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Abstract. We propose a generalized model with configurabiscrdtizer
actuators as a solution to the problem of the digation of massive numerical
datasets. Our solution is based on a concurrshilition of the actuators and
uses dynamic memory management schemes to provaenplete scalable
basis for the optimization strategy. This prevethts limited memory from
halting while minimizing the discretization timedhadapting new observations
without re-scanning the entire old data. Using edéht discretization
algorithms on publicly available massive datasets,conducted a number of
experiments which showed that using our discretiaetuators with the
hellinger’'s algorithm results in better performancempared to using
conventional discretization algorithms implemeniedhe Hugin and Weka in
terms of memory and computational resources. By Bigpwthat massive
numerical datasets can be discretized within lichiteemory and time, these
results suggest the integration of our configureddeuators into the learning
process to reduce the computational complexity efi@ling Bayesian networks
to a minimum acceptable level.
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1 Introduction

Bayesian network models often formulate the comseaing component of some
intelligent systems because of their suitabilityhandling complex problems [1].
Researchers and practitioners have stressed tlaahirlg such models from
environments captured as massive datasets is catignally intensive [2] [3]. In
practice, it is convenient to say that massive staare relatively defined based on
the capacity of the machine used for learning ared also dependent on users’
execution urgency. For example 50,000 records ¢ésgéh may be massive for a
machine and moderate or small for another. Thengitie on the datasets implies that
too much of computational time is expended andtéichimemory space may crash
during these operations. This affects businessesehrch deliveries, and may hinder
the growing usage of Bayesian networks in industti@t keep massive datasets to
build intelligent systems. From our practical knedde, improving the performance
of discretization is obviously a sound basis fortimzing Bayesian networks’
learning. Intelligent system engineers do not weniwait too long to make the
reasoning component ready for use.



Most of the existing conventional algorithms loadie massive datasets onto the
limited memory for discretizations and a colummiscessed one at a time. Time is
expended for loading, discretizing and probablyirsgback, which could otherwise
have been minimized. Carrying out the discretizafiwocess on massive datasets
whose size is more than the available allocated amgnmay currently not be
practically feasible. Achieving this requires stidlity of discretization methods
which is very challenging.

A number of fairly recent studies have developeddgoonventional algorithms to
discretize datasets but they fall short in congidethe scalability of their approaches
[4] [5]. Among the rationales in this scalabilitysearch is studying how massive are
the datasets used in the existing discretizatigmagzhes. For examples, &ial.[4]
suggested feature selection heuristics for distngti bio-medical data where they
evaluated it on a notable lung-cancer dataset ¢d0D0records. Lee’s supervised
algorithm [6] is similar to Liet al. but he used the entropy of intervals for
discretization. Also, Lee used a maximum of 3,1&8rds of hypothyroid dataset to
evaluate his work. Out of the 16 datasets used duygbertyet al. [5], the maximum
size is Australian dataset with 6,650 records.

The computational times and memory usages of thbade described above are
not known though these are two important parametposn which the scalability of
discretizing massive datasets for learning netwdedysends. In an attempt to address
scalability of discretizations for the core componef intelligent systems, the
available open source network learning applicatimg. Weka [7] and Hugin [8])
force users to discretize all numeric values of dktebutes present in the datasets.
However, certain numeric attributes in real lifee arot necessarily required to be
discretized. In this research, we proposed cordigler discretizer agent actuators
which dynamically scale limited memory and impraasmputational time efficiency.
In a number of comparative evaluations, the actsavaitperform the conventional
discretization approaches in speed and memory rneamagt respectively. Our major
contributions are:

* The development of a new generalized configuraideretizer actuators and its
system model to optimize the core intelligent systeomponent through
discretization processes.

* The evaluation of this configurable actuator onljgljo massive datasets using
different discretization algorithms implemented/ifeka and Hugin systems.

The rest of this paper is arranged as follows: éstisn 2, we introduce the
background of Bayesian networks, discretizationo@dilgms, dynamic memory
management scheme and the agent architecture disethretical foundations of our
configurable discretizer actuators. Section 3 prsséhe system model and the
configuration of the discretizer agent actuatomscti®n 4 presents the experimental
evaluations of the discretization time and memaglability using publicly available
datasets from UCI [9] (University of California Irg) repository used by intelligent
systems researchers. We conclude the paper insécti



2 Theoretical Background
2.1 Bayesian Network M odels

A Bayesian belief network is formally defined asliaected acyclic graph (DAG)
represented as G = {X(G), A(G)}, where X(G) X{...,X,}, vertices (variables) of
the graph G andA(G) O X(G)x X(G), set of arcs of G. The network requires

discrete random values such that if there existdam variable%, . . ., X, with each
having a set of some valugs . . .,X, then, their joint probability density distribution
is defined in equation 1;

where 77( Xi) represents a set of probabilistic parent(s) ofdcki [1]. A parent

variable otherwise refers to eause has a dependency with a child variable known as
effect. Every variableX with a combination of parent(s) values on the prap
captures probabilistic knowledge as conditionalbptulity table (CPT). A variable
without a parent encodes a marginal probabilityarbéng the suitable networks from
massive datasets is computationally intensiveasdtbove.

2.2 Discretization Algorithms

Discretization algorithms are techniques which aeed as preprocessing key
operations in learning Bayesian models [5] [6]. yhkassify numerical data into their
corresponding interval values relatively to thetgris in the data attributes. Weka
and the Hugin systems use discretization algoritimmsh are built around the simple
binning and minimum description length (MDL) metlkdd]. Simple binning include
an equal-width method using an unsupervised digetein approach which divides
attribute values int& equal sizes. The sed&ds supplied by users while equal-width
finds maximum and minimum attribute values and they used to determine data
intervals. The Hellinger-based algorithm uses irgkrentropy function E(.) as a
justification for quality discretization to accomdate any datasets. The entropy of
any interval betweea andb is shown in equation 2 [6].

E(a, b)) = \/Z(\/ pr(x;) =y pr(x; |ab))?

As a basis of the algorithm, the valugsof the target attribute being discretized

are sorted accordingly and they form a column dkrirals. The probability
distribution of x; is represented 3s(x). The scheme in the next subsection is

therefore adopted to prevent the out-of-memory lgrob in the learning processes.

)

2.3 Dynamic M emory Management Scheme

The dynamic memory management scheme used in theflaoanework [10] is an
economical solution which manages the memory bycation and de-allocation of
data structures based on the lifetime of data &tres. Thus, in order to accommodate



discretization of large datasets within a limitedmory, we extracted and interpreted
the scheme from [10] as follows: (i) pre-allocatimhmemory to data structures, (i)
incorporate relevant memory management operatigiijsjnvoke loop scheduling
techniques, and (iv) recycle memory from data stmes.

Pre-allocation with partitioning of the entire menmp@lone in scheme i does not
benefit space saving until the others in the secpieare involved. Many parallel
algorithms exploit scheme i as a trade-off to opénspeed but suffer from peak
memory requirement. A possible relevant manageropatation in ii is the use of
remote memory or secondary storage devices, fomplea These management
operations are generalized concepts of virtual nmgm@ virtual memory is a
multilevel store which gives a large process anreapion that it has more primary
memory to itself, while it actually uses externakddevices as a supplement [11]. In
iii, examples of loop scheduling techniques aretiplel nested iterations, recursions,
synchronizations, etc. Also in iv, at the end oémvschedule or lifetime, memory is
recovered from data structures after its executithus, this scheme empowers a
system to accommodate massive datasets withinigedirmemory without a halting
problem. The next subsection also describes thdc bagent architecture as
fundamentals of our configurable actuators.

24 A Basic Agent Architecture

Among the classes of agents used in intelligertesys, the software agent as related
to this work perceives from the componentsendironments through sensors and
acting upon the environment througlstuators [1]. According to Russell [1], a
software agent can sense its environment usingc@ilgent or network packets and
also uses writing files or packets as actuatorsadb on the environment. From
Russell’'s illustration, when environment is peregly some forms of machine
learning algorithms are used to interpret phecepts. They consequently generate the
instructions required by the actuators to carryamtions on the environment.

The positions of the agent and the environmentaodten far apart which
possess distributed properties. It illustrates #gents can be sent over a network to
carry out specific tasks and can also provide sesvto other components on a given
machine. It is deduced from here that agent aatsiatan be characterized with
mobility as they include their required informatidn their description. Their
independence influences the design of componentsdiiributed agents which
motivate the development of the configurable digzee agent actuators in this study.
Section 3 now describes the proposed configuratiletors.

3. TheGeneralized Configurable Discretizer Actuators
3.1 TheSystem Model for the Actuators

Figure 1 depicts the system model that we usedctmraplish complete scalable
discretization. If either space or time is optintizé is an incomplete scalability as a
trade off is not beneficial to the networks usednielligent systems. Our strategy
combines the memory management scheme in subseéc8oand the architecture in
subsection 2.4. In this strategy, an actuator dicdted and sent to discretize values



of one or more attributes. For balancing purpoaasimber of actuators, rather than
all, are heuristically set by users and concuryedigtributed at a time. Discretization
time is faster as the actuators act on more than aitributes at a time. As the
actuators complete discretization of some attriburtea pass, they are returned to the
symmetric processors that reschedule them for suiese¢ attributes. With this,
memory is continually and dynamically allocated eththen recycles each time there
is scheduling of actuators for discretization.

We now define the major components of Figure 1devis: discretizeragent
actuators described in the previous paragraph, discretinatigorithm, massive
environment (or datasets), storage of previous discretiza@meters and subsequent
observations made after discretizing the massive datasets. dlgerithm which
resides on the limited memory of a machine gensraiples of intervals for the
actuators to discretize values of the attributesotely. We adopted the Hellinger-
based algorithm in Lee’s work [6] as a proof of cept since this research focuses on
supporting the optimization of the core reasoningponent of intelligent systems
through scalable discretizations. The component tlid massive dataset (or
environment) is kept away from the limited memondats attributes’ values are
acted upon concurrently in a secondary storagemmsa a network. This provides a
competitive advantage in developing countries whiiseretization process can be
accidentally suspended probably due to electrigipwver failure but modeling
continues where the process stops. f\
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Figure 1: System Model for Discretizer Agent Actuators

Also, the previous parameters are used adaptivelydiscretize subsequent
observations instead of re-scanning the entirentddsive dataset. The last tuples of
intervals if the data patterns remain the samed#ia types for all attributes, etc are
examples of previous parameters. The configurateed by the discretizer actuators
is designed and described in the next subsection.



3.2 TheConfigurable Discretizer Actuators

We designed and configured these actuators as shmowigure 2 with dynamic
packets of information to act upon the environmeftse content of the packet
consists of thecontrol information and theenvironments. The control information
provides dynamic set of instructions that the dotsaneed to use to act upon the
environments.

The constituents of the control information depicta Figure 2 are as follows:
source-address (e.g. agent-actuator-idjlestination is any universal resource locator
of the data (e.g. secondary storage or network maauddressyode-ids (or attribute
names) andctions (e.g. advance discretization scripts using therua bins) taken
by the actuators. The constituents retain theirausoeanings as described. The
environment acted upon is the schema table (oiségtat various destinations. The
configuration of the actuators can be expandedaified as new functionalities are
provided. Thus, our discretizer actuators are coratly distributed because they are
lightweight, mobile and independent which are di@&aon single user machine and
distributed architecture. Section Four brings twoty to practice.

<Agent-actuator: #d-0  Destination: = URL
Environment: =schema-name> !

<Node Id: 5d-1; Bins: =Interval-Tuples> |
</Node> !

<Node Id: Fd-n; Bins: =Interval-Tuples > !

</Node> i

<Action: = Advance-Disc-scripts> </Action> !
</Agent-actuator > i

© <Agent-actuator: #d-n  Destination: = URL
i Environment: =schema-name>

! <Node Id: 5d-1; Bins: =Interval-Tuples >

; </Node>
[ <Node Id: 3d-n; Bins: =Interval-Tuples >

! </Node>
i <Action: = Advance-Disc-scripts> </Action>
! </Agent-actuator >

Figure 2: Configuration of the discretizer actuators convert numericaltrete datasets

4. Experimental Evaluations

One of the objectives of our proposed discretizetuators is to bring theory to
practice with an emphasis on applications and jactwork. The algorithms
compared are Hellinger’'s algorithm using our aatsgtWeka and Hugin algorithms.
They are experimented on three public [9] massatagets including (1) EI-Nino, (2)



Census-Income (KDD) and (3) Pseudo periodic syithahe series. The EI-Nino
data set contains oceanographic and surface médgmal readings. The Census-
Income (KDD) contains weighted census dataset. lliginthe pseudo dataset is
designed for testing indexing schemes in time serie

In practice, the major contributing factors thaeaef discretizations and modeling
performances are the number of instances, columdsnamber of states (distinct
values) in each column of the datasets. The the#asdts have varying sizes with
over 178,080, 200,000, and 100,000 instances raggpkyc They include 11, 9 and 10
numeric columns respectively. The pseudo datasetheworst scenario because its
number of instances is equal to the number ofitsndt 100,000 states.

4.1 Experiment 1: Comparing Algorithms

Table1: Comparing Configurable Actuators using Hellinger, Wakd Hugin algorithms

Data Methods Number of| Speed Mem-usage
Sets Actuators | (secs) (MB) Status
El-Nino Configurable 1 264 17.3 Ready
(178,080) | actuators 2 148 17.6 to
using 3 105 17.8 Model
Hellinger 4 71 17.9
5 69 18.0
11 33 18.2
Weka Out of
1 201 59.0 Memory
Hugin Towards
1 200 66.8 Memory
failure
Census- | Configurable 1 177 17.4 Ready
Income- | actuators 2 96 18.1 to
KDD using 3 78 20.2 Model
(200,000) | Hellinger 4 54 20.8
9 29 22.6
Weka Out of
1 173 39.2 Memory
Towards
Hugin 1 176 39.6 Memory
failure
Pseudo Configurable 1 174 23.4 Ready
(100,000) | actuators 2 104 23.9 to
using 3 79 25.1 Model
Hellinger 4 66 26.5
5 64 26.9
10 54 29.0
Weka Out of
1 169 51.2 Memory
Hugin Out of
1 165 67.2 Memory




The objective here is to find the impact of our fogurable actuators on the

algorithms. The results depicted by Table 1 areuansary of the average

performance of the three algorithms on the thremsd#s in terms of speed and
memory used by the configurable actuators. For eapleriment, the speed includes
the time to save back into the secondary memorgrdtian leaving the results on the
volatile RAM. In all the cases, the results revdaikat our configurable actuators
using Hellinger's algorithm discretized successfudind was ready to proceed to
modelling while the other algorithms (Weka and Hh)gsuffered from memory

problems by exhibiting an “out of memory” or a “tamds memory failure” states.

Observe in Table 1 that the Hellinger algorithmfpened tremendously better than
the other algorithms when we consider the resultsiged by the highest (or best)
number of actuators in each dataset. These resudtgest that using our configurable
discretizer agent actuators with the Hellingergoaithm is an economically scalable
solution which supports the optimization of Bayesigtelligent modeling.

4.2 Experiment 2: Comparing Execution Speed

From the results in Table 1, we specifically congglathe discretization speeds of
configurable actuators using Hellinger, Weka andjiHwn the EI-Nino dataset stored
remotely on a secondary storage. In the same viginWieka and Hugin which use a
processor, we discretized the massive datasets avith symmetric processor (or
actuator). This set of experiments was successidpeated by distributing and
concurrently increasing the number of configurabtduators while recording the
discretization time as shown in Figure 3. The itsssthow that using the Hellinger’s
algorithm, an increase in the number of actuatoakes the discretization process
faster.
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Figure 3: Increasing number of actuators on EI-Nino dataset minimizessgeeds up)
discretization time better than Weka and Hugin discretizations.

In contrast, when looking at the Weka and Hugircmiszations in Figure 3, one
can observe that varying the number of actuatasndt improved the discretization
time. By comparing the discretization time of thighest (best) number of actuators



used to the usual one processor of Weka and Huwgthjn the allocated limited
memory, our configurable actuator using Hellingealgorithm is faster than Weka
and Hugin by 83% in Figure 3. A similar performamatern is revealed like Figure
3 when we adapted new observations to the previbissretization parameters
(intervals used for the old datasets). By cros&latibn [1], 15% each of the datasets
were selected at random as new observations arel digretized using the previous
parameters. Minimization of the discretization timesults was also recorded by
increasing the actuators similarly to Figure 3.

4.3 Experiment 3: Comparing memory usage

The results described in experiments 1 and 2 alsbosv that users who are not
opportune to be in a networking environment or whonot afford a suitable one, can
safely discretize massive data on a machine witlitdd memory by distributing our

configurable actuators. One can observe in Figurgkomh the Weka and Hugin

discretizations that varying the number of actuatdoes not improve on memory
usage because all the records are loaded onto e¢h®org at a time. The details of
occupied megabytes of memory can be seen in Tabldch reveals halt states.

=0

Optimise Bayesian Learning By Minimizing Memory Usage

—#— Configurable Agent's Actuators —a— Weka Discretizations
—a— Hugin Discretizations

@
=1
|

@ -
=]

RAW g i
S a8 o o
1

=]

Approx. Memory Usage (MB)

[=]

=1

Increasing Actuators

Figure 4: Concurrent distribution of actuators on EI-Nino datasetimizes memory usage
better than Weka and Hugin discretizations.

From the results in Figures 7, our configurableuaitirs using Hellinger’'s
algorithm successfully managed the same limited angrby concurrently exploiting
secondary storage resources on remote locatiogsh@rd disk on a machine or on
workstations). Though there are slight increasesy@mory usage as the number of
actuators increases, one can observe in Figuratéth actuators reduce the memory
usage to a minimum acceptable level. For examhie,shows that the configurable
actuators save 69.2% and 72.8% of the limited mgritom crashing as compared to
Weka and Hugin discretizations in Figure 4. This@again supports our claim that
users cannot afford to trade off betwesne andspace in real life Bayesian learning
via discretization.

5. Concluding Remarks and Future Work



We have proposed in this paper the developmenbpfigurable actuators for the
discretization of massive datasets as a suppouip&mization solution to the
computational problems arising in intelligent sysse Experimental results revealed
that the use of the configurable actuator is amewucally scalable solution to the
problem which does not require purchasing expensardware. The results support
the claim that using our configurable actuatordlite Hellinger’'s algorithm leads to
better memory usage and faster discretization ofsiva datasets compared to
conventional algorithms such as Weka and Hugirreligmations.

This study shows that the configurable discretiaetuators can potentially
become a more powerful scalable solution that puisend to the computational
problems raised by the learning of network models.
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