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1 Introduction

The use of survey questionnaires with ordinal response variables has been used extensively
throughout times. Such response variables usually have a number of categories, often on
a Likert-like scale. Ordinal response data arising from self-reported survey questionnaires
are also common in assessment studies (Eaton and Bohrnstedt, 1989; Meredith and Mis-
lap, 1992; Hagenaars, 1990). An example of such a data is from the survey conducted
by the Veterans Health Administration (VHA) in 2001 via self reported questionnaires to
target areas for intervention, with the objective of improving employee work environment.
The VHA All Employee Survey (AES) had variables categorized into mostly 5 response
levels such as ‘Strongly Disagree’, ‘Disagree’, ‘Neither Agree Nor Disagree’, ‘Agree’ and
‘Strongly Agree’. Such survey data often include covariates that can help explain the
variations in the responses.

Generalized linear models with appropriate link are commonly used to model the
relationship between ordinal response and covariates, that may be either continuous, or
nominal (McCullagh and Nelder, 1989). Studies involving latent variables have been
carried out in the past (Chen, 1981; Bollen, 1989; Skrondal and Rabe-Hesketh, 2005;
Branden-Roche et al., 1997). Albert (1992) used latent data to estimate the polychoric
correlation between two ordinal variables. There has been an extensive theoretical devel-
opment of linear relationships between manifest variables and latent variables. However,
non-linear relationships like quadratic and interaction terms among variables are logical
but non-trivial in SEM (Li et al., 1998). More statistically involved Bayesian estimation
has been developed for non-linear relationships in SEM (Arminger and Muthén, 1998;
Zhu and Lee, 1999). All these methods have assumed that the data at hand are multi-
variate normal. However, in most assessment surveys, as also in the investigation in this
paper, variables are ordinal or binary. Assuming normality for such variables may lead
to erroneous conclusions (Olsson, 1979; Lee, Poon and Bentler, 1992). In the Bayesian
framework, Chen and Dey (1998, 2000a) and Chib and Greenberg (1998) have explored
multivariate probit models for correlated binary variables. Albert and Chib (1993) intro-
duced a Bayesian method to analyze data in the generalized linear model framework in
which they introduced latent variables to facilitate the Gibbs sampler. Following from
the modeling schemes in the lines proposed by Nandram and Chen (1996) and Chen and
Dey (2000b), we accommodate ordinal outcomes by including threshold parameters to
link each ordinal outcome to an underlying latent variable. In practice, the ordinal cate-
gorical data are considered to be imprecise measurements on some corresponding latent
continuous and normally distributed variable.

The rest of the paper is organized as follows. Section 2 provides a detailed description
of the the VHA AES 2001 ordinal response data. The development of the structural equa-
tions model for such survey data is given in Section 3. The likelihood, the priors, and the
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posterior based on the proposed model are discussed in Section 4. Model assessment via
Bayesian deviance information criterion is considered and appropriate deviance function
is derived in Section 5. A comprehensive data analysis of the 2001 VHA AES data is
given in Section 6. We conclude the paper with a brief discussion of the various issues
encountered in this development in Section 7. Details of the computational algorithm to
sample from the posterior distributions are given in the Appendix.

2 Data

We consider the data from the survey conducted in 2001 by the US Veterans Health
Administration (VHA) via self reported questionnaires to target areas for intervention,
with the objective to improve employee work environment. The target participants were
all VHA employees. The VHA all employee survey had variables categorized into mostly
5 response levels such as ‘Strongly Disagree’, ‘Disagree’, ‘Neither Agree Nor Disagree’,
‘Agree’ and ‘Strongly Agree’. The VHA AES data also include covariates that can help
explain the variations in the response. The part of the VHA AES 2001 data has 70,458
respondents (all cases - AC ) belonging to one of 132 facilities. Only 32% were complete
cases (CC). We consider 25 response variables from the AES, 24 of which are ordinal,
while one is dichotomized to a binary response. The ordinal responses are on a Likert-like
scale of {1, 2, 3, 4, 5} with ‘1’ corresponding to ‘Strongly Disagree’, ‘2’ corresponding to
‘Disagree’, ‘3’ corresponding to ‘Neither Agree Nor Disagree’, ‘4’ corresponding to ‘Agree’
and ‘5’ corresponding to ‘Strongly Disagree’; or analogously on a 5 point scale from ‘Not At
All Satisfied’ to ‘Very Satisfied’ format. For the binary response variable ‘0’ corresponds to
‘Likely to Leave’ and ‘1’ corresponds to ‘Likely to Stay’. Of the 25 response variables, 4 are
the outcome variables are of interest, viz., Customer Satisfaction, Employee Satisfaction,
Quality, and Retention — with Retention being the binary response variable. The other
21 responses are manifest variables for the 3 latent variables in the model, viz., Leadership,
Support and Resource.

We also consider 3 covariates viz., ‘gender’, ‘age’ and ‘years in VHA’. These three
covariates are dichotomized as follows: gender (female: 0, male: 1), age (≤ 49 year: 0, >
49 years: 1) and years in VHA (≤ 5 years: 0, > 5 years: 1). About 60% of the respondents
are females, 87% are 49 years or younger, while about 73% served in the VHA for over
5 years. Further, the AES 2001 has missing data, both in the 25 response variables as
well as in the 3 covariates. The missing percentages for the variables considered in the
AES 2001 data are given in Table 1. The largest missing percentage is for the question
relating to Planning-evaluation (18.7%), while the least missing is for Retention (0.8%),
suggesting perhaps that Retention is an important aspect for the employees to report
for possible impact on the outcome of the analysis of the survey. Among the covariates,
about 39% did not report their age, while almost every respondent reported gender and
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years of service with the VHA. For the rest of the variables, the missing percentages are
all below 10%.

Table 1
Missing percentage of the variables from the VHA AES 2001

Variable Missing Variable Missing
Reward fair 4.16 Employee resources 2.11

Rewards for service 7.25 Safety 2.60
Zero tolerance 5.22 Work/family balance 4.38

Differences valued 4.02 Teamwork 1.69
Customer needs 3.43 Planning-evaluation 18.69

Customer informed 6.01 Different background 8.86
Pay satisfaction 1.25 Supervisor support 7.27

Employee development 1.86 Customer satisfaction 6.83
Innovation 2.94 Employee satisfaction 1.43

Manager goals 5.28 Quality 1.38
Respect 1.48 Retention 0.83

Conflict resolution 9.88 Age 39.34
Employee involvement 4.03 Gender 3.07

Employee needs 3.97 Years in VA 2.79

3 Model

To fit the AES 2001 data, we consider the SEM with the probit link for the ordinal
response variables. Let y denote an ordinal response with L levels. Using the latent
variable approach of Albert and Chib (1993), we introduce a continuous latent variable
y∗ such that

y = l iff λl−1 ≤ y∗ < λl,

where the cut-points, −∞ = λ0 < λ1 < λ2 < · · · < λL−1 < λL = ∞, divide the real line
into L intervals. The probit model for the ordinal response y is then obtained by assuming
y∗ ∼ N (µ, σ2). Therefore we have the following probability P (y = l) by integrating out
y∗,

P (y = l) = Φ
(λl − µ

σ

)
− Φ

(λl−1 − µ

σ

)
(3.1)

for l = 1, 2, . . . , L, where Φ(·) is the standard normal cumulative distribution function
(cdf). From (3.1), we clearly see that µ and σ are confounded with the cut-points λl’s.
To remedy this non-identifiability problem, we need to fix two parameters. Following
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Nandram and Chen (1996), we fix λ1 = 0 and λL−1 = 1 so that

−∞ = λ0 < λ1 = 0 < λ2 < · · · < λL−1 = 1 < λL = ∞. (3.2)

With the constraint (3.2), all parameters are now identifiable and both µ and σ2 are free.
In addition, in (3.2), all unknown cut-points are bounded.

To capture the association structure of a set of latent variables and a set of responses
of interest, we need to identify a set of response variables that can be considered as
reasonable manifestations of the latent variables. We recall that latent variables represent
the constructs we want to study, and are forced to do so via a set of observable variables
we can study. Let yij = (yij1, ..., yijK)′ denote the K × 1 vector of responses by the jth

individual belonging to the ith facility for i = 1, 2, . . . , I, and j = 1, 2, . . . , ni, where I
denotes the total number of the facilities, ni is the number of individuals within the ith

facility, and K is the total number of responses considered. Let Lk be the number of
levels of the kth ordinal response. We propose the ordinal response model incorporating
the measurement part of the SEM as follows

yijk = l iff λk,l−1 ≤ y∗ijk < λkl,

where
y∗ijk = µk + τi + τik + β′kωkηij + φ′

kzij + εijk. (3.3)

As discussed above, in (3.3), the cut-points are subject to the constraints:

λk0 = −∞ < λk1 = 0 < λk2 < · · ·λk,Lk−2 < λk,Lk−1 = 1 < λk,Lk
= ∞, (3.4)

for k = 1, 2, . . . , K. Note that since yij,25 is a binary response, there are no unknown
cut-points. Thus, for the AES 2001 data, Lk = 5 for k = 1, 2, . . . , 24 and L25 = 2. Terms
τi and τik introduced in (3.3) are the facility level random effects and the facility-response
interactions random effects, respectively, and βk is a pk × 1 vector of loading coefficients
between the kth variable y∗ijk and the r-dimensional latent vector ηij, where the loading’s
existence is set via ωk, a pk×r matrix whose elements are either of 1’s or 0’s. In (3.3), φk

is a q-dimensional vector of the regression coefficients corresponding to a q-dimensional

vector of covariates, zij, the random error terms εijk
iid∼ N (0, σ2

k), k = 1, 2, . . . , K. We

assume that τi
iid∼ N (0, σ2

τ ), τik
iid∼ N (0, σ2

τ∗), and εijk, τi, and τik are mutually independent
for i = 1, . . . , I, j = 1, 2, . . . , ni, and k = 1, . . . , K. Let λk = (λk2, . . . , λk,L−2)

′, λ =
(λ′1,λ

′
2, . . . , λ

′
K)′, µ = (µ1, µ2, . . . , µK)′, β = (β′1, β

′
2, . . . , β′K)′, φ = (φ′

1,φ
′
2, . . . , φ

′
K)′,

and σ2 = (σ2
1, σ

2
2, . . . , σ

2
K)′. Then, θ = (µ,β,φ,γ,σ2,σ2

τ ,σ
2
τ∗ ,λ)′, is the collection of all

the parameters of interest in the model.

From the ordinal response SEM in (3.3), the mean and variance of latent variable
y∗ijk conditional on (µk,βk,φk, zij) are

µijk = E(y∗ijk|µk,βk,φk, zij) = µk + φ′
kzij (3.5)
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and
σ2

ijk = Var(y∗ijk|µk,βk,φk, zij) = β′kωkVar(ηij)ω
′
kβk + σ2

τ + σ2
τ∗ + σ2

k. (3.6)

For a particular individual indexed by i and j, the covariance between answering different
questions can be quantified as

Cov(y∗ijk, y
∗
ijk′) = β′kωkVar(ηij)ω

′
k′βk′ + σ2

τ

for k 6= k′; for different individuals in the same facility i answering different ques-
tions, this covariance equals Cov(y∗ijk, y

∗
ij′k′) = σ2

τ for j 6= j′ and k 6= k′; while the
covariance between two individuals in the same facility i answering the same question is
Cov(y∗ijk, y

∗
ij′k) = σ2

τ + σ2
τ∗ for j 6= j′. Observe that the covariance structure is in tandem

with the natural response pattern of different individuals belonging to the same facility
who answer different questions, as well as different individuals within the same facility
who answer the same question. The variability in response in the former is solely due to
the random effect due to facility effect. However, in the latter, the variability is accounted
for by the facility randomness as well as an additional component from the variability due
to individual effect as they respond to the same question. While in the former the co-
variation between responding to different questions by the same individual in a particular
facility is accounted for by the facility effect variability, in the latter the variability is
accounted for by the structural dependency as well as the facility effect.

The structural part of the ordinal response SEM is given by

ηij = Γηij + ξij, (3.7)

where ξij ∼ N (0, diag(σ2
η1

, . . . , σ2
ηr

)), ηij is the vector of latent variables corresponding
to individual j belonging to facility i, and the Γ matrix is the loading matrix, with the
elements parameterized such that the variance of each of the latent variables equals 1.
Let Var(ηij) = Vη and D = diag(σ2

η1
, . . . , σ2

ηr
)). Then, the variance of the latent variables

ηij is given by

Vη = Var(ηij) = D
1
2 (I − Γ∗)−1

[
(I − Γ∗)′

]−1
D

1
2 . (3.8)

We define D to ensure that the diagonal elements of (3.8) are exactly all equal to unity.

For the AES 2001 data, the loading of the 25 manifest variables and 4 outcome vari-
ables in the measurement model as well as the structural model of the SEM is illustrated
in Figure 1. We note that (3.7) is a conventional representation of the structural part
of the SEM, which is used in SAS PROC CALIS and also discussed in detail in Hatcher
(2000).

Similarly to Das et al. (2008), we propose the structural model of the SEM for the
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Figure 1. Path diagram for analyzing the VHA AES 2001 data.

ordinal response model as follows

ηij1 =
γ1√

1 + γ2
1

ηij2 + ξij1,

ηij2 = ξij2,

ηij3 =
γ2√

1 + γ2
3 + (γ2 + γ1γ3)2

ηij2 +

√
(1 + γ2

1)γ3√
1 + γ2

3 + (γ2 + γ1γ3)2
ηij1 + ξij3,

where ξij1 ∼ N
(

0, 1
1+γ2

1

)
, ξij2 ∼ N (0, 1), ξij3 ∼ N

(
0, 1

1+γ2
3+(γ2+γ1γ3)2

)
, and ξij1, ξij2 and

ξij3 are independent with each other and they are also independent of εijk, τi, and τik.
The above representation of ηij ensures that the diagonal elements of Vη are exactly all
equal to unity.
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As discussed in Section 2, there were missing values in both response variables yijk’s
and covariates zijq’s. With the protection of the labor/management confidentiality agree-
ment, it is unlikely that missing responses are due to the sensitive nature of questions
as the identification of individual respondents was not recorded. In addition, it does not
appear that there were any apparent systematic patterns in the missing values of yijk’s or
zijq’s in the AES 2001 data. Thus, it is reasonable to assume that any missingness in yijk

and covariates zijq is missing at random (MAR) (Rubin, 1976; Little and Rubin, 2002).
As discussed in Ibrahim et al. (1999, 2005), we do not need to model the missing data
mechanism for MAR missing responses and covariates. However, we need to model miss-
ing covariates. To this end, we assume a series of one-dimensional distributions proposed
by Lipsitz and Ibrahim (1996) for the missing covariate variables

f(zij1, zij2, . . . , zij,q|α)

=f(zijq|zij1, . . . , zij,q−1,αq)f(zij,q−1|zij,1, . . . , zij,q−2,αq−1) . . . f(zij1|α1), (3.9)

where αh is a vector of parameters for the hth conditional distribution, the α′
hs are distinct,

and moreover, α = (α′
1, . . . , α

′
q)
′, and extend θ to include α. Of course, for CC data, we

do not need to model the covariates.

Letting yij = (yij1, yij2, . . . , yijK)′, we thus partition the response vector y′ij into
(y′ij,obs, y′ij,mis). Similarly, we partition the vector of covariates z′ij into (z′ij,obs, z

′
ij,mis).

Let η = (η′ij, j = 1, 2, . . . , ni, i = 1, 2, . . . , I)′, τ = (τ1, τ2, . . . , τI)
′, and τ ∗ = (τik, i =

1, 2, . . . , I, k = 1, 2, . . . , K)′. Also let Dobs = (yobs,zobs) denote the observed data, where
yobs = (y′ij,obs, j = 1, 2, . . . , ni, i = 1, 2, . . . , I)′ and zobs = (zij,obs, j = 1, 2, . . . , ni, i =
1, 2, . . . , I)′. In addition, we introduce a missing indicator for the response in the data

δijk =

{
1 if yijk is observed
0 if yijk is missing

.

Thus, using the result for MAR missing responses given in Chen et al. (2008), the
likelihood function given Dobs can be written as

L(θ,y∗, τ , τ ∗|Dobs)

∝
∫ I∏

i=1

{ ni∏
j=1

[ K∏

k=1

(
f(y∗ijk|µk, τi, τik, βk,ηij,φk, σ

2
k,zij)1{λyijk−1 ≤ y∗ijk < λyijk

}
)δijk

]

× f(ηij|γ)f(zij,obs,zij,mis|α)
}[ K∏

k=1

f(τik|σ2
τ∗)

]
f(τi|σ2

τ )dzmis, (3.10)

where y∗ = (y∗ijk, j = 1, 2, . . . , ni, i = 1, 2, . . . , I, k = 1, 2, . . . , K)′, 1{λyijk−1 ≤ y∗ijk <
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λyijk
} is the indicator function, zmis = (zij,mis, j = 1, 2, . . . , ni, i = 1, 2, . . . , I)′,

f(y∗ijk|µk, τi, τik,βk, ηij, φk, σ
2
k,zij)

=
1√

2πσk

exp
{
− 1

2σ2
k

[y∗ijk − (µk + τi + τik + β′kωkηij + φ′
kzij)]

2
}

,

f(τi|σ2
τ ) = 1√

2πστ
exp

{− τ2
i

2σ2
τ

}
, f(τik|σ2

τ∗) = 1√
2πστ∗

exp
{− τ2

ik

2σ2
τ∗

}
, and f(ηij|γ) = 1

(2π)
r
2 |Vη |

1
2

× exp
{− 1

2
η′ijV

−1
η ηij

}
.

4 Prior and Posterior Distributions

We take the joint prior for θ as

π(θ) = π(µ)π(β)π(φ)π(γ)π(σ2)π(σ2
τ )π(σ2

τ∗)π(λ)π(α). (4.1)

The detailed specification for each prior on the right hand side of (4.1) is given as

follows: for location parameters, we take µk
iid∼ N (µ0, σ

2
0), k = 1, 2, . . . , K, for π(µ),

βk
iid∼ N (β0, Σβ0), k = 1, 2, . . . , K, for π(β), φk

iid∼ N (φ0, Σφ0), k = 1, 2, . . . , K, for π(φ),

and γl
iid∼ N (γ0, σ

2
0γ), l = 1, 2, . . . , r, for π(γ). For the scale parameters, we assume in-

verse gamma priors as follows: σ2
k

iid∼ IG(a0, b0), k = 1, 2, . . . , K, for π(σ2), σ2
τ ∼ IG(a1, b1)

for π(σ2
τ ), and σ2

τ∗ ∼ IG(a2, b2) for π(σ2
τ∗). For λ, we take π(λ) =

∏K
k=1 π(λk), where

π(λk) ∝ 1, which is a proper uniform over the constrained space defined by (3.4), for
k = 1, 2, . . . , K. For π(α), we assume π(α) =

∏q
l=1 π(α1), where the prior specification

for each π(α1) depends on the form of the one-dimensional conditional distribution for
zijl.

Using (3.10) and (4.1), the joint posterior is thus given by

π(θ, y∗, τ , τ ∗|Dobs) ∝ L(θ,y∗, τ , τ ∗|Dobs)π(θ). (4.2)

Due to the complexity of the ordinal structural equation model and the presence of missing
responses and covariates, the analytical evaluation of the posterior distribution in (4.2)
does not appear to be possible. However, the posterior distribution is computationally
attractive partially due to the use of the probit link, as an efficient Markov chain Monte
Carlo (MCMC) sampling algorithm can be developed. The detailed steps of the MCMC
sampling algorithm to sample from π(θ,y∗, τ , τ ∗|Dobs) is given in the Appendix.
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5 Model assessment

For the ordinal response SEM developed in Section 3, we account for both facility effects
as well as covariate effects. We refer to this as the full model and denote it by M1. We are
interested in investigating how the exclusion of the two random effects terms introduced
and the exclusion of covariates from M1 contribute to the fit of the data. Further, we
will investigate the exclusion from M1 in turns of the facility effects, then of the covariate
effects, and then the effect due to the exclusion of both the effects. The forms of these
models are given as follows:

M1 (Facility and covariates effects): y∗ijk = µk + τi + τik + β′kωkηij + φ′
kzij + εijk;

M2 (Facility effect, no covariates): y∗ijk = µk + τi + τik + β′kωkηij + εijk;

M3 (No facility effect, but covariates effect): y∗ijk = µk + β′kωkηij + φ′
kzij + εijk; and

M4 (Neither facility nor covariates effects): y∗ijk = µk + β′kωkηij + εijk.

We assess these four ordinal response models via the Bayesian Deviance Information
Criteria (DIC) proposed by Spiegelhalter et al. (2002). For model M1, we treat all
facility effects, τi and τik, and missing covariates, zij,mis, as parameters. Thus, we define
θ∗ = (θ, τ , τ ∗,zmis). The DIC measure proposed by Spiegelhalter et al. (2002) is given
by

DIC = D(θ∗) + 2p
D
, (5.1)

where D(θ∗) is a deviance function, θ∗ = E[θ∗|Dobs] is the posterior mean of θ∗, and p
D

is the penalty due to model dimension and is evaluated as p
D

= D(θ∗)−D(θ∗). For the
ordinal response SEM, the deviance function is defined as follows:

D(θ∗) = −2 log
I∏

i=1

ni∏
j=1

K∏

k=1

{
Φ

(
λk,yijk

− µ∗ijk
σk

)
− Φ

(
λk,yijk−1 − µ∗ijk

σk

)}δijk

, (5.2)

where for the full model M1 with both facility random effects and covariate effects,
µ∗ijk = µk + τi + τik +β′kωkηik +φ′

kzij. Using the extension to DIC as proposed by Huang
et al. (2005) in the presence of missing covariates, we compute µ∗ijk = E(µ∗ijk|Dobs),

λkl = E(λkl|Dobs), σk = E(σk|Dobs), D(θ∗) = E[D(θ∗)|Dobs], and

D(θ∗) = −2 log
I∏

i=1

ni∏
j=1

K∏

k=1

{
Φ

(
λk,yijk

− µ∗ijk
σk

)
− Φ

(
λk,yijk−1 − µ∗ijk

σk

)}δijk

.

The DIC measures are computed in a similar fashion for the other three competing models.
The detail is omitted for brevity.
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6 Analysis of the AES 2001 Ordinal Response Data

The VHA AES 2001 was an all employees survey conducted via self reported question-
naire to ascertain organizational climate and locate intervention points, and was a follow
up to a previous VHA AES 1997. The main focus was on 4 outcome variable — Cus-
tomer Satisfaction, Employee satisfaction, Quality and Retention, investigated via 3 work
place traits — Leadership, Support and Resource, which correspond to ηij1, ηij2, and ηij3,
respectively. These traits being latent constructs, observed responses from the question-
naire were identified that were considered as manifestations of the latent constructs. The
dimension of all the response (outcome + manifest) variables is K = 4 + 21 = 25, the
number of latent traits is r = 3, while the number of facilities is I = 132. The loading
pattern of the 21 manifest variables was motivated by feedback from the field knowledge
of VHA, and further confirmed by factor analytic exploratory data analysis.

6.1 Specification of the model and priors

The dimensions of the vectors involved are as follows: for the single loading manifest
variables pk = 1, k = 1, . . . , 6. For the 15 manifest variables and 3 outcome variables
pk = 3, k = 7, . . . , 25. The corresponding loading matrix are: ω1 = ω2 = (1, 0, 0)′;
ω3 = ω4 = (0, 1, 0)′; ω5 = ω6 = (0, 0, 1)′ and ωk = I3, k = 7, . . . , 25; in the struc-
tural part of the model, the dimension of the latent variable vector r = 3. The other
prior distributions have been described in Section 4. We specify the hyperparameters
as follows. A N (0, 1000) or N (0, 1000I) prior is used for all location parameters in-
cluding µk,βk,φk, γ1, γ2, and γ3. For the scale parameters, the hyperparameters are
a0 = a1 = a2 = 1 and b0 = b1 = b2 = 0.001. Since the outcome variable Retention (yij,25)
is dichotomous, the cut-point is known.

For the covariates, since the zij’s are all dichotomized, the distributions for these
covariates are specified as

f(zij1|α11) = α
zij1

11 (1− α11)
1−zij1 ,

f(zij2|zij1, α21, α22) =
exp{zij2(α21 + α22zij1)}
1 + exp(α21 + α22zij1)

,

f(zij3|zij1, zij2, α31, α32, α33) =
exp{zij3(α31 + α32zij1 + α33zij2)}
1 + exp(α31 + α32zij1 + α33zij2)

.

The prior distribution for α11 is Beta(0.001, 0.001), and the priors distributions of α21,
α22, α31, α32, and α33 are all N (0, 1000) independently. Observe that all priors are non-
informative.
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6.2 Posterior Computation

In all the computations, we used 10,000 MCMC iterations, after a burn-in of 1000 iter-
ations for each model, to compute all the posterior estimates, including posterior means
(Estimates), posterior standard deviations (SDs), 95% highest posterior density inter-
vals (HPDs) and DICs. The computer codes were written in FORTRAN 95 using IMSL
subroutines with double-precision accuracy. The convergence of the Gibbs sampler for
all parameters has passed the recommendations of Cowles and Carlin (1996). The trace
plots and auto-correlation plots all show good convergence and excellent mixing of the
MCMC sampling algorithm.

6.3 Model Assessment

We calculate DICs as defined in Section 5. The DIC values for the 4 ordinal response
SEMs for the all cases data are given in Table 2.

Table 2
DIC values for different ordinal response sEMs (all cases)

Model D(θ∗) p
D

DIC
M1 3542898.6 162016.2 3866931.0
M2 3544164.5 161447.2 3867058.8
M3 3552819.6 160080.3 3872980.2
M4 3553943.8 159558.0 3873059.9

From Table 2, we see that for the ordinal response SEMs, the full model M1 has the
smallest DIC among the 4 models considered, followed by the model that has only facility
effect terms and no covariate terms, then by the model with covariate terms included but
no facility terms, and lastly by the model with neither of the effects. We recall that the
AES 2001 data is at the individual level, and we do not have any covariate information
about the facilities. The only characteristic of the facility that we have is the number
of respondents from each of the I facilities, and we use the random effect terms of τi

and τik in the model with the aim to capture variability in the data due to individuals
belonging together in the same facility. We also computed the simulation errors of the
Monte Carlo estimates of the DICs using the batch mean method discussed in Chen,
Shao, and Ibrahim (2000). For example, the simulation errors were 77.7 and 84.4 for M1

and M4, respectively, based on 20 batches of size 2000. We recall that about 39% of the
respondents had not specified their age. We also subjected the best model M1 to the
complete-cases (CC) data, and D(θ∗), p

D
, and DIC for CC data are 1186402.6, 54825.9,

and 1296054.4, respectively.
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6.4 Posterior Estimates

The direct effect and total effect are commonly used to describe the association between
two variables in the SEM. The direct effect is the direct path from one variable to the
other, which is simply the coefficient βkj. The total effect takes into account the direction
and all possible path coefficients between the two variables in the system (Bollen, 1987).
If neither is exogenous, then total effect misses to capture the upstream effect due to other
connected relationships in the model. To overcome the limitation of the total effect, Das
et. al (2008) introduced the superbeta measure to capture the overall association between
the cause variable (either endogenous or exogenous) and the effect variable (endogenous).
If the cause variable is exogenous, then the superbeta equals the corresponding total effect.
For the ordinal response SEM, we use these measures to describe the association between
latent variables y∗ijk and ηij. Following from Das et. al (2008), the total effect between
y∗ijk and ηij can be calculated as follows

βT
y∗ijk,ηij

=




βk1 + βk3
aγ3

b

βk1
γ1

a
+ βk2 + βk3

γ2+γ1γ3

b

βk3




where a =
√

1 + γ2
1 , b =

√
1 + γ2

3 + (γ2 + γ1γ3)2, and the superbeta between y∗ijk and
ηijr∗ , r∗ = 1, 2, 3, is given by

βsb
(y∗ijk,ηij1) = Cov(y∗ijk, ηij1)/Var(ηij1) = βk1 + βk2

γ1

a
+ βk3

[
γ1γ2

ab
+

γ3 a

b

]
,

βsb
(y∗ijk,ηij2) = Cov(y∗ijk, ηij2)/Var(ηij2) = βk1

γ1

a
+ βk2 + βk3

[
γ2

b
+

γ1γ3

b

]
,

and

βsb
(y∗ijk,ηij3) = Cov(y∗ijk, η3)/Var(ηij3) = βk1

[
γ1γ2

ab
+

γ3a

b

]
+ βk2

[
γ2

b
+

γ1γ3

b

]
+ βk3.

In Table 3 (AC) and Table 4 (CC), we present the posterior estimates of direct
effect, total effect, and superbeta corresponding to latent outcome variables y∗ijk, k =
22, 23, 24, 25, α, γ, and σ2

τ and σ2
τ∗ under the best model M1, where symbols used are

as follow — βk: direct effect; βT
k : total effect; and βsb

k : superbeta. For the AC analy-
sis (Table 3), based on the direct effect, we observe that Customer satisfaction is most
strongly directly associated with Resources, Quality is directly associated with Leader-
ship and Resources, and Employee satisfaction and Retention are most directly associated
with Leadership. Based on either the total effect or the superbeta, all four outcomes are
associated with Leadership, Support and Resource. However, based on the superbeta,
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Leadership is most strongly associated with Employee satisfaction and Retention while
Customer satisfaction is most strongly associated with Resources. These results suggest
that based on perception of service received, Resource in a facility is most important in
improving quality of service provided, while from the service provider perception, Lead-
ership was the most important intervention area.

Table 3
Posterior estimates of Model 1 (all cases)

Variable Estimate SD 95% HPD Variable Estimate SD 95% HPD
Customer satisfaction Quality

β22,1 0.019 0.0023 ( 0.014, 0.023) β24,1 0.112 0.0030 (0.107, 0.118)
βT

22,1 0.089 0.0021 ( 0.084, 0.093) βT
24,1 0.162 0.0026 (0.157, 0.167)

βsb
22,1 0.134 0.0017 ( 0.131, 0.137) βsb

24,1 0.210 0.0022 (0.206, 0.215)
β22,2 0.037 0.0019 ( 0.033, 0.040) β24,2 0.057 0.0024 (0.053, 0.062)
βT

22,2 0.131 0.0016 ( 0.128, 0.134) βT
24,2 0.178 0.0021 (0.174, 0.182)

βsb
22,2 0.131 0.0016 ( 0.128, 0.134) βsb

24,2 0.178 0.0021 (0.174, 0.182)
β22,3 0.182 0.0023 ( 0.178, 0.187) β24,3 0.128 0.0031 (0.122, 0.134)
βT

22,3 0.182 0.0023 ( 0.178, 0.187) βT
24,3 0.128 0.0031 (0.122, 0.134)

βsb
22,3 0.209 0.0017 ( 0.206, 0.212) βsb

24,3 0.213 0.0025 (0.208, 0.218)
Employee satisfaction Retention

β23,1 0.195 0.0027 ( 0.190, 0.200) β25,1 0.298 0.0083 (0.282, 0.314)
βT

23,1 0.232 0.0023 ( 0.228, 0.237) βT
25,1 0.324 0.0072 (0.310, 0.339)

βsb
23,1 0.258 0.0018 ( 0.254, 0.262) βsb

25,1 0.375 0.0059 (0.364, 0.386)
β23,2 0.023 0.0021 ( 0.018, 0.027) β25,2 0.076 0.0074 (0.062, 0.090)
βT

23,2 0.174 0.0018 ( 0.170, 0.177) βT
25,2 0.271 0.0058 (0.259, 0.282)

βsb
23,2 0.174 0.0018 ( 0.170, 0.177) βsb

25,2 0.271 0.0058 (0.259, 0.282)
β23,3 0.096 0.0028 ( 0.091, 0.102) β25,3 0.068 0.0083 (0.051, 0.084)
βT

23,3 0.096 0.0028 ( 0.091, 0.102) βT
25,3 0.068 0.0083 (0.051, 0.084)

βsb
23,3 0.209 0.0022 ( 0.204, 0.213) βsb

25,3 0.259 0.0064 (0.246, 0.271)
α11 -2.224 0.0197 (-2.261, -2.184) σ2

τ 0.002 0.0002 (0.001, 0.002)
α21 0.506 0.0288 ( 0.447, 0.561) σ2

τ∗ 0.001 0.0001 (0.001, 0.001)
α22 0.385 0.0019 ( 0.382, 0.389) γ1 0.656 0.0067 (0.642, 0.669)
α31 0.940 0.0114 ( 0.918, 0.963) γ2 0.303 0.0076 (0.289, 0.318)
α32 1.431 0.0463 ( 1.339, 1.521) γ3 0.390 0.0072 (0.376, 0.404)
α33 -0.139 0.0182 (-0.175, 0.104)

For the CC analysis (Table 4), we observe that for almost all the β coefficients, the
CC estimates for the full model M1 are larger than the AC estimates. The β coefficients
between outcome variables and Resource are smaller in the AC analysis compared to the
AC analysis. But for the superbeta measure, all the CC estimates are stronger than in the
AC case. On the other hand, for the γ coefficients, the γ1 and γ3 coefficients between latent
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variables ‘Leadership’ and ‘Support’ and between ‘Resource’ and ‘Leadership’ significantly
increase for the complete cases from the all cases.

Table 4
Posterior estimates of Model 1 (complete cases)

Variable Estimate SD 95% HPD Variable Estimate SD 95% HPD
Customer satisfaction Quality

β22,1 0.037 0.0039 (0.029, 0.044) β24,1 0.148 0.0054 (0.138, 0.159)
βT

22,1 0.112 0.0036 (0.105, 0.119) βT
24,1 0.199 0.0047 (0.190, 0.208)

βsb
22,1 0.155 0.0028 (0.150, 0.161) βsb

24,1 0.243 0.0038 (0.235, 0.250)
β22,2 0.033 0.0031 (0.027, 0.039) β24,2 0.046 0.0042 (0.038, 0.055)
βT

22,2 0.140 0.0026 (0.135, 0.145) βT
24,2 0.193 0.0036 (0.186, 0.199)

βsb
22,2 0.140 0.0026 (0.135, 0.145) βsb

24,2 0.193 0.0036 (0.186, 0.199)
β22,3 0.174 0.0039 (0.166, 0.182) β24,3 0.119 0.0054 (0.108, 0.129)
βT

22,3 0.174 0.0039 (0.166, 0.182) βT
24,3 0.119 0.0054 (0.108, 0.129)

βsb
22,3 0.211 0.0028 (0.205, 0.216) βsb

24,3 0.226 0.0042 (0.217, 0.233)
Employee satisfaction Retention

β23,1 0.222 0.0046 (0.213, 0.231) β25,1 0.342 0.0153 (0.312, 0.373)
βT

23,1 0.259 0.0039 (0.251, 0.266) βT
25,1 0.357 0.0133 (0.331, 0.383)

βsb
23,1 0.280 0.0030 (0.275, 0.286) βsb

25,1 0.411 0.0105 (0.390, 0.431)
β23,2 0.016 0.0037 (0.009, 0.024) β25,2 0.082 0.0127 (0.056, 0.106)
βT

23,2 0.191 0.0031 (0.184, 0.196) βT
25,2 0.303 0.0100 (0.283, 0.322)

βsb
23,2 0.191 0.0031 (0.184, 0.196) βsb

25,2 0.303 0.0100 (0.283, 0.322)
β23,3 0.085 0.0047 (0.076, 0.094) β25,3 0.035 0.0145 (0.007, 0.064)
βT

23,3 0.085 0.0047 (0.076, 0.094) βT
25,3 0.035 0.0145 (0.007, 0.064)

βsb
23,3 0.219 0.0036 (0.212, 0.226) βsb

25,3 0.270 0.0110 (0.248, 0.291)
γ1 0.744 0.0121 (0.721, 0.768) σ2

τ 0.002 0.0003 (0.002, 0.003)
γ2 0.292 0.0135 (0.265, 0.318) σ2

τ∗ 0.001 0.0001 (0.001, 0.001)
γ3 0.430 0.0128 (0.406, 0.456)

6.5 Normal-Ordinal SEMs

As discussed in Bollen (1989), the Pearson correlation coefficients between categorical
measures are generally less than the correlation of the corresponding continuous variables.
This phenomenon may more likely occur with few categories (e.g., < 5). However, as
the number of categories increases and the marginal distributions become similar, the
difference in correlations lessens. For the AES 2001 data, the first 21 manifest variables
are ordinal with 5 levels and the last four are the outcome variables with Retention
being the binary response variable. It is of practical interest to investigate whether the
structural part of the SEM and the loading coefficients of the last four measurement part
of the ordinal response SEM are sensitive to the specification of the marginal distributions
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of yijk for k = 1, 2, . . . , 21 for the first 21 manifest variables. Specifically, we assume that
y∗ijk = yijk in (3.3) for k = 1, 2, . . . , 21. That is, we assume the normal distribution models
directly for the ordinal responses from the first 21 manifest variables. As the last four
outcome variables are of primary interest, we still assume the ordinal (binary) models for
these four outcome variables. Under these assumptions, the resulting SEM is called the
normal-ordinal SEM.

First, we compare the four variations of the normal-ordinal SEM discussed in Section
5 via DIC. Similar to (5.2), the deviance function for the normal-ordinal SEM is given by

D(θ∗) = −2
I∑

i=1

ni∑
j=1

{
21∑

k=1

δijk

[
− 1

2
log(2πσ2

k)−
1

2σ2
k

(
yijk − µ∗ijk

)2
]

+
K∑

k=22

δijk log
[
Φ

(λk,yijk
− µ∗ijk

σk

)
− Φ

(λk,yijk−1 − µ∗ijk
σk

)]}
,

where for the full model M1 with both facility random effects and covariate effects,
µ∗ijk = µk +τi +τik +β′kωkηik +φ′

kzij. For the all cases AES 2001 data, under the normal-
ordinal SEMs, the DIC values are 4214927.9, 4214942.2, 4220289.6, and 4220339.3 for
M1, M2, M3, and M4, respectively. Thus, the best normal-ordinal SEM is M1, the
second best DIC normal-ordinal SEM is M2, and the worst DIC normal-ordinal SEM is
M4. Although the DIC values under the normal-ordinal SEMs are not comparable to
those under the ordinal SEMs (Table 2), the orders of these four DIC values under these
two types of SEMs are the same.

Next, we compute the posterior estimates of direct effect, total effect, and superbeta
corresponding to latent outcome variables y∗ijk, k = 22, 23, 24, 25, α, γ, and σ2

τ and σ2
τ∗

under the best normal-ordinal model M1 and the results are shown in Table 5 (AC) and
Table 6 (CC). Comparing the results in Table 5 to those in Table 3, we observe that these
two sets of the posterior estimates of direct effect, total effect, superbeta, and γ are very
similar, and the estimates of α are almost identical. However, the posterior estimates of
σ2

τ and σ2
τ∗ under the normal-ordinal SEM (Table 5) are much larger than those under the

ordinal SEM (Table 3). The similar patterns are observed when we compare the results
in Table 6 to those in Table 4 for the CC data.

16



Table 5
Posterior estimates of Model 1 (all cases) under the normal-ordinal SEM

Variable Estimate SD 95% HPD Variable Estimate SD 95% HPD
Customer satisfaction Quality

β22,1 0.017 0.0023 ( 0.012, 0.021) β24,1 0.113 0.0030 (0.107, 0.119)
βT

22,1 0.088 0.0021 ( 0.084, 0.092) βT
24,1 0.163 0.0026 (0.158, 0.168)

βsb
22,1 0.128 0.0017 ( 0.125, 0.132) βsb

24,1 0.203 0.0022 (0.199, 0.207)
β22,2 0.031 0.0018 ( 0.028, 0.035) β24,2 0.046 0.0022 (0.042, 0.050)
βT

22,2 0.122 0.0015 ( 0.119, 0.125) βT
24,2 0.163 0.0019 (0.159, 0.167)

βsb
22,2 0.122 0.0015 ( 0.119, 0.125) βsb

24,2 0.163 0.0019 (0.159, 0.167)
β22,3 0.185 0.0023 ( 0.181, 0.189) β24,3 0.127 0.0031 (0.122, 0.134)
βT

22,3 0.185 0.0023 ( 0.181, 0.189) βT
24,3 0.127 0.0031 (0.122, 0.134)

βsb
22,3 0.207 0.0017 ( 0.204, 0.211) βsb

24,3 0.206 0.0024 (0.201, 0.210)
Employee satisfaction Retention

β23,1 0.189 0.0026 ( 0.184, 0.194) β25,1 0.293 0.0083 (0.277, 0.310)
βT

23,1 0.229 0.0022 ( 0.224, 0.233) βT
25,1 0.325 0.0072 (0.311, 0.339)

βsb
23,1 0.250 0.0018 ( 0.247, 0.254) βsb

25,1 0.376 0.0059 (0.365, 0.388)
β23,2 0.017 0.0020 ( 0.013, 0.021) β25,2 0.075 0.0069 (0.062, 0.089)
βT

23,2 0.164 0.0017 ( 0.160, 0.167) βT
25,2 0.270 0.0056 (0.259, 0.280)

βsb
23,2 0.164 0.0017 ( 0.160, 0.167) βsb

25,2 0.270 0.0056 (0.259, 0.280)
β23,3 0.102 0.0027 ( 0.097, 0.107) β25,3 0.083 0.0081 (0.067, 0.099)
βT

23,3 0.102 0.0027 ( 0.097, 0.107) βT
25,3 0.083 0.0081 (0.067, 0.099)

βsb
23,3 0.206 0.0021 ( 0.202, 0.210) βsb

25,3 0.266 0.0063 (0.254, 0.278)
α11 -2.226 0.0202 (-2.266, -2.187) σ2

τ 0.006 0.0009 (0.005, 0.008)
α21 0.508 0.0293 ( 0.451, 0.565) σ2

τ∗ 0.006 0.0002 (0.005, 0.006)
α22 0.385 0.0018 ( 0.382, 0.389) γ1 0.639 0.0065 (0.627, 0.652)
α31 0.941 0.0113 ( 0.918, 0.963) γ2 0.279 0.0073 (0.265, 0.293)
α32 1.433 0.0457 ( 1.343, 1.522) γ3 0.390 0.0073 (0.375, 0.404)
α33 -0.139 0.0180 (-0.175, -0.104)

7 Discussion

In this paper, we have carried out an extensive investigation of the ordinal response SEM.
We have shown that the use of latent variables linking the unobserved continuous variables
y∗ijk’s to the observed ordinal or binary response variables yijk’s is a useful modeling
technique, which facilitates an easy implementation of the posterior computation and
provides a great flexibility to incorporate different types of responses such as continuous,
ordinal, and binary responses in the survey data. For the AES 2001 data, we have observed
that the ordinal SEM with both facility level random effect terms as well as individual
covariates fits the data best based on the DIC measure even though it has the largest
penalty for dimensionality. Also, including facility random effect terms is more important
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than including just covariate information, implying that variability within facilities is
more pronounced than variability in terms of demographic variables within individuals.
This finding confirms that facility characteristics differ not only in size but also in the
available service resources, and responses by individuals belonging to different facilities
are bound to reflect that. In fact, including facility random effects captures the natural
heterogeneity because of the clustering of individuals into specific facilities. We note that
the similar results were also obtained by Das et al. (2008) based on the VHA AES 1997
data.

Table 6
Posterior estimates of Model 1 (complete cases) under the normal-ordinal SEM

Variable Estimate SD 95% HPD Variable Estimate SD 95% HPD
Customer satisfaction Quality

β22,1 0.032 0.0048 (0.025, 0.040) β24,1 0.145 0.0052 (0.134, 0.155)
βT

22,1 0.109 0.0035 (0.101, 0.115) βT
24,1 0.197 0.0046 (0.188, 0.206)

βsb
22,1 0.147 0.0027 (0.142, 0.153) βsb

24,1 0.233 0.0037 (0.226, 0.241)
β22,2 0.027 0.0029 (0.021, 0.033) β24,2 0.035 0.0039 (0.028, 0.043)
βT

22,2 0.130 0.0024 (0.125, 0.135) βT
24,2 0.177 0.0034 (0.171, 0.184)

βsb
22,2 0.130 0.0024 (0.125, 0.135) βsb

24,2 0.177 0.0034 (0.171, 0.184)
β22,3 0.179 0.0038 (0.172, 0.187) β24,3 0.123 0.0051 (0.114, 0.133)
βT

22,3 0.179 0.0038 (0.172, 0.187) βT
24,3 0.123 0.0051 (0.113, 0.133)

βsb
22,3 0.210 0.0027 (0.205, 0.215) βsb

24,3 0.219 0.0040 (0.212, 0.228)
Employee satisfaction Retention

β23,1 0.211 0.0045 (0.202, 0.219) β25,1 0.327 0.0149 (0.299, 0.357)
βT

23,1 0.251 0.0039 (0.244, 0.259) βT
25,1 0.351 0.0127 (0.328, 0.378)

βsb
23,1 0.270 0.0030 (0.264, 0.276) βsb

25,1 0.409 0.0101 (0.390, 0.429)
β23,2 0.012 0.0034 (0.005, 0.018) β25,2 0.085 0.0119 (0.062, 0.108)
βT

23,2 0.180 0.0030 (0.174, 0.186) βT
25,2 0.303 0.0095 (0.285, 0.323)

βsb
23,2 0.180 0.0030 (0.174, 0.186) βsb

25,2 0.303 0.0095 (0.285, 0.323)
β23,3 0.096 0.0045 (0.087, 0.105) β25,3 0.059 0.0143 (0.030, 0.086)
βT

23,3 0.096 0.0045 (0.087, 0.105) βT
25,3 0.059 0.0143 (0.030, 0.086)

βsb
23,3 0.218 0.0035 (0.211, 0.225) βsb

25,3 0.279 0.0108 (0.258, 0.301)
γ1 0.721 0.0118 (0.698, 0.744) σ2

τ 0.004 0.0006 (0.002, 0.005)
γ2 0.270 0.0130 (0.244, 0.295) σ2

τ∗ 0.004 0.0002 (0.003, 0.004)
γ3 0.425 0.0123 (0.400, 0.448)

In Section 6, we have empirically shown that treating the categorical responses as or-
dinal or continuous for the 21 manifest variables results in very similar posterior estimates
of the loading coefficients for the 4 ordinal/binary outcome variables in the measurement
part of the SEM and the parameters in the structural part of the SEM. We have also
observed that the same best DIC model is obtained under both the ordinal SEMs and
the normal-ordinal SEMs. Interestingly, such treatment of the categorical responses for
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the manifest variables does not at all affect the posterior estimates of parameters in the
missing covariates models.

Finally, we mention that in the ordinal SEM, the probit links were used for all ordinal
or binary responses. As discussed in Chen, Dey, and Shao (1999) and Kim, Chen, and Dey
(2008), the choice of links is important in fitting categorical response data. However, the
literature on the importance of the choice of links in the structural equations framework is
still sparse. In addition, in this paper, we assume that missing responses and/or missing
covariates are missing at random. This assumption needs to be further examined. These
important issues are currently under investigation.

Appendix: Posterior Computation

To implement the MCMC sampling algorithm, we need to sample from the following
conditional posterior distributions in turn:

(i) [y∗,λ|β,φ,σ2, τ , τ ∗,η, zmis, Dobs];

(ii) [µ|y∗,β,φ,σ2, τ , τ ∗, η, zmis, Dobs];

(iii) [σ2|y∗,µ,β, φ, τ , τ ∗,η,zmis, Dobs];

(iv) [β|y∗,µ, φ,σ2, τ , τ ∗,η, zmis, Dobs];

(v) [φ|y∗,β,σ2, τ , τ ∗,η,zmis, Dobs];

(vi) [σ2
τ |τ , Dobs];

(vii) [σ2
τ∗|τ ∗, Dobs];

(viii) [η|y∗,µ,β,φ, γ, σ2, τ , τ ∗, zmis, Dobs];

(ix) [τ |y∗,µ, β,φ,σ2, σ2
τ , τ

∗,η, zmis, Dobs];

(x) [τ ∗|y∗,µ, β,φ,σ2, σ2
τ∗ , τ , η, zmis, Dobs];

(xi) [γ|η, Dobs];

(xii) [α|zmis, Dobs]; and

(xiii) [zmis|µ,β, φ,σ2, τ , τ ∗,η,α, Dobs].
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We briefly discuss how we sample from each of the above posterior conditional distri-
butions. For (i), we apply the collapsed Gibbs technique of Liu (1994) via the following
identity:

[y∗,λ|β,φ,σ2, τ , τ ∗,η,zmis, Dobs] = [λ|β,φ,σ2, τ , τ ∗,η, zmis, Dobs]

× [y∗|λ, β,φ,σ2, τ , τ ∗,η, zmis, Dobs].

That is, we sample λ after collapsing out y∗. It can be shown that given β,φ,σ2, τ , τ ∗,η,
zmis, and Dobs, λk’s are conditionally independent. Thus, we can sample each λk inde-
pendently. Instead of directly sampling λk, we use the “de-constrained” transformation
for the Metropolis-Hastings algorithm proposed by Chen and Dey (2000b) as follows

λkl =
λk,l−1 + exp(ζkl)

1 + exp(ζkl)
,

where −∞ < ζkl < ∞, l = 2, . . . , Lk − 2. Let π(λk|β, φ,σ2, τ , τ ∗,η,zmis, Dobs) denote
the conditional distribution of λk. Then, the conditional distribution of ζk = (ζkl, l =
2, . . . , Lk − 2)′ is obtained by

π(ζk|β,φ, σ2, τ , τ ∗, η,zmis, Dobs)

∝ π(λk|β, φ, σ2, τ , τ ∗, η,zmis, Dobs)

Lk−2∏

l=2

(1− λk,l−1) exp(ζkl)

[1 + exp(ζkl)]2
.

Let ζ̂k = argmaxζk
log π(ζk|β,φ,σ2, τ , τ ∗,η, zmis, Dobs) and Σ̂ζk

is minus the inverse ma-

trix of the second derivative of log π(ζk|β,φ, σ2, τ , τ ∗,η,zmis, Dobs) evaluated at ζ = ζ̂k.
We then sample ζk via the standard Metropolis algorithm using the proposal N (ζ̂k, Σ̂ζk

).
Since the conditional distribution of y∗ijk is a truncated normal, N (µk+τi+τik+β′kωkηij +
φ′

kzij, σ
2
k)1{λyijk−1 ≤ y∗ijk < λyijk

}, sampling y∗ijk is straightforward. Note that when
δijk = 0, we do not need to sample y∗ijk.

For (ii), given y∗,β, φ,γ,σ2, τ , τ ∗,η,zmis, Dobs, the µk are conditionally independent
and

µk|y∗,β, φ,σ2, τ , τ ∗,η,zmis, Dobs

∼ N
( ∑I

i=1

∑ni
j=1 δijk(y∗ijk−τi−τik−β′

kωkηij−φ′
kzij)

σ2
k

+ µ0

σ2
0∑I

i=1

∑ni
j=1 δijk

σ2
k

+ 1
σ2
0

,
1

∑I
i=1

∑ni
j=1 δijk

σ2
k

+ 1
σ2
0

)
,
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for k = 1, 2, . . . , K. For (iii), again the σ2
k are conditionally independent and distributed

as

σ2
k|y∗,µ,β,φ, τ , τ ∗, η,zmis, Dobs

∼ IG
(

I∑
i=1

ni∑
j=1

δijk

2
+ a0,

∑
i

∑
j

δijk[y
∗
ijk − (µk + τi + τik + β′kωkηij + φ′

kzij)]
2

2
+ b0

)
,

for k = 1, 2, . . . , K − 1. For (iv), we have

βk | y∗,µ,φ,σ2, τ , τ ∗,η, zmis ∼ Npk
(B−1

βk

Aβk
, B−1

βk

)

for k = 1, 2, . . . , K, where Aβk
= 1

σ2
k

∑I
i=1

∑ni

j=1 ωkηijδijk(y
∗
ijk − µk − τi − τik − φ′

kzij) +

Σ−1
0 β0 and Bβk

= 1
σ2

k
ωk

[ ∑I
i=1

∑ni

j=1 ηijη
′
ij

]
ω′

k + Σ−1
0 . For (v),

φk | y∗, β,σ2, τ , τ ∗,η, zmis, Dobs ∼ Nq(B
−1

φk

Aφk
, B−1

φk

),

where

Aφk
=

1

σ2
k

I∑
i=1

ni∑
j=1

(y∗ijk − µk − τi − τik − β′kωkηij)zij + Σ−1
φ0

φ0

and Bφk
= 1

σ2
k

∑I
i=1

∑ni

j=1 zijz
′
ij + Σ−1

φ0
. For (vi)

σ2
τ | τ , Dobs ∼ IG

(
a1 +

I

2
,

1

2

I∑
i=1

τ 2
i + b1

)
,

and for (vii)

σ2
τ∗|τ ∗, Dobs ∼ IG

(
IK

2
+ a2,

∑
i

∑
k τ 2

ik

2
+ b2

)
.

For the latent variables in (viii),

ηij|y∗,µ, β,φ,γ,σ2, τ , τ ∗,zmis, Dobs ∼ Nr(B
−1
ηij

Aηij
, B−1

ηij
),

where Aηij
=

∑K
k=1

[
1
σ2

k
ω′

kβkδijk(y
∗
ijk−µk−τi−τik−φ′

kzij)
]

and Bηij
=

∑K
k=1

[
δijk

σ2
k

ω′
kβkβ

′
kωk

]

+V −1
η . For (ix), the τi are conditionally independent and distributed as

τi | y∗, µ,β,φ,σ2, σ2
τ , τ

∗,η,zmis, Dobs

∼ N
(∑ni

j=1

∑K
k=1 δijk(y

∗
ijk − µk − τik − β′kωkηij − φ′

kzij)/σ
2
k∑ni

j=1

∑K
k=1

δijk

σ2
k

+ 1
σ2

τ

,
1∑ni

j=1

∑K
k=1

δijk

σ2
k

+ 1
σ2

τ

)
,
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and for (x),

τik | y∗,µ,β,φ, σ2, σ2
τ∗ , τ ,η,zmis, Dobs

∼ N
(∑ni

j=1 δijk(y
∗
ijk − µk − τi − β′kωkηij − φ′

kzij)

σ2
k(

∑ni
j=1 δijk

σ2
k

+ 1
σ2

τ∗
)

,
1

∑ni
j=1 δijk

σ2
k

+ 1
σ2

τ∗

)
.

The conditional distributions for (ii) to (x) are either normal or inverse gamma distribu-
tions and therefore, sampling from these distributions is straightforward.

For (xi), we use the localized Metropolis algorithm discussed in Chen, Shao, and
Ibrahim (2000, Chapter 2) to sample γ from [γ|η, Dobs]. Let

π∗(γ|η, Dobs) =
[ I∏

i=1

ni∏
j=1

|Vη|−1/2 exp
{− 1

2
η′ijV

−1
η ηij

}]
π(γ),

where π(γ) is the prior for γ. We compute

γ̂ = argmax
γ1,γ2,γ3

log π∗(γ|η, Dobs) and Σ̂ =

[
− ∂2 log π∗(γ|η, Dobs)

∂γi∂γj

∣∣∣∣∣
γ=γ̂

]−1

.

We use N (γ̂, c∗Σ̂) as the proposed density for the localized Metropolis algorithm, where
c∗ is a tuning parameter.

For (xii), π(α|zmis, Dobs) ∝
[ ∏I

i=1

∏ni

j=1 f(zij,obs, zij,mis|α)
]
π(α). For various covari-

ate distributions specified through a series of one dimensional conditional distributions,
sampling α is straightforward. For (xiii), given µ, β,φ,σ2, τ , τ ∗,η, α, and Dobs, zij,mis’s
are independent across all i and j, and the conditional distribution for zij,mis is

π(zij,mis|µ, β,φ,σ2, τ , τ ∗,η, α, Dobs)

∝
K∏

k=1

{
Φ

(λk,yijk
− µ∗ijk

σk

)
− Φ

(λk,yijk−1 − µ∗ijk
σk

)}δijk

f(zij,obs,zij,mis|α),

where µ∗ijk = µk + τi + τik +β′kωkηik +φ′
kzij. Thus, sampling zmis depends on the form of

f(zij,obs,zij,mis|α). For the VHA AES 2001 data, π(zij,mis|µ,β,φ,σ2, τ , τ ∗,η,α, Dobs)
is simply a multinomial distribution, which is easy to sample from.
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