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Abstract: Neuroempiricism describes a strategy to store and process data analogous to the human brain and to 
derive an adaptive representation by modelling the biological processes. Technical systems often copy biological 
evolutionary “developments”  from nature. The neuroempirical  principle is an approach to realise features  of 
biological information processing for technical approaches or solutions.

It  is  a  challenge  to  model  spatial  problems  in  healthcare  like  the  dissemination  of  a  viral  infection.  The 
characteristics of the infection are changing in time and often further complicated by unpredictable events such as 
mutation of the virus. These factors have to be accounted for in the computer based framework of the model. 
Artificial  Neural  Networks  (ANN) can  be  used  as  a  mathematical  and  informatics  module  embedded  in  a 
Decision  Support  System  for  risk  assessment  and  the  distribution  of  related  medical  services.  This  article 
describes the application of Neuroempiricism for modelling complex dynamic systems in healthcare informatics 
which results in a new extended network typology derived from a biological network. The new model extends 
directed weighted graphs to a topological non-equivalent network model that is able to represent biological axo-
axonal junctions. The new network topology creates a data structure for computational decision support concepts. 
The Biological Neural Network (BNN) provides an extension of the ANN so that both fuzzy and crisp data can 
be processed in a unified network typology.
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1  Introduction
The results of this paper contributes to the development of an Early Warning And Response System (EWARS) for 
infectious diseases as an Open-source software framework. EWARS is a Spatial Decision Support System (SDSS) 
that supports decision maker to deploy medical resources in space in time according to a spatial distribution of 
epidemiological risk. A SDSS will not make decisions on its own, instead it will enable the decision maker to 
consider more parameters in a complex medical environment to optimize the decision making process. Because 
“complexity” is used in a more generalized sense and it is at the same time a notion to express computational 
effort in Computer Science, we consider the notion in the context of decision support first. Then we introduce it to 
the  application  area  of  the  SDSS in  rural  areas  because  health  service  delivery  in  these  areas  especially  in 
developing  countries  suffer  from the  lack  of  medical  resources.  The  objective  of  a  spatial  decision  support 
provided by EWARS is to optimize the deployment of the existing limited resources in rural areas to improve 
health service delivery according to risk.

This paper will  bridge the gap between the main objective of EWARS development on the one side and the 
underlying generalized network topology as a data structures in the Open-source framework on the other side. 

Complexity  and Decision Support 

Complexity theory in the context of Computer Sciences (CS) provides measures for estimating the calculation 
effort. The calculation effort of an algorithm can be described as mathematical mapping from the length of an 
input sequence to the average effort for calculating the defined result. The mathematical expression provides the 
calculation effort depending e.g.  linearly,  polynomially,  exponentially,  -  depending on the length of an input 
sequence. Another aspect of complexity focuses on the minimal length of an algorithm to generate an output 
sequence  (Kolmogorov-Chaitin-Complexity  C(s)).  Let  A be  an  algorithm represented  by a  sequence  of  bits. 
Kolmogorov-Chaitin-Complexity  C(s) of a finite binary sequence  s  is defined to be the minimal length of the 
sequence A to generate the object s by an algorithm A, that outputs s without any inputs. We keep the concept of 
measuring  calculation  effort  and  leave  the  notion  of  complexity  in  the  context  of  computer  science  (CS-
Complexity) for a more generalised view on complexity.

An  interdisciplinary  field  of  research  for  the  examination  and  representation  of  complex  dynamic  systems 
examines complexity in the so-called general theory of complexity (Gell-Mann, M. [10] 1992 and [11]  1995/96). 
In this generalised approach to complexity incorporates aspects derived from economics, biological processes in 
ecosystems,  evolution  and  behavioural  research,  medical  processes  in  living  organisms,  aspects  of  cognitive 
sciences and physics  with chaos theory.  Health  related systems are important examples of  complex dynamic 
systems as exemplified below:

• Health of a human being is dependent on environmental conditions and appearance of diseases 
• Life-cycle of pathogenic bacteria (interference with normal human metabolism by introducing disease),
• Life-cycle of a mosquito in combination with a pathogenic parasite to cause disease (e.g. Anopheles and 

Malaria) and
• Economical aspects of  spatial distribution and deployment of medical goods and services in  a healthcare 

system 

Focussing on health service delivery all these layers of complexity are operating on different scales on one side 
and on the other side they have in common that they depend on a huge number of parameters. These layers are 
linked in a complex network and their characteristics are changing over space and time. For decision makers in 
the health care system like doctors, nurses and administration it is a big challenge to derive decision in a complex 
environment.  Creating  computer  based  models  of  a  complex  health  environment  with  the  means  of  medical 
informatics have the objective to guide decision makers by the development of a Decision Support System (DSS). 
We are  starting with the assumption that  no perfect  computer science models  exist,  that describe a complex 
dynamic systems appropriately and so all models have to be refined in an iterative modelling cycle.

In this generalised meaning of complexity a DSS has to be adaptive because of the dynamics of complex medical 
environments.  Measuring complexity for a decision support system means measuring quality of the prioritize 
options for decision making suggested by the DSS for the decision maker. Mathematically a DSS maps medical, 
environmental,  economical  and  biological  parameters  in  the  input  domain  to  decision  options  in  the  output 
domain. For an implemented representation of this mapping on computer systems the DSS has to be able to 
incorporate the iterative refinement of the decision support. Even if an algorithm  might provide useful functional 
mapping between input parameters and the decision options with prioritization in the beginning, but after a while 
it is no longer in tune with a changing medical and human environment. This fact underlines the necessity for 



ongoing improvement of the DSS as described by Turban and Aronson [25] in 2000. To meet this requirement, 
the  DSS will have to have a feature of artificial learning by using empirical data from the considered medical 
environment. 

Decision makers have to decide anyway with or without DSS and with a DSS a decision maker could accept the 
prioritization of options provided by the DSS or decline the suggestions of DSS. The outcome of the final decision 
made by the decision maker is again the input for the DSS.

Health service delivery and Decision Support
Let us consider health service delivery to rural areas to demonstrate how the objective of an improvement of 
health service is embedded in a broader non-medical environment of rural communities. The healthcare delivery 
system of rural communities depends on this environment and infrastructure. The optimisation of health service 
delivery can be achieved by applying logistic support principles as described by Ackermann [1] in 2007. The 
complexity and ultimate  capability of  decision support  systems will  increase by considering these aspects  in 
addition to the core of medical diagnosis and treatment. For spatial decision support the logistics part have to be 
considered at the response part of EWARS for an optimum distribution of medical resources according to risk.

Throughout the world, health service delivery to rural communities is neither as well described nor as developed 
as urban health delivery (Wonca [27], 2002). This implies that decision support has to deal with incomplete data. 
In  addition to  the  constraints  mentioned above,  sustainable  changes in  the  health  service  delivery cannot be 
considered isolated from technological, economical and social factors. For example, Jacobs & Herselman [30] 
have shown in 2006 that the development of the local economy in rural South Africa, and Africa in general, is 
severely compromised by the lack of infrastructure, services and know-how. Improving the economical situation 
of rural communities enables them to grow or buy more nutritious food which can be accompanied by enhanced 
education that helps to teach what “nutritious food” means. If the basic needs for food, clothing, shelter and clean 
water cannot be satisfied by an economically sustainable environment, health education and education in general 
is of low priority (Herselman [8], 2007). In such a difficult environment, technological devices and infrastructure 
provided is often sold for generating money or resources to satisfy short-term basic needs instead of having a 
long-term benefit by applying the technology for education, business, language and health. Cullen [5] (2002), Rao 
[16] (2003) and Herselman & Jacobs [13] (2005) determined these main factors that prevent rural businesses from 
obtaining benefits of ICT (Information and Communication Technology). These barriers to technology use range 
from a lack of physical access and language problems to affective, emotional and cultural obstacles.

Improvements  in  health  service  delivery  have  to  be  considered  in  a  complex  environment  of  individual 
technological, economical and social  requirements and constraints in which rural communities are developing. 
This complex heterogeneous environment of rural communities is regarded as a learning system which learns by 
being exposed to technology, education and other changes of medical infrastructure.  Thus learning does not take 
place only because of positive changes in the system.

A medical doctor has his expertise in medical diagnosis and treatment. In most cases a logistically optimised 
treatment incorporating a broader perspective is not the focus of a clinician. By implementation of an adaptive 
DSS, logistic support principles can be applied to and assist in reducing costs for the delivery of medical goods 
and services ([25] Turban,  E.,  & Aronson 2000).  To achieve this  goal  medical  doctors,  computer  scientists, 
logistic support experts, mathematicians and ICT experts have to collaborate to realise a holistic problem solving 
strategy for health service delivery in rural communities. 

Network Topology and Decision Support
In the context of the generalised notion of complexity and the assumption that no perfect model of a SDSS for 
early warning and response support will exist, we focus on the fact that a decision maker has to make decisions in 
early warning cases anyway and she/he has to deploy the existing resources. The decision maker must accept the 
fact  that  she/he  does  not  have  all  the  information  about  the  medical,  social,  technological,  educational  and 
economical issues that are interfering with the decision making process. When a decision maker has to make a 
decision his decision will have consequences for the decision maker in terms of evaluating the first decision in 
relation to the outcome of his decision. In this sense decision making in general is an iterative cycle of failure and 
improvement of a decision making process.  Supporting the decision making by an EWARS the basic underlying 
data structures is a network topology that should have the following properties.

• EWARS should be able to integrate expert knowledge for optimisation of decision in a discipline where 
the decision maker is not trained (e.g. support a clinician with logistics support strategies for an optimised 



deployment of  medical  resources).  This  means that  an expert  rule  can be plugged in  the underlying 
network topology and be able to be weighted due to changes in relevance of the rule in the optimisation 
process of decision making.

• EWARS should have an underlying data structure that is capable to represent iterative optimisation of 
decision  making  because  the  complexity  (in  the  generalised  sense)  needs  an  iterative  process  of 
optimisation integrated in  the system itself,  this  means that  the output  of   one module modifies  the 
weights of the network of on other module of the SDSS and vice versa.

• EWARS need a basic data structure for the network that is able to interface with a rule based system of 
expert knowledge that has the same underlying topological structure as a data type,

• EWARS need a spatial representation of the underlying data structure, so that every node in the network 
needs a spatial location.

In this paper it will be shown how a generalised topological network structure as a data type that extends the 
definition of a weighted directed graph in Computer Science provides an adaptive module for the decision support 
system for the optimised delivery of health services. The generalised topology defines the concept of dealing with 
empirical data and represents these data adaptively by using Artificial Neural Networks (ANN). 

An ANN is a weighted directed graph with a learning algorithms that modifies the topology or the weights in the 
directed graph (Rojas [17]). A Biological Neural Net is a network of connected cells called neurons (human brain 
– average: 10000 connections per neuron). The neurons are able to send electro-chemical impulses from one 
neuron to another via the connection called synapse. Because the objective of this paper is to derive a generalised 
network topology for spatial decision support we do not discuss the existing learning algorithms of ANNs. 

According to Niehaus [18] Neuroempiricism is a problem solving strategy to discover similarities in biological 
information processing and in information processing of a DSS. The objective of Neuroempiricism is to develop 
computational models that use aspects of information processing existing in Biological Neural Networks (BNN). 
Computational models which have the the ability to learn can be used to transform an existing static model of 
health  service  delivery  with  data  resources  to  an  adaptive  e-health  decision  support  system.  Niehaus  [18] 
described the framework of complex dynamic systems in 2007. In this article the ANN topology is extended 
according to features found in the BNN. These features of  the BNN are new for application in DSS or ANN 
models. The complexity of a health environment and heterogeneous information processing of empirical data 
demands a unified network topology that enables simplified communication between the modules of a DSS. 

2  Methodology
Neuroempiricism is an approach of transferring biological aspects of information processing to technical systems. 
In contrast to the original objective of Artificial Intelligence (AI) to generate artificial intelligence on computer 
systems the approach of neuroempiricism focuses on the realisation of adaptive modules in technical systems for 
processing empirical data. The scientific objective is pragmatic in that any knowledge transfer from a biological to 
a technical system should provide improvements of the technical system. Similarities in processing empirical data 
(e.g. geo spatial data of medical resources) and visual information processing in the brain (edge detection, motion 
analysis)  and  similarities  of  expected  results  in  technical  and  neural  processing  of  information  processing 
determine the improvement of a technical system by transferring aspects of neural information processing to 
technical systems. In this article the methodology is applied to different types of data resources that will result in 
transferring aspects of neural topological structures to technical modules for processing similar empirical data in 
comparison to the brain. 

Neuroempiricism focuses on adaptiveness of decision support systems. Adaptiveness is realised by the application 
of Artificial Neural Networks (ANN) and Fuzzy Logic in technical systems. Neuro-Fuzzy-Systems are already 
applied in technical systems by combining ANN and Fuzzy Logic in one single system ([32] Turban & Aronson). 
The methodology is used to transfer aspects of neural topological structures which can be found in the human 
brain to a technical topology of information processing and thereby simplifying the technical topology that is able 
to cover Fuzzy Logic and ANN and the information interchange. 



The following figure indicates a default process of modelling and application of an ANN in a developed software 
system.

Figure 1: Modelling of BNN features in an ANN application

An ANN is created by modelling certain features of a Biological Neural Network (BNN). After the creation of the 
ANN model  the  ANN runs  through cycles  of  software  optimization  to  improve  the  properties  of  the  ANN. 
Developed  ANN  models  with  determined  properties  of  convergence  will  be  used  or  integrated  in  software 
applications. The modelled features of the BNN are of minor interest. The developmental process of ANNs is 
driven by a mathematical analysis of convergence and by the capabilities of the ANN to solve classified problems 
in a software design process of applications. From the developers perspective the ANN is just an option in a wide 
range of  tools  from Artificial  Intelligence,  Knowledge Acquisition  and Validation,  Data  Mining,  Knowledge 
Representation and Inference Techniques as described by Turban and Aronson [25]. 

Neuroempiricism is a problem solving strategy that focuses on similarities  of information processing directly 
between the final  software application and the BNN. The similarities  could determine the selection of  ANN 
models or the modelling of BNN features in the developed application directly. The following figure shows the 
main cycles of development for the analysis of BNN features and the requirements of the developed application 
(in this case a DSS). The selection of appropriate ANN models is an implication of the analysis of similarities 
only.

Figure 2: Neuroempiricism and similarities of information processing

In the following section Neuroempiricism is applied to Decision Support Systems (DSS) as the final application 
that will be developed ([8] Densham & Goodchild in 1989). The similarities of information processing in BNNs 
and DSSs will lead to a new network topology that extends network topologies usually used for ANNs. 

Fuzzy Logic and Spatial Decision Support  

As mentioned in the introduction we need a basic data structure that is able to represent a rule based system in a 
network on one side and operate on spatial domain on the other. First of all we define briefly the basic concept of 



Fuzzy Logic and extend that to a spatial input domain D⊂ℝ2  for representation in SDSS.

Dealing with complex dynamic systems like health care systems a DSS has to process two types of data:
• crisp data (like blood pressure) and
• fuzzy data (like patient descriptions of pain). 

Fuzzy data is regarded as a generalization of crisp data by a membership function.
Learning processes and the acquisition of rules in particular cannot be described in a crisp logic manner. For 
example “When Peter’s hip hurts, he can hardly walk” is an implication with “hip hurts” as the precondition and 
“can hardly walk” as the conclusion. The validity of statements like “Peter’s hip hurts” cannot be described by 
mathematical logic with true or false (respectively 1 or 0) values. Therefore Lofti Zadeh [29] suggested in 1965 
the extension of the classical two-valued logic to the continuous interval [0,1].

Example: Peter belongs to the fuzzy-set “hip hurts” with a grade of 0.8 which means that his hip hurts very much, 
because the grade is close to 1. If treatment alleviates the pain, Peter’s membership to the fuzzy-set is reduced 
perhaps to 0.2. By extending AND, OR and NOT on fuzzy-sets, rules and fuzzy-implications can be described. 
Statements like “IF Peter’s hip hurts AND Peter has osteoarthritis AND Peter is NOT taking medicine x THEN  
apply treatment y” contain a logical structure operating on fuzzy values. 

The output of the Decision Support System (DSS) can also be classified as crisp and fuzzy data. An example for 
crisp data as output will be: “Dose of 20 milligrams of medicine x”. An example of fuzzy output will be: “choose 
treatment y with a validity of 0.8”, which means that treatment y can be applied but might have small side effects.

Going back to EWARS as a Spatial DSS we need to apply membership functions to the spatial validity of a fuzzy 
property and as a consequence the Fuzzy rules and membership functions will operate on an input domain with a 
location. This implies that the membership functions are representing the validity of a property dependent on the 
location. To illustrate this we consider two simple properties of SDSS expressed in a membership function:

Now we need to extend the Fuzzy rule so that it operates on an input domain of spatial coordinates. This implies 
that the membership functions representing the validity of a property is dependent on the location. To illustrate 
this we consider two simple properties of SDSS expressed in a membership function:

• The  risk  to  be  infected  by  a  disease  I is  high  in  location   x , y ∈ℝ2 . The  membership  function 
f t :ℝ

2×V [0,1]  is dependent on the time index t∈T .

Remark: f t is not a density function of a probability distribution. The function f t  changes in time and beside 
the location f t  is  dependent on other parameters too indicated by V (variables). For visualisation we consider 
the f t :ℝ

2[0,1] ,  because the graph of the membership function is a subset of ℝ3 .  

For a spatial interpretation of the membership function a visualisation of the graph supports the decision maker in 
identifying high risk and low risk area. The following surface (see figure 3) is a risk surface  generated with a 
sequence of arbitrary points P k∈ℝ3 where P k := xk , yk , rk ∈ℝ

3 means that the risk is high with the grade of 
validity rk∈[0,1]  at location  x k , y k∈ℝ

2 .  

• For a decision support the visualization of a fuzzy rule system helps the decision maker to interpret a 
medical risk of infection as a spatial property  r∈[0,1]  of a location   x , y ∈ℝ2 .   Beside the 3D-
visualization and surface interpolation of the points P k∈ℝ3 the membership function indicates high risk 
areas   r=1 are  indicated by red colour and low risk areas   r=0 are  visualized in  colour green. 
Values in between are represented with a smooth transition from red over yellow to green. 

• As mentioned in the beginning the network topology of an ANN is weighted directed graph. The points 
P k  are now considered as pairs of nodes in a network with a weighted edge in between. The weight of 

the  edge  is  r. One  end  (node)  of  the  edge  is  part  of  the  geographical  layer  with  the  coordinates 
 x , y ∈ℝ2 and the other end is part of the network.

• The generalised topology derived from the BNN enables interfacing different components in a SDSS. 



E.g. a learning algorithm of an ANN can train  the values  rk which will then modify the membership 
function  for  an  optimized  representation  of  the  spatial  property.  The  indicated  index  t∈T  in  the 
membership function is indicating in this example the modification and optimisation of the membership 
function f t , v .  

Figure 3: Spatial visualization of a fuzzy membership function f t , v  generate by P 1,... , P n 

Fuzzy logic theory can be helpful in modelling decision processes, but the theory will not help in representing the 
changes  in  membership  functions  for  fuzzy-sets  in  space  and  time.  As  mentioned  in  section  1 the  complex 
heterogeneous environment of rural communities is considered as a learning system, so fuzzy-set theory has to be 
extended to a neuro-fuzzy-system. Artificial Neural Networks (ANN) are used to train the membership functions 
of fuzzy-sets and vice-versa, fuzzy-rules operating on fuzzy-sets can provide input data and process output data of 
ANNs. 

The neuroempiricism approach has to bridge the gap between rule acquisition in Decision Support Systems and 
rule  acquisition in  clinical  research in  neurophysiology.  For  example,  language learning as  described by the 
neurophysiologists Dale & Christiansen [6] in 2004 and the modelling of Artificial Neural Networks are linked. 
Rules in mathematics can be found in algebraic equations, geometrical structures or in general mathematical laws. 
Rules of languages can be described by a formal grammar. Recent studies by Friederici at. al. [21] in 2006 show 
that  the human brain differentiates  human and non-human grammar  and it  is  concluded that  Broca’s  area is 
responsible for processing grammar structure. When a child learns her first language, she acquires rules without 
explicitly knowing the hidden rules behind the language and without explicit instructions to discover those rules. 
Breitenstein, C. et al.  [2] showed in 2004 that word learning can be achieved without feedback. When a child 
learns  mathematical  structures  in  school,  "learning  by  discovery"  is  a  fundamental  principle  in  mathematics 
education as described by Winter, H. [20] in 1997. Children have to discover a rule or a mathematical structure 
behind a sequence of  tasks and then they have to  describe the structure  they have found. Biological  Neural 
Networks (BNN) are able to learn rules by being exposed to a sequence of examples that follow an internal hidden 
rule. Learning of an ANN and a BNN can be described as a process of approximation. 

Pawlak [19] introduced the rough set theory in 1982 as a theory of approximation where indistinguishability of 
concepts are modelled by upper and lower approximation of concepts. A concept is a non-empty set of examples. 
In general the rough set theory provides an approach to deal with concepts when only incomplete information is 
available. Rough set theory and the slightly older fuzzy set theory were combined by Yao [28] in 1997 and Thiele 
[29] in 1998. A comparative study of Fuzzy Theory and Rough Set Theory was done by Radzikowska and Kerre 
[21] in 2002. Going back to the learning process of an ANN or a BNN the dimension of “time” has to be added to 
the process of approximation. 



A teacher supports the learning child to find the rule by presenting information and visualisations of different 
abstraction  levels.  Mathematical  rules  can  have  a  formal  symbolic  structure  (like  equations)  that  can  be 
accompanied with additional information of geometrical shapes (e.g. triangle shaped numbers emphasising the 
symbolic formal structure of the rule, Triangle of Pascal). The abstract rule hidden behind a presented sequence of 
tasks or a set of mathematical objects are more important in mathematics education than in acquiring rules for 
languages, because the rule itself is the objective of the mathematical learning processes. 

Applying these concepts to the problem of health service delivery, a decision support system is exposed to (i.e. 
trained with) collected empirical data. The adaptive modules of an ANN in decision support systems should then 
learn underlying fuzzy-rules facilitating the genesis of appropriate decisions. Going back to introduced setting in 
rural areas that decisions have to be made independent of existence of EWARS as a SDSS. Even doing nothing 
decision is made by the decision maker. The decision support should add value to decision making process. But if 
the SDSS is adaptive then (in addition to the decision support itself) the decision maker needs information of 
support quality. We consider a finite number of decision options {d 1,... , d m } and use two membership function 
f t  and q t . If  f t  d 2=1  and q t d 2 =0.03  - the membership function f t  indicates that for all collected 

data, the decision option  d 2 was helpful and it  is also transparent to decision makers that the quality of this 
decision option is very poor. It  is because q t is indicating that only a few  records of data were collected to 
validate  the quality of  d 2 . The quality property of the decision option can be used to select  decision support 
options that exceed a certain threshold of  quality. Neurons in  an ANN and BNN have this threshold property 
defined mathematically by an activation function of the neuron (Rojas [17]). According to figure 1, going back 
and forth between BNN, ANN and Application, the network topology as a basic data structure in the mathematical 
model of a DSS is appropriate for this quality aspect as well. For the spatial modelling of risk at the location 
 x , y  represented by f t , v  x , y   the information on the quality of  f t , v  at the location   x , y  is given by
q t , v
 f  x , y  . Now q t , v

 f  is a membership itself and can be visualised in a 3D-surface. 

Figure 4: Spatial visualization of a quality membership function  q t , v  

Combine the figures 3 and 4 we have only a small area in SDSS where the quality membership function has a 
value close to 1 (red parts of the surface). For the decision support it is important for the interpretation of risk in 



figure 3 if the quality of the information is good.  Applying fuzzy-AND on the quality membership function q t , v

and the risk mapping f t , v provides a new spatial membership function indicating areas of high risk with high 
quality of data. 

AND  f t , v , qt , v  :ℝ
2[0,1]     x , y min { f t , v x , y  , q t , v x , y }

For decision support even a poor quality of information can improve the decision making process, because little 
information on few cases together with the knowledge about the quality is better than no information about the 
situation. If e.g. only 2 patients out of 10000 people living in an area were tested and both tests were positive 
(meaning that they are infected with a disease D) then the SDSS can be used to suggest response activities like 
more testing spatially close to the positive cases, without suggesting to do a public warning on the disease D. 

Human beings have to make decisions without having the full insight and knowledge about the situation they are 
in at a time t∈T. The approach of Neuroempiricism transferred on decision support  means that the SDSS for 
EWARS will show spatially quality of data and in turn helps the decision maker to decide where to improve the 
quality of the data spatially focused on areas with high  risk and poor quality.

Furthermore the spatial information on the risk helps to identify, where additional test, vaccination programs or 
other response measures for a vector are suggested. At this point of the spatial modelling we are at the connection 
between Early Warning pillar and Response pillar in EWARS. 

It can be seen that the methodology behind the development process of ANN-models between risk and response is 
an associator that maps risk to the available resource. Let Res :={R 1,... R k } be a set of k different resources. The 
associator A t  is mapping the location, risk and quality information at location  x , y  to pairs  r i , q i∈[0,1]2

of usability values r i∈[0,1] and quality values qi∈[0,1] for the resource Ri.  Now we are considering “fogging 
with chemical  C” as an example for a resource R1  to eliminate larvae of mosquitoes (Response Support). The 
usability  r1  of  the resource  R1  is  dependent on the amount of necessary and available chemicals and the 
distance to  location   x , y   where the chemical  C  is  stored.  q1 is  telling the decision maker how well  the 
application of the resource R1  was tested in location   x , y ∈ℝ2   (e.g.  q1=0.93  means that fogging with 
chemical C was tested very well for the location  x , y ∈ℝ2 ).

A t :ℝ
2×[0,1]2 [0,1]2k   x , y , v f , vq  r1, q1 , r2, q2  , ... ,r k ,qk   

In general the mapping A maps a subset of  ℝ 4 to a subset of  ℝ 2k . We consider A as a mathematical function 
that  maps the location  x , y ∈ℝ2  with  the risk value  v f ∈[0,1]  and quality  value  vq∈[0,1] of the risk 
information to a resource application vector in [0,1]2k.  If r i  is close to 1 then the Ri fulfilled e.g. the objective 
of eliminating larvae of mosquitoes very good. If the quality of data  is poor, then not many approved case of 
chemical application are documented. Any positive application of the resource Ri  will improve the quality value 
qi and any unsuccessful application Ri  will decrease the quality value towards 0. 

This implies that the mapping  At will change during time  t∈T  just by making decisions that had to made 
anyway with  or  without  a  decision  support  system.  To show the  internal  structure  of  the  mapping  At  the 
mathematical function  A t :=M t ° D  is decomposed in a distance function D  and a linear associator  M t for 
which the values of the matrix changing in time indicated by the index t∈T.
D :ℝ2×[0,1]2[0,1]k2  x , y , v f , vqd 1, d 2 ,... , d k , v f , vq  

Every resource Ri  has a location x i , y i∈ℝ
2 and the value d i∈[0,1] distance between the location and the 

resource  is  dependent  on  the  distance  between  x , y  and  the  location  of  the  resource  x i , y i.  In  a 
homogeneous  terrain  this  could  be  the  Euclidian  distance  (norm)  defined  by  ∥x , y ∥:= x 2 y2  and 

d i :=
1

1c⋅∥x , y −x i , y i∥
e with  c , e0. If the distance between location (x,y)  and the location of the 

resource  x i , y i  is d i=1 then  the  accessibility  to Ri is  very  good  because  no  transportation  is  required. 
Increasing distance to the resource will make the resource less accessible  and the fraction d i  is decreasing. In a 
network oriented setting (transport setting) the Euclidian distance will be replaced by a network distance because 
the distance between airports transporting medical equipment might be far in the Euclidian sense but close in 
terms of the speed in comparison to transportation on crowded roads over a much shorter distance in comparison 
to  the  aeroplane.  The  linear  associator,  which  is  linear  mapping  the  distance  vector  for  accessibility 



d 1, d 2 , ... , d k , v f , vq to the resource application vector   r1, q1 , r2, q2 , ... , r k , qk  is represented by a 
matrix M ∈Mat 2k×k2 ,ℝ . The mapping is topologically a directed weighted graph between an input 
layer with k+2 nodes and an output layer with 2k nodes. The components of the matrix column 2 and row 5 is the 
weight of the edge between the 2nd  input node and the 5th output node. This is leading once again to a topological 
structure of an underlying network. The weights in the network are changing in space in time and need interfaces 
to other components in the network that change the values in the matrix. Furthermore the fuzzy membership 
function itself is generated by a network, that is modelling the transport processes of the risk and resources (i.e. 
epidemiological risk and the medical resources). 

Now we examine neurological aspects of decision support and transfer the findings into an extension of  neural 
network models in the mathematical model. 

Neural Information Processing and Levels of neural Learning
Schmitz et al. [23] showed in 2001 by physiological, pharmacological, and structural evidence that hippocampal 
neurons  are  coupled  by  axo-axonal  junctions,  providing  a  novel  mechanism  for  very  fast  electrical 
communication. Artificial neural networks normally have a directed graph as a topological model of biological 
neural network. Neurons are represented as nodes which act like a computation unit (see Rojas [17]). The directed 
edges  in  the  graph  represent  the  axo-somal  junctions,  i.e.  the  synapse  between  the  axon  of  one  nerve  cell 
(Neuron1) and the dendrite resp. soma of another nerve cell (Neuron2).

Figure 5: Axo-somal Junction

The  junctions  are  weighted  according  to  excitatory  and  inhibitory  neurons  and  their  synaptic  effect  on  the 
postsynaptic neuron. Axo-axonal junctions are topologically different from the axo-somal junctions. Transferred 
into a directed graph it is necessary to introduce directed edges that connect one node with another directed edge. 
The extension of the mathematical network model yields a new topology in which the modelled action potential of 
a nerve cell can directly influence the weighted directed edge in the graph. 

Figure 6: Axo-axonal Junction

According to this extended topology three different levels of learning have to be distinguished:

L1: Impulse processed learning (nerve impulse input for a group of neurons)
Example:  The primary visual cortex V1 is regarded as a group of neurons. Visual information from the 
lateral  geniculate  nucleus  transmitted  to  V1  will  be  considered  as  impulse  processed  learning,  because 
patterns of impulses are transmitted into a group of neurons. Abstracted to a representation in a directed 
graph the definition of learning depends on the definition of the considered group of neurons.



Figure 7: Impulse processed learning

In figure 7 a group of 4 neurons are undergoing impulse processed learning. The input interface is marked by 
the two triangles. In this example output connections are not considered. The definition of impulse processed 
learning depends on the selected group of neurons. If we reduce the considered group of neurons to Neuron1 
and Neuron2 the smaller group of neurons learns impulses processed from the upper input connection at 
Neuron1 (triangle)and via the axo-axonal junction w(3,(1,2)) and the axo-somal junction w(4,2):

Figure 8: Impulse processed learning in a reduced group of neurons

L2: Parametric learning (changing weights of directed edges or threshold values of neurons), 
Example: Changing the weight w(1,2) in figure 8 would be considered as parametric learning in a group of 2 
neurons. 

L3: Topological learning (adding and removing neurons or edges). 
Example: The changes from figure 5 to figure 6 are due to two topological learning processes. One is adding 
neuron 3 and the other is adding the axo-axonal junction between neuron 3 and the directed edge (1,2). Both 
changes are regarded as topological learning. 

Considering rule acquisition for mathematical models the aspect of learning of the neural networks no longer 
depends on an explicit learning algorithm. The topology itself provides the ability to realise learning on 3 levels 
with interaction between them. L1 serves as a level of learning, because a nerve impulse is propagated along nerve 
fibres into a group of neurons (e.g. from retina into the visual cortex). The processing of nerve impulses in a group 
of neurons can affect parametric learning of L2 by axo-axonal junctions (see fig.8) or by modifying the threshold 
logic neuron. 

The connection between L1, L2 on the one hand and L3 on the other hand can be done by modelling apoptosis 
(programmed cell death) found in biological neural networks. To every node and every edge an apoptosis value 
with a threshold logic is attached in a mathematical model. The apoptosis value has an interface to which directed 
edges can be connected. Propagated nerve impulses can change the apoptosis value by directed edges (L2). The 
threshold logic of an apoptosis value triggers the programmed death of neurons or the removal of junctions (L3). 
Linking  L1  to  L3  impulse  processed  learning  can  cause  topological  changes  in  the  network  and  vice-versa 
topological changes affect the processing and propagation of modelled nerve impulses through the network. 

Neuroempiricism uses the concepts outlined above to store and process data in analogy to the human brain and to 
derive decisions directly from the dynamics of data representation in an ANN. 



Topology of Fuzzy Rules
As explained in the introduction the generalised network topology
In this section the levels of learning will be applied to fuzzy logical structures. According to the development of 
an adaptive module and the processing to fuzzy data the fuzzy rules can be represented in a network structure. To 
illustrate the topological network structure we refer again to the fuzzy statement: 
 

“IF Peter’s hip hurts AND Peter has osteoarthritis AND Peter is NOT taking medicine x 
THEN apply treatment y”. 

This statement has the following topological structure:

Figure 9: topological structure of fuzzy-rules

The topological structure can learn on level L3 by adding another condition to the given fuzzy implication. The 
fuzzy sets are connected by AND, OR and NOT. The junctions of the fuzzy logic topology are weighted as in the 
topology of a neural network learning processes of level L2 can be applied. A convergence of w(4,5) towards 0 
for example would imply that taking the medicine x will be no longer of relevance for applying the treatment y 
and in turn if  w(4,5)  increases, there might be more observed side effects of medicine x. This small topological 
structure will be evaluated for Peter. “Peter” is the input data of the topological structure (L1). The topological 
structure of fuzzy rules can be evaluated for other patients as well. Every fuzzy set at the nodes will provide a 
value for “hip hurts”, “having osteoarthritis” and “taking medicine x”. For every patient the fuzzy set “apply 
treatment y” suggests the application of treatment y with a certain grade.  After applying the treatment y the 
success is monitored and the monitored data will be used as training data for the topological structure. This can 
change weights in the network and the definition of the membership functions of the fuzzy-sets itself.

Furthermore, fuzzy logic extends classical logic and is compatible with it. The fuzzy set “taking medicine x” can 
be interpreted as a crisp way by classical logic. “Taking medicine” can be true (with a grade of 1) or false (with a 
grade of 0). It makes sense to extend this crisp value to a fuzzy logic representation. For example if a patient has 
stopped taking the medicine x just one week ago, it is possible to model it by a grade less than 1. The value  
depends on the amount of medicine x which is still remaining in the body of the patient.

Transferred to the spatial environment the application of treatment X needs medical resources and the creates a 
demand that has to be covered by the available resource. 

Network layers and spatial problems

Next,  let  us  consider  two examples of  spatial  problems related to  health  care  – the dissemination of  a  viral 
infection and the optimal distribution of medical goods and services in a healthcare system. We have to consider 
different dissemination layers of propagation routes of a virus or logistical routes of medical goods and services 
according to the risk. Layers are mapped and connected to each other, because medical goods and services have to 
be  distributed  depending  on  the  risk  assessment  and the  routes  of  spread  of  a  virus.  Unsupervised  learning 
algorithms used by Kohonen-networks [15] create a mapping between the input space and a network layer. The 
input data reorganises the mapping without a teacher "who is telling" the ANN whether it has produced correct or 
false output. In contrast to unsupervised learning, supervised learning algorithms like back propagation (see Rojas 



[17]  1996, pp.149-171) focus on error reduction of the ANN. The main difference is that Kohonen-networks 
reorganise the mapping by getting input data without evaluating an error measure for the learning processes. 
Kohonen-networks (see Rojas [17], pp.389-410) create with their topology a neighbourhood preserving mapping. 
The model is derived from the human brain by mapping the body's sensory surface to the representing areas in the 
brain. The size of these areas are typically linked to the importance of the sensory surface. For example the 
fingertips have a bigger area of representation than a spot on the arm with the same geometrical size. Therefore, 
Kohonen networks  can  be  trained  to  detect  areas  of  importance  for  the  information  processing  in  the  DSS. 
Furthermore medical problems have spatial aspects particularly when focussing on epidemiological problems such 
as virus dissemination models. According to the Kohonen model we can have the earth surface with available data 
of the specific viral infection cases under consideration (e.g. in a Geographical Information System=GIS). The 
property of a neighbourhood preserving mapping of an ANN is in this case relevant, because infected patients can 
infect others according to spatial or epidemiological  distance to  other  people.  The adaptiveness of Kohonen-
networks leads to a useful visual representation of the data (technically called a chart of the input space) by 
mapping the earth surface to the representing areas of the ANN. The Kohonen-network is self-organising based on 
the importance of the input area and its output is ultimately the trained network itself. By next applying stochastic 
networks  to  the  trained  Kohonen-network,  the  transmission  to  other  areas  can  be  modelled  spatially  by 
probabilities (dissemination model).

Figure :10 Topology and neighbourhood preserving Kohonen-network

In figure 10 you will find the two layers: 1) The layer of geo-spatial data (represented by the earth surface) and 2) 
the layer of the Kohonen-network mapped to the earth surface. Operation in the network layer that preserves the 
original spatial topology is used to do spatial analysis in the output area of the Kohonen-mapping. Kohonen-
networks chart the input space but will not model the dissemination of the virus. Representing dissemination rules 
in a network by applying Fuzzy Logic or stochastic modelling the layer of the Kohonen-network will be the input 
for  the fuzzy rule  layer.  Bridging the gap between artificial  learning in  an extended network model and the 
complex notion of deciding by rules in a neurological environment is related to findings in rule acquisition in 
languages. Artificial grammar learning examined by Breitenstein & Knecht [3] in 2002 and mathematical models 
of rule acquisition focus on the notion of representing the rule in computational decision models. 

Sejnowki and Rosenberg  [22]  described in 1986 the construction of a speech synthesis software by applying a 
backpropagation  ANN.  For  the  neural  network  called  NETtalk  the  rules  for  speech  synthesis  were  not 
implemented, but it was trained by supervised learning. The authors stated NETtalk made the same errors as 
children  when  they  learn  their  first  language.  Furthermore  the  authors  determined  groups  of  neurons  that 
implicitly learned known linguistic rules.

3  Discussion
This article addresses the basic concept of applying the principle of Neuroempiricism to tackle medical problems. 
Medical findings in neurosciences and information processing in the human brain return to medical informatics 
and mathematical modelling by applying these concepts of Artificial Neural Networks. An abstraction of joint 
concepts  and the  adaptation  to  ANN-models  can  be  found in  Fuzzy Logic  and  learning  models  of  network 
topology itself. ANN-modules in computer based decision support systems can be improved by integrating the 



concepts  of  topological  and parametric  learning in  an underlying  single  ANN-model  for  rule  acquisition  for 
spatial risk mapping and distribution of medical resources. The complexity of the considered healthcare systems 
implies the application of adaptive strategies for decision support.  Modelling the interface between ANN, for 
which the output of one network modifies the weights of other ANN (as directed weighted graphs) in the decision 
support system needs an extended underlying network structure.

Axo-axonal junctions can be found in neural information processing of BNNs. Transferring this to an artificial 
topology we have to extend the artificial neural topology with axo-axonal junctions, too (as shown in figure 6). 
The objective is to acquire a unified generalized topology by supervised and unsupervised learning processes for 
decision support concepts with modelled levels L1, L2 and L3 (see section 2). This is necessary for a fault tolerant 
dynamic model of a decision support system that can be used with or without instruction, and respectively with or 
without feedback (i.e. training data). 

The new extended network model is not equivalent to topologies normally used as directed and weighted graphs 
in an ANN. For example, a fully connected topology with 2 neurons has normally 4 directed connections whereas 
a fully connected extended network with 2 neurons and axo-axonal connections has an infinite number of directed 
connections.

With the extended generalized topology axo-axonal junctions can be used to modify weights of fuzzy rules or 
weights in an ANN. Conversely, an ANN or a network of fuzzy rules can modify weights in a network structure. 
The result is that fuzzy rules, rough set models and classical ANN topologies can communicate within a unified 
network structure. The models generate spatial rules of logistical or epidemiological distance that are not visible 
in the original spatial layer where the data was collected. Adaptiveness keeps a DSS responsive to changes in the 
health risk maps and the logistical distribution of medical goods and services. The axo-axonal topology provides 
the  ability  to  model  the  changing  validity  of  an  expert  rule  by  collected  data.  In  general  the  concept  of 
Neuroempiricism  applies  medical  findings  in  neurosciences  to  mathematical  modelling,  so  that  biological 
properties of neural systems can be translated for beneficial use in medical informatics and medical problems of 
modelling.  Using  the  new  extended  topology  enables  the  representation  of  spatial  problems  such  as  virus 
propogation and the spatial dissemination of medical goods and services according to the dynamics of medical 
demands. 

4  Conclusion
It is evident from the above examples, figures and discussions that it is imperative to a have a network topology 
which depicts how the BNN provides an extension of the ANN so that both fuzzy and crisp data can be processed 
in  a  unified  network  typology.  This  is  a  unique  and  new way  of  focussing  on  the  BNN and  ANN as  the 
information interchange between fuzzy and neural networks are not usually incorporated into a joint network 
topology. The distinctive element of the topology arises as the axo-axonal connections are not typically modelled 
in an artificial neural network. The connection between DSS and neural networks is to make the DSS adaptive to 
the environment of the rural communities because the neural network is able to learn by processing collected data 
and also then fuzzy rules have the ability to learn.

The next step will be the application of mathematical measure theory to the unified generalised network model 
that  is  able  to  represent  axo-axonal  junctions  derived  from  the  BNN.  This  is  necessary  to  check  and  test 
convergence of the Decision Support System according to its supported decisions as well as the feedback to these 
decisions, amidst the demands, functions and constraints of health service delivery. The measure theory applied 
on the extended network should not be an external evaluation of the DSS. Error measures and error correction will 
be represented as a part of the generalized network topology that will modify the network by the three levels of 
learning mentioned in section 3 (e.g. modify weights in Fuzzy rules or weights in an ANN topology by axo-axonal 
junctions according to an error measure). The extended topology should be defined and standardised in an XML-
based  format,  so  that  trained  risk  maps  and  efficient  distribution  strategies  of  medical  goods  and  services 
according to the risk can be imported and exported to different  support systems in a complex health service 
system that represents spatially risk cover of resources according to risk and the spatial quality of the available 
information.
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