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Abstract. We propose a generalized model with configurable discretizer 
actuators as a solution to the problem of the discretization of massive numerical 
datasets.  Our solution is based on a concurrent distribution of the actuators and 
uses dynamic memory management schemes to provide a complete scalable 
basis for the optimization strategy. This prevents the limited memory from 
halting while minimizing the discretization time and adapting new observations 
without re-scanning the entire old data. Using different discretization 
algorithms on publicly available massive datasets, we conducted a number of 
experiments which showed that using our discretizer actuators with the 
hellinger’s algorithm results in better performance compared to using 
conventional discretization algorithms implemented in the Hugin and Weka in 
terms of memory and computational resources. By showing that massive 
numerical datasets can be discretized within limited memory and time, these 
results suggest the integration of our configurable actuators into the learning 
process to reduce the computational complexity of modeling Bayesian networks 
to a minimum acceptable level.  

Keywords: Intelligent Systems, Massive datasets, Bayesian Networks, 
Discretization, Scalability. 

 
 
1   Introduction 
 
Bayesian network models often formulate the core reasoning component of some 
intelligent systems because of their suitability in handling complex problems [1]. 
Researchers and practitioners have stressed that learning such models from 
environments captured as massive datasets is computationally intensive [2] [3]. In 
practice, it is convenient to say that massive datasets are relatively defined based on 
the capacity of the machine used for learning and are also dependent on users’ 
execution urgency. For example 50,000 records of dataset may be massive for a 
machine and moderate or small for another. The intensity on the datasets implies that 
too much of computational time is expended and limited memory space may crash 
during these operations. This affects business and research deliveries, and may hinder 
the growing usage of Bayesian networks in industries that keep massive datasets to 
build intelligent systems. From our practical knowledge, improving the performance 
of discretization is obviously a sound basis for optimizing Bayesian networks’ 
learning. Intelligent system engineers do not want to wait too long to make the 
reasoning component ready for use. 



Most of the existing conventional algorithms load entire massive datasets onto the 
limited memory for discretizations and a column is processed one at a time. Time is 
expended for loading, discretizing and probably saving back, which could otherwise 
have been minimized. Carrying out the discretization process on massive datasets 
whose size is more than the available allocated memory may currently not be 
practically feasible. Achieving this requires scalability of discretization methods 
which is very challenging.  

A number of fairly recent studies have developed good conventional algorithms to 
discretize datasets but they fall short in considering the scalability of their approaches 
[4] [5]. Among the rationales in this scalability research is studying how massive are 
the datasets used in the existing discretization approaches. For examples, Li et al.[4] 
suggested feature selection heuristics for discretizing bio-medical data where they 
evaluated it on a notable lung-cancer dataset of 10,000 records. Lee’s supervised 
algorithm [6] is similar to Li et al. but he used the entropy of intervals for 
discretization. Also, Lee used a maximum of 3,163 records of hypothyroid dataset to 
evaluate his work. Out of the 16 datasets used by Dougherty et al. [5], the maximum 
size is Australian dataset with 6,650 records.  

The computational times and memory usages of the methods described above are 
not known though these are two important parameters upon which the scalability of 
discretizing massive datasets for learning networks depends. In an attempt to address 
scalability of discretizations for the core component of intelligent systems, the 
available open source network learning applications (e.g. Weka [7] and Hugin [8]) 
force users to discretize all numeric values of the attributes present in the datasets. 
However, certain numeric attributes in real life are not necessarily required to be 
discretized. In this research, we proposed configurable discretizer agent actuators 
which dynamically scale limited memory and improve computational time efficiency. 
In a number of comparative evaluations, the actuators outperform the conventional 
discretization approaches in speed and memory management respectively. Our major 
contributions are:  

 
• The development of a new generalized configurable discretizer actuators and its 

system model to optimize the core intelligent system component through 
discretization processes. 

• The evaluation of this configurable actuator on publicly massive datasets using 
different discretization algorithms implemented in Weka and Hugin systems.   

 
The rest of this paper is arranged as follows: in section 2, we introduce the 

background of Bayesian networks, discretization algorithms, dynamic memory 
management scheme and the agent architecture as the theoretical foundations of our 
configurable discretizer actuators. Section 3 presents the system model and the 
configuration of the discretizer agent actuators. Section 4 presents the experimental 
evaluations of the discretization time and memory scalability using publicly available 
datasets from UCI [9] (University of California Irvire) repository used by intelligent 
systems researchers. We conclude the paper in section 5.  

 
 
 



2     Theoretical Background 
 

2.1 Bayesian Network Models 
 
A Bayesian belief network is formally defined as a directed acyclic graph (DAG) 
represented as G = {X(G), A(G)}, where X(G) = {X1,…,Xn}, vertices (variables) of 
the graph G and )()()( GXGXGA ×⊆ , set of arcs of G. The network requires 

discrete random values such that if there exists random variables X1, . . ., Xn with each 
having a set of some values x1, . . ., xn then, their joint probability density distribution 
is defined in equation 1;  
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where )( iXπ  represents a set of probabilistic parent(s) of child Xi [1]. A parent 

variable otherwise refers to as cause has a dependency with a child variable known as 
effect. Every variable X with a combination of parent(s) values on the graph G 
captures probabilistic knowledge as conditional probability table (CPT). A variable 
without a parent encodes a marginal probability. Learning the suitable networks from 
massive datasets is computationally intensive as stated above.  

 
2.2 Discretization Algorithms 
 
Discretization algorithms are techniques which are used as preprocessing key 
operations in learning Bayesian models [5] [6]. They classify numerical data into their 
corresponding interval values relatively to the patterns in the data attributes. Weka 
and the Hugin systems use discretization algorithms which are built around the simple 
binning and minimum description length (MDL) methods [1]. Simple binning include 
an equal-width method using an unsupervised discretization approach which divides 
attribute values into k equal sizes. The seed k is supplied by users while equal-width 
finds maximum and minimum attribute values and they are used to determine data 
intervals. The Hellinger-based algorithm uses interval entropy function E(.) as a 
justification for quality discretization to accommodate any datasets. The entropy of 
any interval between a and b is shown in equation 2 [6]. 
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i
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As a basis of the algorithm, the values ix of the target attribute being discretized 

are sorted accordingly and they form a column of intervals. The probability 
distribution of ix is represented as )( ixpr . The scheme in the next subsection is 

therefore adopted to prevent the out-of-memory problems in the learning processes. 
 

2.3     Dynamic Memory Management Scheme 
 
The dynamic memory management scheme used in the Loci framework [10] is an 
economical solution which manages the memory by allocation and de-allocation of 
data structures based on the lifetime of data structures. Thus, in order to accommodate 



discretization of large datasets within a limited memory, we extracted and interpreted 
the scheme from [10] as follows: (i) pre-allocation of memory to data structures, (ii) 
incorporate relevant memory management operations, (iii) invoke loop scheduling 
techniques, and (iv) recycle memory from data structures. 

Pre-allocation with partitioning of the entire memory alone in scheme i does not 
benefit space saving until the others in the sequence are involved. Many parallel 
algorithms exploit scheme i as a trade-off to optimize speed but suffer from peak 
memory requirement. A possible relevant management operation in ii is the use of 
remote memory or secondary storage devices, for example. These management 
operations are generalized concepts of virtual memory. A virtual memory is a 
multilevel store which gives a large process an impression that it has more primary 
memory to itself, while it actually uses external disk devices as a supplement [11]. In 
iii, examples of loop scheduling techniques are multiple nested iterations, recursions, 
synchronizations, etc. Also in iv, at the end of every schedule or lifetime, memory is 
recovered from data structures after its execution. Thus, this scheme empowers a 
system to accommodate massive datasets within a limited memory without a halting 
problem. The next subsection also describes the basic agent architecture as 
fundamentals of our configurable actuators. 

  
2.4     A Basic Agent Architecture 
 
Among the classes of agents used in intelligent systems, the software agent as related 
to this work perceives from the components of environments through sensors and 
acting upon the environment through actuators [1]. According to Russell [1], a 
software agent can sense its environment using file content or network packets and 
also uses writing files or packets as actuators to act on the environment. From 
Russell’s illustration, when environment is perceived, some forms of machine 
learning algorithms are used to interpret the percepts. They consequently generate the 
instructions required by the actuators to carry out actions on the environment.  
 The positions of the agent and the environment are often far apart which 
possess distributed properties. It illustrates that agents can be sent over a network to 
carry out specific tasks and can also provide services to other components on a given 
machine. It is deduced from here that agent actuators can be characterized with 
mobility as they include their required information in their description. Their 
independence influences the design of components for distributed agents which 
motivate the development of the configurable discretizer agent actuators in this study. 
Section 3 now describes the proposed configurable actuators.  

 
3.   The Generalized Configurable Discretizer Actuators 
 
3.1     The System Model for the Actuators 
 
Figure 1 depicts the system model that we used to accomplish complete scalable 
discretization. If either space or time is optimized, it is an incomplete scalability as a 
trade off is not beneficial to the networks used in intelligent systems. Our strategy 
combines the memory management scheme in subsection 2.3 and the architecture in 
subsection 2.4. In this strategy, an actuator is dedicated and sent to discretize values 



of one or more attributes. For balancing purposes, a number of actuators, rather than 
all, are heuristically set by users and concurrently distributed at a time. Discretization 
time is faster as the actuators act on more than one attributes at a time. As the 
actuators complete discretization of some attributes in a pass, they are returned to the 
symmetric processors that reschedule them for subsequent attributes. With this, 
memory is continually and dynamically allocated which then recycles each time there 
is scheduling of actuators for discretization. 

We now define the major components of Figure 1 as follows: discretizer agent 
actuators described in the previous paragraph, discretization algorithm, massive 
environment (or datasets), storage of previous discretized parameters and subsequent 
observations made after discretizing the massive datasets. The algorithm which 
resides on the limited memory of a machine generates tuples of intervals for the 
actuators to discretize values of the attributes remotely. We adopted the Hellinger-
based algorithm in Lee’s work [6] as a proof of concept since this research focuses on 
supporting the optimization of the core reasoning component of intelligent systems 
through scalable discretizations. The component of the massive dataset (or 
environment) is kept away from the limited memory and its attributes’ values are 
acted upon concurrently in a secondary storage or across a network. This provides a 
competitive advantage in developing countries where discretization process can be 
accidentally suspended probably due to electricity power failure but modeling 
continues where the process stops.  
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Figure 1: System Model for Discretizer Agent Actuators  
 
Also, the previous parameters are used adaptively to discretize subsequent 

observations instead of re-scanning the entire old massive dataset. The last tuples of 
intervals if the data patterns remain the same, the data types for all attributes, etc are 
examples of previous parameters. The configuration used by the discretizer actuators 
is designed and described in the next subsection.  
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3.2    The Configurable Discretizer Actuators 
 
We designed and configured these actuators as shown in Figure 2 with dynamic 
packets of information to act upon the environments. The content of the packet 
consists of the control information and the environments. The control information 
provides dynamic set of instructions that the actuators need to use to act upon the 
environments.  

The constituents of the control information depicted in Figure 2 are as follows: 
source-address (e.g. agent-actuator-id), destination is any universal resource locator 
of the data (e.g. secondary storage or network machine address), node-ids (or attribute 
names) and actions (e.g. advance discretization scripts using the interval bins) taken 
by the actuators. The constituents retain their usual meanings as described. The 
environment acted upon is the schema table (or dataset) at various destinations. The 
configuration of the actuators can be expanded or modified as new functionalities are 
provided. Thus, our discretizer actuators are concurrently distributed because they are 
lightweight, mobile and independent which are suitable on single user machine and 
distributed architecture. Section Four brings our theory to practice. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Configuration of the discretizer actuators convert numerical to discrete datasets  
 

4.     Experimental Evaluations 
 
One of the objectives of our proposed discretizer actuators is to bring theory to 
practice with an emphasis on applications and practical work. The algorithms 
compared are Hellinger’s algorithm using our actuators, Weka and Hugin algorithms. 
They are experimented on three public [9] massive datasets including (1) El-Nino, (2) 

<Agent-actuator: = id-0  Destination: = URL                 
Environment: = schema-name>  

  <Node Id: = id-1; Bins: = Interval-Tuples> 
</Node>   

        <Node Id: = id-n; Bins: = Interval-Tuples > 
</Node>  

<Action: = Advance-Disc-scripts> </Action>  
</Agent-actuator >   
 

<Agent-actuator: = id-n  Destination: = URL                 
Environment: = schema-name>  

  <Node Id: = id-1; Bins: = Interval-Tuples > 
</Node>   

        <Node Id: = id-n; Bins: = Interval-Tuples > 
</Node>  

<Action: = Advance-Disc-scripts> </Action>  
</Agent-actuator >   
 



Census-Income (KDD) and (3) Pseudo periodic synthetic time series. The El-Nino 
data set contains oceanographic and surface meteorological readings. The Census-
Income (KDD) contains weighted census dataset. Finally, the pseudo dataset is 
designed for testing indexing schemes in time series.  

In practice, the major contributing factors that affect discretizations and modeling 
performances are the number of instances, columns and number of states (distinct 
values) in each column of the datasets. The three datasets have varying sizes with 
over 178,080, 200,000, and 100,000 instances respectively. They include 11, 9 and 10 
numeric columns respectively. The pseudo dataset has the worst scenario because its 
number of instances is equal to the number of its distinct 100,000 states.  

 
4.1 Experiment 1: Comparing Algorithms   

 
Table 1:  Comparing Configurable Actuators using Hellinger, Weka and Hugin algorithms  

 
Data 
Sets 

Methods Number of 
Actuators 

Speed 
(secs) 

Mem-usage  
    (MB) 

 
Status 

El-Nino 
(178,080) 

Configurable 
actuators  
using 
Hellinger 

1 
2 
3 
4 
5 
11 

264 
148 
105 
  71 
  69 
  33 

17.3 
17.6 
17.8 
17.9 
18.0 
18.2 

Ready 
to 

Model 

Weka 
 

 
1 

 
201 
  

 
59.0 

Out of 
Memory 

Hugin 
 

 
1 

 
200 
  

 
66.8 

Towards         
Memory 

      failure 
Census-
Income-
KDD 
(200,000) 

Configurable 
actuators  
using 
Hellinger 

1 
2 
3 
4 
9 

177 
  96 
  78 
  54 
  29 

17.4 
18.1 
20.2 
20.8 
22.6 

Ready 
to 

Model 

Weka 
 

 
1 

 
173 

 
39.2 

Out of 
Memory 

 
Hugin 
 

 
1 

 
176 

 
39.6 

Towards 
 Memory 

    failure 
Pseudo 
(100,000) 

Configurable 
actuators  
using 
Hellinger 

1 
2 
3 
4 
5 
10 

174 
104 
  79 
  66 
  64 
  54 

23.4 
23.9 
25.1 
26.5 
26.9 
29.0 

Ready 
to 

Model 

Weka 
 

 
1 

 
169 

 
51.2 

Out of 
Memory 

Hugin 
 

 
1 

 
165 

 
67.2 

Out of 
Memory 



 
The objective here is to find the impact of our configurable actuators on the 
algorithms. The results depicted by Table 1 are a summary of the average 
performance of the three algorithms on the three datasets in terms of speed and 
memory used by the configurable actuators. For each experiment, the speed includes 
the time to save back into the secondary memory other than leaving the results on the 
volatile RAM. In all the cases, the results revealed that our configurable actuators 
using Hellinger’s algorithm discretized successfully and was ready to proceed to 
modelling while the other algorithms (Weka and Hugin) suffered from  memory 
problems by exhibiting an “out of memory” or a “towards memory failure” states. 
Observe in Table 1 that the Hellinger algorithm performed tremendously better than 
the other algorithms when we consider the results provided by the highest (or best) 
number of actuators in each dataset. These results suggest that using our configurable 
discretizer agent actuators with the Hellinger’s algorithm is an economically scalable 
solution which supports the optimization of Bayesian intelligent modeling.   
 
4.2     Experiment 2: Comparing Execution Speed 
 
From the results in Table 1, we specifically compared the discretization speeds of 
configurable actuators using Hellinger, Weka and Hugin on the El-Nino dataset stored 
remotely on a secondary storage. In the same vein with Weka and Hugin which use a 
processor, we discretized the massive datasets with one symmetric processor (or 
actuator). This set of experiments was successfully repeated by distributing and 
concurrently increasing the number of configurable actuators while recording the 
discretization time as shown in Figure 3. The results show that using the Hellinger’s 
algorithm, an increase in the number of actuators makes the discretization process 
faster.  
 

           
 
Figure 3: Increasing number of actuators on El-Nino dataset minimizes (or speeds up) 

discretization time better than Weka and Hugin discretizations.  
 

In contrast, when looking at the Weka and Hugin discretizations in Figure 3, one 
can observe that varying the number of actuators did not improved the discretization 
time. By comparing the discretization time of the highest (best) number of actuators 



used to the usual one processor of Weka and Hugin, within the allocated limited 
memory, our configurable actuator using Hellinger’s algorithm is faster than Weka 
and Hugin by 83% in Figure 3. A similar performance pattern is revealed like Figure 
3 when we adapted new observations to the previous discretization parameters 
(intervals used for the old datasets). By cross validation [1], 15% each of the datasets 
were selected at random as new observations and were discretized using the previous 
parameters. Minimization of the discretization time results was also recorded by 
increasing the actuators similarly to Figure 3.  
 
4.3     Experiment 3: Comparing memory usage  
 
The results described in experiments 1 and 2 above show that users who are not 
opportune to be in a networking environment or who cannot afford a suitable one, can 
safely discretize massive data on a machine with limited memory by distributing our 
configurable actuators. One can observe in Figure 4 from the Weka and Hugin 
discretizations that varying the number of actuators does not improve on memory 
usage because all the records are loaded onto the memory at a time. The details of 
occupied megabytes of memory can be seen in Table 1 which reveals halt states. 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 4: Concurrent distribution of actuators on El-Nino dataset minimizes memory usage 
better than Weka and Hugin discretizations. 

 
From the results in Figures 7, our configurable actuators using Hellinger’s 

algorithm successfully managed the same limited memory by concurrently exploiting 
secondary storage resources on remote locations (e.g. hard disk on a machine or on 
workstations). Though there are slight increases in memory usage as the number of 
actuators increases, one can observe in Figure 4 that our actuators reduce the memory 
usage to a minimum acceptable level. For example, this shows that the configurable 
actuators save 69.2% and 72.8% of the limited memory from crashing as compared to 
Weka and Hugin discretizations in Figure 4. This once again supports our claim that 
users cannot afford to trade off between time and space in real life Bayesian learning 
via discretization.  
 

5. Concluding Remarks and Future Work 



We have proposed in this paper the development of configurable actuators for the 
discretization of massive datasets as a supportive optimization solution to the 
computational problems arising in intelligent systems. Experimental results revealed 
that the use of the configurable actuator is an economically scalable solution to the 
problem which does not require purchasing expensive hardware. The results support 
the claim that using our configurable actuators with the Hellinger’s algorithm leads to 
better memory usage and faster discretization of massive datasets compared to 
conventional algorithms such as Weka and Hugin discretizations.  

 This study shows that the configurable discretizer actuators can potentially 
become a more powerful scalable solution that puts an end to the computational 
problems raised by the learning of network models.  
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