
 
 

 

  
Abstract— The modelling of vibration problems 

is of great importance in engineering. A popular method 
of analysing such problems is the variational method. 
The simplest vibration model is represented using the 
example of a long rod. Two kinds of eigenfunctions 
orthogonality are proved and the corresponding norms 
are used to derive Green's function that gives rise to an 
analytical solution of the problem. The method can be 
easily generalized to a broad class of hyperbolic 
problems. 

 
Index Terms— Bishop-equation, Green’s function, 

Orthogonality, wave equation. 
 

I. INTRODUCTION 
The longitudinal vibration of a thin isotropic bar has 

been studied by many researchers over a long time owing to 
its wide applications in engineering. More specifically, the 
vibration in a thin bar is described by PDE of the second 
order (E.g.: wave equation) and the vibration in a thick bar is 
described by PDE of the forth or higher order (E.g. Rayleyh, 
Rayleigh-Bishop Equations etc.) [1], [2], [3], [4]. There are 
many ways of modelling vibration problems. In our opinion, 
the best method of such modelling is the variational principle 
[5]. The following reasons show the advantage of this 
method. 

• Simultaneously with the differential equation we can 
obtain necessary boundary conditions. 

• Using the method of separation of variables (when it 
is available), and different kinds of orthogonality 
(method of multiple orthogonalities), we can obtain 
very simple form of Lagrangian. 

• This allows, (and this is the main idea of the paper), to 
construct Green's function of the problem that is 
equivalent to obtaining an analytical solution. 

For the sake of simplicity in this paper we demonstrate 
the method of two orthogonalities using a simple example of 
the wave equation. To be more precise we consider the forced 
vibration analysis of a thin homogeneous bar with constant 
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cross-section, assuming that both ends of the bar are 
suspended by lumped masses and springs. This leads to the 
well known second order wave equation with constant 
coefficients with the natural homogeneous boundary 
conditions of the third kind. This example is considered in 
detail. 

The transcendental equation determining the 
corresponding eigenvalues is solved using different 
mathematical software. The corresponding eigenfunctions 
satisfy two kinds of orthogonality conditions. The results are 
checked by means of MathCAD. The Green function is 
directly derived in terms of eigenfunctions and also used to 
obtain the solution of the problem. 

This method can be easily generalized for equations of 
higher order describing the vibration in thick bar with 
variable geometry. The analytical tools of such 
generalization are based on finding eigenfunctions with 
piecewise continuous derivatives. 

 

II. GOVERNING EQUATION AND BOUNDARY CONDITIONS 
Let us consider a homogeneous isotropic thin bar of length 1. 
We suppose that the small vibrations are activated by the 
distributed force ),( txFF = .  In such condition the 
mechanical wave displacement that comes from the 
deformation of the medium is represented by  ( ),u u x t=  

where and x t are respectively the axial distance between 
the points along the bar and the time. The Lagrangian, is the 
difference of its kinetic energy, its combined potential 
energies due to the strain in the bar and due to the elasticity of 
the surrounding medium at the ends of the bar in which the 
motion took place and the work done by the external applied 
force [5]. 
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where )(xAA =  is the cross-section area, ρ  is the mass 

density, E  is Young modulus of elasticity, 0β  and lβ  are 

the elasticity constant at both ends of the bar, )(xδ  is the 
Dirac −δ function with support at 0=x  and the upper dot 
and the prime denote respectively the derivative with respect 
to t  and x . In accordance with the Hamiltonian principle 
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the variation of the action ∫= 2

1

t

t
LdtS  must be equal to zero 

for all 1t and 2t . [5]. Thus  

∫ == 2

1

0
t

t
LdtS δδ                 (2) 

(It is necessary to distinguish two notations: )(xδ  (with 
brackets) - Dirac −δ function and δ  (without brackets) - 
variation of functional or function). 
It is easy to see (assuming 0),(),( 21 == txutxu δδ ) 
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are of the third kind) where EA/00 βα =  and 1
1 EA

βα = . 

The initial conditions are given as follows: 
( ) ( ) ( ) ( ).0, and 0, xhxuxgxu ==          (6) 

Remark: We consider boundary conditions of the third kind 
because they produce nonconventional orthogonality 
conditions (the second orthogonality). These conditions are 
given below (formula (17)). 

III. FREE VIBRATION AND STURM-LIOUVILLE PROBLEM 

Let us suppose that ρ,, EA  are constants. Problem (4)-(5) 
becomes of the following form: 
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With the boundary conditions: 
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To state the Sturm-Liouville problem, we set 0),( =txF . 
The classical Fourier method consists in setting  

( ) ( ) tiexytxu ω=,                 (9) 

where .12 −=i  
Substituting expression (9) into equation (7), (8) leads to the 
Sturm-Liouville problem: 
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where ( )
ρ

ωωλλ Ec
c

===  and  is the velocity in the 

bar. The general solution of equation (7) has the following 
form: 

( ) xbxaxy λλ cossin +=            (11) 
where ba  and  are constant which can not be 
simultaneously equal to zero. Substituting (11) into boundary 
conditions in (10) gives the following characteristic equation 
with λ  as unknown: 

( ) ( ) ( ) (12) .0cossin 10
2

10 =+++= λααλλλααλD
 
Many positive roots ,...2,1, =nnλ , of the transcendental 
equation (12) can be obtained by using mathematical 
software such as Mathcad (more on that in the numerical 
discussion). The corresponding eigenfunctions are 

( ) .cossin xbxaxyy nnnnnn λλ +==  

IV. THE ORTHOGONALITY OF THE EIGENFUNCTIONS 

Let mn yy  and be the two distinct eigenfunctions ( mn ≠ ) 

corresponding to the different eigenvalues mn λλ  and  that is 

02 =+′′ jjj yy λ                  (13) 
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where  )(,, mnnmj ≠=  
The standard orthogonality of eigenfunctions is usually 
obtained by multiplication of equation for ny  by my , 

equation for my by ny  integration with respect to x  from 0 
to 1 and subtraction of results obtained. Consequently, 
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and nmδ  is Kronecker’s symbol. 
In order to obtain the second orthogonality, we repeat the 
above technique but by multiplying equations for ny and 

my by nnmm yy 22  and λλ  respectively and by using the 
boundary conditions 

( ) ( ) ( ) ( ) ( ) ( ),00 and 11,00 010 mmnnnn yyyyyy ααα =′−=′=′

( ) ( ).11 1 mm yy α−=′  This yields the second boundary 
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In the case α₀ = 1α  =0 orthogonality (17) is given in [6], 
(page 382). In the case of processes described by the wave 
equation this orthogonality is obvious. For more 
sophisticated PDE of higher order we present below a more 
complicated kind of the second orthogonality, but this one 
appears to have never been used before for determining of 
solutions in terms of Green’s function. 

V. SOLUTION OF THE PROBLEM 
We seek the solution of problem (7), (8), (6) in the form of a 
generalised Fourier series with respect to the eigenfunctions 
of the Sturm-Liouville problem: 
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n
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where ( )tun  is an unknown function. We can also expand 

the right hand side F  with respect to the same 
eigenfunctions system: 
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where )(tFn  is n -th Fourier coefficient of F : 
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In order to obtain the equation for the determination of 
( )tun , the Euler-Lagrange differential equation is used:  
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where L  is Lagrangian (1) defined above. 
Substituting (19) and (20) into Lagrangian (1) after simple 
transformation we obtain: 
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Application of eigenfunction orthogonality conditions (15), 
(17) and the corresponding norm representation leads to very 
simple form of the Lagrangian 

( ) ∑
∞

=

=′
1

,,
n

nLuuuL               (24) 

where 

( ) 22
1

22
2

1 ( ) 2 ( ) ( )
2

1       ( )                                     (25)
2

nn n n n

n n

L A u t AF t u t y

AEu t y

ρ= + −

−
 

If (22) is true for each nL  then it holds for L . Equation (22) 

for nL  has the following form: 
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Substituting expression (27) into (19) leads to the general 
solution of the problem (8), (6)-(7): 
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is the Green function. 
The above method can be generalized for complicated 
hyperbolic equations, describing some higher-order vibration 
problems. In section VII we present an example of equation 
of forth order. 

VI. NUMERICAL DISCUSSION 
We consider a thin bar (isotropic and homogeneous), 

consisting of a cylindrical section made of an aluminum alloy  
 
Table I: The characteristics of the bar 

Parameter symbol value unit 
Young modulus of 
elasticity of bar 

E  970.10  /N m  

Mass density ρ  2700  3/Kg m  
Radius of bar r  0.25  m  
Length of bar l  1 m  
Area of bar A  0.1963  2m  
Phase velocity of 
bar 

c  5091.75  /m s  
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The elasticity constants of the surrounding medium at the 
both end of the bar are: 

 
9 2 9 2

0 0.5 10  /  and 10  /lN m N mβ β= × =  
In what follows we use the mathematical software Mathcad 
to implement and numerically illustrate all the results. 
 
The Mathcad function “root” is used to solve the 
transcendental equation ( ) ( ) 0D Dω λ ω= = . To guess 

a starting value of each ,...2,1, =nnω , log ( )D ω  is 

plotted versus the frequency ( ) 12f ω π −=  (Fig 1) and 

some downward “spikes” are seen. Using the command 
“Trace” in Mathcad, the approximate value of ω  at the 
spikes is determined, that is 2 fω π= . 

 

 
Figure 1: Graph used to estimate the values of the 

eigenfrequencies 
 
 

Table II: The first five eigenfrequencies of the bar 
Eigenfrequency Symbol Value Unit 
First mode 

1 / 2ω π  265.429  Hz  

Second mode 
2 / 2ω π  32.574 10×  Hz  

Third mode 
3 / 2ω π  35.106 10×  Hz  

Fourth mode 
4 / 2ω π  37.647 10×  Hz  

Fifth mode 
5 / 2ω π  41.019 10×  Hz  

 
 

Table III: The first five natural frequencies 
Natural frequency Symbol Value Unit 
First mode 

1 / 2πΩ  265.429  Hz  

Second mode 
2 / 2πΩ  32.574 10×  Hz  

Third mode 
3 / 2πΩ  35.106 10×  Hz  

Fourth mode 
4 / 2πΩ  37.647 10×  Hz  

Fifth mode 
5 / 2πΩ  41.019 10×  Hz  

 
 

Figure 2: The eigenfunctions corresponding to the first five 
eigenvalues 

 
 
Fig 2 shows different shapes of the vibration at different 
modes. 

VII. GENERALISATION: RAYLEIGH-BISHOP EQUATION 
In this section we give an example of application of our 
method to the vibration problem for a thick bar. This is more 
complicate problem leading to an equation of forth order.  
Rayleigh-Bishop theory for vibrating thick bar improve the 
classical theory by taking into account the lateral 
displacements (characterize by the Poisson ratio η ) and the 
effects of shear stiffness accompanying this transverse 
displacement while calculating the strain energy by 
introducing the bulk modulus of second kind μ . [2], [3]. In 
this case the displacements are assumed as follow: 
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( )

( ) +′′+′−

−+′+=

∫

∫∫

dxuIuEA

AudxtxFdxuIuAL

p

p

1

0

222

1

0

1

0

222

2
1      

),(
2
1

μη

ηρ
 

The equation of motion has the form [2]: 
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with the following boundary conditions 

⎪⎭

⎪
⎬
⎫

=′′

=′′′−′+′

=

=

0

0

1,0

1,0

22

x

xpp

u

uIuEAuI ημρη
     (31) 

where η  is the Poisson ratio, μ  is the shear modulus of 

elasticity of  second kind, pI  is the polar moment of inertia 

of the cross section of the bar. 
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The Sturm-Liouville problem is: 
 
Equation for eigenfunction ( )xyy =  is 
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 Boundary conditions are 
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The particular feature of Sturm- Liouville problem (32)-(33) 
is that eigenvalues λ  arise in boundary conditions (33). The 
general theory of such problems is not developed at present. 
The latest results concerning this type of problems can be 
found in [7]. 
 
Orthogonalities [2]: 
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The solution of the problem is of the form: 
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eigenfrequency 
 

 
The generalization of this method is also possible for the 

above hyperbolic equation with variable coefficients [1]. 

VIII. CONCLUSIONS 
In this paper Hamilton's variational principle has been the 
main mathematical tool of derivation of the equations of 
motion with associated boundary conditions. It has been 
demonstrated that from the orthogonality of the 
eigenfunctions (two kinds) of the Sturm-Liouville problem, 
we can easily formulate the solution of the of vibration 
problem. 
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