proposed configurable actuators.

3. The Generalized Configurable Discretizer Actuators

3.1 The System Model for the Actuators

Figure 1 depicts the system model that we used to accomplish complete scalable
discretization. If either space or time is optimized, it is an incomplete scalability as a
trade off is not beneficial to the networks used in intelligent systems. Our strategy
combines the memory management scheme in subsection 2.3 and the architecture in
subsection 2.4. In this strategy, an actuator is dedicated and sent to discretize values

of one or more attributes. For balancing purposes, a number of actuators, rather than
all, are heuristically set by users and concurrently distributed at a time. Discretization
time is faster as the actuators act on more than one attributes at a time. As the
actuators complete discretization of some attributes in a pass, they are returned to the
symmetric processors that reschedule them for subsequent attributes. With this,
memory is continually and dynamically allocated which then recycles each time there
is scheduling of actuators for discretization.

We now define the major components of Figure 1 as follows: discretizer agent
actuators described in the previous paragraph, discretization algorithm, massive
environment (or datasets), storage of previous discretized parameters and subsequent
observations made after discretizing the massive datasets. The algorithm which
resides on the limited memory of a machine generates tuples of intervals for the
actuators to discretize values of the attributes remotely. We adopted the Hellinger-
based algorithm in Lee’s work [6] as a proof of concept since this research focuses on
supporting the optimization of the core reasoning component of intelligent systems
through scalable discretizations. The component of the massive dataset (or
environment) is kept away from the limited memory and its attributes’ values are
acted upon concurrently in a secondary storage or across a network. This provides a
competitive advantage in developing countries where discretization process can be
accidentally suspended probably due to electricity power failure but modeling
continues where the process stops.

Ξ

2α≥
3β≅

≤ γ

New
Observations

Previous
Parameters

≤ ±
I

Ξ

×

D
D

D Massive
Environment

Figure 1: System Model for Discretizer Agent Actuators

Also, the previous parameters are used adaptively to discretize subsequent

observations instead of re-scanning the entire old massive dataset. The last tuples of
intervals if the data patterns remain the same, the data types for all attributes, etc are
examples of previous parameters. The configuration used by the discretizer actuators
is designed and described in the next subsection.

Discretizer
Actuators

3.2 The Configurable Discretizer Actuators

We designed and configured these actuators as shown in Figure 2 with dynamic
packets of information to act upon the environments. The content of the packet
consists of the control information and the environments. The control information
provides dynamic set of instructions that the actuators need to use to act upon the
environments.

The constituents of the control information depicted in Figure 2 are as follows:
source-address (e.g. agent-actuator-id), destination is any universal resource locator
of the data (e.g. secondary storage or network machine address), node-ids (or attribute
names) and actions (e.g. advance discretization scripts using the interval bins) taken
by the actuators. The constituents retain their usual meanings as described. The
environment acted upon is the schema table (or dataset) at various destinations. The
configuration of the actuators can be expanded or modified as new functionalities are
provided. Thus, our discretizer actuators are concurrently distributed because they are
lightweight, mobile and independent which are suitable on single user machine and
distributed architecture. Section Four brings our theory to practice.

Figure 2: Configuration of the discretizer actuators convert numerical to discrete datasets

4. Experimental Evaluations

One of the objectives of our proposed discretizer actuators is to bring theory to
practice with an emphasis on applications and practical work. The algorithms
compared are Hellinger’s algorithm using our actuators, Weka and Hugin algorithms.
They are experimented on three public [9] massive datasets including (1) El-Nino, (2)

<Agent-actuator: = id-0 Destination: = URL
Environment: = schema-name>

 <Node Id: = id-1; Bins: = Interval-Tuples>
</Node>

 <Node Id: = id-n; Bins: = Interval-Tuples >
</Node>

<Action: = Advance-Disc-scripts> </Action>
</Agent-actuator >

<Agent-actuator: = id-n Destination: = URL
Environment: = schema-name>

 <Node Id: = id-1; Bins: = Interval-Tuples >
</Node>

 <Node Id: = id-n; Bins: = Interval-Tuples >
</Node>

<Action: = Advance-Disc-scripts> </Action>
</Agent-actuator >

Census-Income (KDD) and (3) Pseudo periodic synthetic time series. The El-Nino
data set contains oceanographic and surface meteorological readings. The Census-
Income (KDD) contains weighted census dataset. Finally, the pseudo dataset is
designed for testing indexing schemes in time series.

In practice, the major contributing factors that affect discretizations and modeling
performances are the number of instances, columns and number of states (distinct
values) in each column of the datasets. The three datasets have varying sizes with
over 178,080, 200,000, and 100,000 instances respectively. They include 11, 9 and 10
numeric columns respectively. The pseudo dataset has the worst scenario because its
number of instances is equal to the number of its distinct 100,000 states.

4.1 Experiment 1: Comparing Algorithms

Table 1: Comparing Configurable Actuators using Hellinger, Weka and Hugin algorithms

Data
Sets

Methods Number of
Actuators

Speed
(secs)

Mem-usage
 (MB)

Status

El-Nino
(178,080)

Configurable
actuators
using
Hellinger

1
2
3
4
5
11

264
148
105
 71
 69
 33

17.3
17.6
17.8
17.9
18.0
18.2

Ready
to

Model

Weka

1

201

59.0

Out of
Memory

Hugin

1

200

66.8

Towards
Memory

 failure
Census-
Income-
KDD
(200,000)

Configurable
actuators
using
Hellinger

1
2
3
4
9

177
 96
 78
 54
 29

17.4
18.1
20.2
20.8
22.6

Ready
to

Model

Weka

1

173

39.2

Out of
Memory

Hugin

1

176

39.6

Towards
 Memory

 failure
Pseudo
(100,000)

Configurable
actuators
using
Hellinger

1
2
3
4
5
10

174
104
 79
 66
 64
 54

23.4
23.9
25.1
26.5
26.9
29.0

Ready
to

Model

Weka

1

169

51.2

Out of
Memory

Hugin

1

165

67.2

Out of
Memory

The objective here is to find the impact of our configurable actuators on the
algorithms. The results depicted by Table 1 are a summary of the average
performance of the three algorithms on the three datasets in terms of speed and
memory used by the configurable actuators. For each experiment, the speed includes
the time to save back into the secondary memory other than leaving the results on the
volatile RAM. In all the cases, the results revealed that our configurable actuators
using Hellinger’s algorithm discretized successfully and was ready to proceed to
modelling while the other algorithms (Weka and Hugin) suffered from memory
problems by exhibiting an “out of memory” or a “towards memory failure” states.
Observe in Table 1 that the Hellinger algorithm performed tremendously better than
the other algorithms when we consider the results provided by the highest (or best)
number of actuators in each dataset. These results suggest that using our configurable
discretizer agent actuators with the Hellinger’s algorithm is an economically scalable
solution which supports the optimization of Bayesian intelligent modeling.

4.2 Experiment 2: Comparing Execution Speed

From the results in Table 1, we specifically compared the discretization speeds of
configurable actuators using Hellinger, Weka and Hugin on the El-Nino dataset stored
remotely on a secondary storage. In the same vein with Weka and Hugin which use a
processor, we discretized the massive datasets with one symmetric processor (or
actuator). This set of experiments was successfully repeated by distributing and
concurrently increasing the number of configurable actuators while recording the
discretization time as shown in Figure 3. The results show that using the Hellinger’s
algorithm, an increase in the number of actuators makes the discretization process
faster.

Figure 3: Increasing number of actuators on El-Nino dataset minimizes (or speeds up)

discretization time better than Weka and Hugin discretizations.

In contrast, when looking at the Weka and Hugin discretizations in Figure 3, one
can observe that varying the number of actuators did not improved the discretization
time. By comparing the discretization time of the highest (best) number of actuators

used to the usual one processor of Weka and Hugin, within the allocated limited
memory, our configurable actuator using Hellinger’s algorithm is faster than Weka
and Hugin by 83% in Figure 3. A similar performance pattern is revealed like Figure
3 when we adapted new observations to the previous discretization parameters
(intervals used for the old datasets). By cross validation [1], 15% each of the datasets
were selected at random as new observations and were discretized using the previous
parameters. Minimization of the discretization time results was also recorded by
increasing the actuators similarly to Figure 3.

4.3 Experiment 3: Comparing memory usage

The results described in experiments 1 and 2 above show that users who are not
opportune to be in a networking environment or who cannot afford a suitable one, can
safely discretize massive data on a machine with limited memory by distributing our
configurable actuators. One can observe in Figure 4 from the Weka and Hugin
discretizations that varying the number of actuators does not improve on memory
usage because all the records are loaded onto the memory at a time. The details of
occupied megabytes of memory can be seen in Table 1 which reveals halt states.

Figure 4: Concurrent distribution of actuators on El-Nino dataset minimizes memory usage
better than Weka and Hugin discretizations.

From the results in Figures 7, our configurable actuators using Hellinger’s

algorithm successfully managed the same limited memory by concurrently exploiting
secondary storage resources on remote locations (e.g. hard disk on a machine or on
workstations). Though there are slight increases in memory usage as the number of
actuators increases, one can observe in Figure 4 that our actuators reduce the memory
usage to a minimum acceptable level. For example, this shows that the configurable
actuators save 69.2% and 72.8% of the limited memory from crashing as compared to
Weka and Hugin discretizations in Figure 4. This once again supports our claim that
users cannot afford to trade off between time and space in real life Bayesian learning
via discretization.

5. Concluding Remarks and Future Work

We have proposed in this paper the development of configurable actuators for the
discretization of massive datasets as a supportive optimization solution to the
computational problems arising in intelligent systems. Experimental results revealed
that the use of the configurable actuator is an economically scalable solution to the
problem which does not require purchasing expensive hardware. The results support
the claim that using our configurable actuators with the Hellinger’s algorithm leads to
better memory usage and faster discretization of massive datasets compared to
conventional algorithms such as Weka and Hugin discretizations.

 This study shows that the configurable discretizer actuators can potentially
become a more powerful scalable solution that puts an end to the computational
problems raised by the learning of network models.

Acknowledgements. Our appreciation goes to the University of Cape Town and the
Complex Adaptive Systems (Pty.) Ltd, for their financial supports.

References

1. Russell, S., Norvig, P.: Artificial Intelligence, A Modern Approach, 2nd Edition, Prentice

Hall Series Inc. New Jersey 07458 (2003)
2. Chickering, D., Heckerman, D., Meek, C.: Large-Sample Learning of Bayesian Networks

is NP-Hard. The Journal of Machine Learning Research, Volume 5, MIT Press, 1287 –
1330 (2004)

3. William, H., Haipeng, G., Benjamin, P., Julie, S.: A Permutation Genetic Algorithm For
Variable Ordering In Learning Bayesian Networks From Data. Proceedings of Genetic
and Evolutionary Computation Conference, Morgan Kaufmann Publishers Inc, 383-390
(2002)

4. Li, J., Liu, H., Wong, L.: Mean-entropy Discretized Features are Effective for Classifying
High-dimensional Biomedical data. Proceedings of the 3rd ACM SIGKDD Workshop on
Data Mining in Bioinformatics, Washington, DC (2003)

5. Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretization of
continuous features. In 12th International Conference on Machine Learning (1995)

6. Lee, C.: A Hellinger-based discretization method for numeric attributes in classification
learning, Knowledge-Based Systems, volume 20(4), pages 419-425 (2007)

7. Witten, I.H., Eibe, F.: Data Mining Practical Machine Learning Techniques and Tools,
University of Waikato - WEKA, Morgan Kauffman (1999)

 DOI =http://www.cs.waikato.ac.nz/\simml/weka/
8. Olesen, K.G., Lauritzen, S.L., Jensen, F.V.: aHugin: A system creating adaptive causal

probabilistic networks. In D. Dubois, M. P. Wellman, B. D'Ambrosio, and P. Smets,
editors, Proceedings of the Eighth Conference on Uncertainty in Artificial Intelligence,
pages 223-229, Stanford, California, July 17-19. Morgan Kaufmann, San Mateo,
California (1992), DOI = http://hugin.sourceforge.net/download/.

9. Newman, D., Hettich, S., Blake, C., Merz, C.: UCI Repository of Machine Learning
Databases (University of California, Department of Information and Computer Science,
Irvine,CA),(1998).DOI= http://www.ics.uci.edu/\simmlearn/MLRepository.html

10. Zhang, Y., Luke, E.A.: Dynamic Memory Management in the Loci Framework,
Computational Science. SpringerLink press, ISBN: 978-3-540-26043-1, Volume 3515,
Pg 790 – 797 (2005).

11. Graham, R.M.: Principles of Systems Programming, John Wiley & sons Inc.
New York (1975).

