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Abstract — Elliptic curve cryptosystems, like others public-
key encryption schemes, require computing a square roots
modulo a prime number. The arithmetic operations in
elliptic curve schemes over Optimal Extension Fields (OEF)

can be efficiently computed by using an irreducible
binomial.

This paper provides an overview of the OEF, Frobenius

map and embedding points on an elliptic curve. The focus is
on describing an efficient method to find a square root over
Optimal Extension Fields. This method benefits from the
Itoh-Tsujii Inversion algorithm which is based on the

Frobenius map, in order to simplify the problem of finding
the square root over OFEF.
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1 Introduction

Computing square roots in the integers modulo a
prime number p  (ie. solving the equation
x*=amod p) is not a new operation. Tonelli [1]
published what was probably the first efficient algorithm to
compute square roots modulo p in 1891. In subsequent
years many more algorithms were published; Bach and
Shallit [2] give references to several. Shanks [3] improved

on Tonelli’s algorithm in 1972. Shanks called his algorithm °

RESSOL, for “Residue Solver”, but today it is often called
“Shanks’s algorithm”. Many other authors [2], [4] have
described either Tonellis’s or Shanks’s square root
algorithm.

There are public-key encryption schemes and digital
signature schemes that require computing square roots
modulo a prime number. In Rabin’s public-key encryption
scheme, the decryption process requires computing two
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square roots modulo two different prime numbers. Finding
random points on an elliptic curve requires computing a
square root, which should be very efficient.

Elliptic curves over GF Cuv (p is a prime) or

GF AN:V have been implemented by many companies and

standardized by several organizations such as IEEE P1363
and ISO/IEC JTC1/SC27. V. Daniel, C. Bailey, and C.
Paar [5] recently proposed an elliptic curve scheme based
on Optimal Extension fields. Their method represents the
elliptic curve points using a polynomial basis. They
showed that arithmetic operations could be efficiently
computed by introducing a binomial as a minimal
polynomial. In their paper they did not mention any
method for computing a square root in a finite field.

This paper gives an efficient method for finding a
square root in Optimal Extension Fields GF ?sv where
the prime p satisfies p =3 ABOQ Av and m is odd. A
similar technique can be used to compute the square root
when p=5 Aao& mv. The remaining case is

p=l ABOQ mvv which is the most complex case. In the

last case Shanks’s algorithm can be applied to find the
square root without benefit from this technique.

The paper is organized as follows: Section 2 describes
the Frobenius map; Section 3 briefly describes the OEF;
Section 4 shows how to embed random point on an elliptic
curve. Section 5 shows how to use the Frobenius map to
simplify solving the square root equation over OEF, and
Section 6 uses the same technique to check if an OEF
element is a quadratic residue. Finally Section 7 concludes
this paper.
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2 Frobenius Map

This section defines the Frobenius map. Let
GF @sv be an extension field, with p prime and m a

positive integer. Let .mAxv e GF Aﬁs V Then the mapping

A —> A7 is an automorphism known as the Frobenius
map, which is defined as:

o(4)= 47 @

If i is a nonnegative integer, then i-th iterate of the

. i, .
Frobenius map A — A” is also an automorphism. Let us
see how to use the Frobenius map to implement the
exponentiations of GF Aﬁsv elements.

Consider the m&#ﬂmﬁ\ element

m=1

\5& = M Q\x\. ()
j=0

e GF Aﬁx_vu and a, € GF Aﬁv The i-th iterate of the

Frobenius map is:

; m-1 ?
o'(4)= 4" = M_nkx\
=0
m_ ®
m-1 14 m-1 ; ;
— iy = pop
=Yax) =2af x
j=0 j=0

By Fermate’s Little Theorem [6] al =a; mod p, it

could be rewrite (3) as:
m-1

A7 = MQ\&E ) G
=0

This summation can be simplified using the following
theorem:

Theorem [7]
Let P(x) be an irmeducible polynomial of the form

WO&H x™ —w, over Q&u@sy e an integer,
NAQV =0, and it is understood that p >3, then:
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a’=wa' 5)

e—S

where s =emod m,and [ =
m

Let e be the exponent, i.e. €= jp'. i %Axv is given,

then it is possible to precompute  all x? ﬁ for
0<i, j<m—1 in (4), utilizing a table look-up with
entries:

bu_. — j mod A

c,=w " “mod p (6)

where ¢; € GF A ﬁv. Now (4) can be rewritten as:

m—1

A” HMAQ\. qu\.. )

J=0

3 Optimal Extension Fields

Optimal Extension Fields were introduced by Bailey
and Parr in [5]. The Optimal Extension Field is a class of
extension field GF Aﬁsv for p, a prime of special form

and m, a positive integer. OEF fully exploits the
optimizations of integer arithmetic in modern processors fo
produce the fastest multiplication results over binary
extension and prime fields.

The OEF satisfies the following:

o p isaprime less than but close to the word size of
the processor
e p is a pseudo-Mersenne prime given in the form

p=2"+c,where log,c =< in

« An imeducible binomial P(x)=x" —w exists
over GF Aﬁv

We use the standard basis a@%aomgﬁag to represent a

field element \%xv e GF Aﬁa :

m—1

Alx)= M ax'

i=0 (®)
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where a, € GF Aﬁv Since p is less than the size of the

word size of the processor, 4 can be represented using m
registers.

4 Embedding a point on a curve

Embedding data on a curve does not mean encrypting
that data; it simply encodes data as points on a given
elliptic curve £ defined over a finite field GF A.usv
Consider the following elliptic curve equation:

¥ =x*+ax+b. ©)

By converting the right side to a simple form f° Axv

(10)
Then will get a simple quadratic equation.

There are several approaches to embed data on a
curve. One of the relatively straightforward techniques, is
the method proposed by Koblitz [8], which makes use of
the fact that the density of points for any curve over a finite
field is almost uniformly distributed, which means we can
look at any subsection of the bits as an integer and
increment it using simple arithmetic. For instance, for
arbitrary X data, first we check if it is on the curve, i.e. x
satisfies (10); if not, increment X and perform the test
again until we get the solution of equation (10). Then two

values of y are found, and points Nu?u u\v and
kUAxu - u\v are on the curve.

S Solving square root equation

To find a point on an elliptic curve E AQNM O.cs vvv for a

© given x-coordinate, the corresponding y-coordinate must
be calculated by substituting the x-coordinate into the

elliptic curve equation (10), which returns the value of %N ,

so we need to find the square root of y z,

Cohen in [4] reports that if p is an odd prime number, and
a is a quadratic residue, then there exists an X such that
x*=a AEOQ Ev. In a finite field Qﬁ.?sv where the

prime p satisfies that p =3 ABOQ Av and m is odd, the
solution is given by

x = gl (mod p) (11)

In order to find the value of X, we first notice that, if
m =2k +1, for some k [9]

so that

(p+1)4

Q?f% —

(13)

These relations
induction.

can be verified by straightforward

The quantity

[
2
a=’

where © = EN can be efficiently computed in an

analogous fashion to Itoh-Tsujii Inversion [7], based on the
Frobenius map in characteristic p as shown in the

following equation:

[Ty
a =

N\ /2]
s g yli2]0 RS LEI R
AQ::A +u v.AQTIi. +u vc , k evven :m_.v

-a, k odd

Lk/2]
AQ:QT:.T:E&L v AQ~+=+,:+::.EL WN

.

Exponentiation to a power of p is a linear operation in
characteristic p. After computing this quantity, a

multiplication by @, and exponentiation to p —land

A p+ C\ 4 are required to complete the square root
evaluation. The conventional exponentiation algorithm
may be used to compute these exponentiations; however, if
D is large, it may be an advantage to compute z” ! as

-1
z? oz,
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Consider

\AO& € @q@sv

where m=2x8+1, so k=8, assume that 4 is a
quadratic residue.

k-1
S

Using equation (14) to compute 4™ as

4
\N:NI::.IZ HA\AH+§+=N+%V.A\A_+:+=N +=wv.\ , \ﬁo -3

\AH+:+:N+=M HA\A::V.A\A::% , Nm_Hm_.

Al = A4.(4), ky=2

The following procedure shows how to compute
kel
.M:_

A™ using the Frobenius map.

Computing ,\HW& in GF Aﬁzv

.\Aﬁxv € Qmuﬂﬁa vn where

Require: m=2k+1, k=8

C Aav = »AM: , where
Ensure:

Q@vm Qm.?i, u=p*
L Qo «— \Aun = A" QNA\A.u
, GG A= A Multi.
3. G« AD vk = frz v% O.AQL
4 Qm <« ON Qﬁ — \AH+:+:N+=W Multi.
5 Q» <« Aﬁ_w v,um — A\A?:éfém v:» Q.u Amumv
. C<CG= At o \_ma Multi.

Then using equation (13) to complete the evaluation of the
ouare toot of A. the following procedure shows the
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details of computing the square root of an arbitrary element

\va e GF Aﬁs vu using equation (13).

OEF square root

Require: \HAHV e GF Aﬁs v. where

m =2k + 1, kis integer
Ensure:  Find C A.xv , such that

C*(x) = 4(x) (mod p),

where Q?v € QﬁAﬁsv
oo \HM : Eq. (14)
2. C <« C¢ Q.AQOV
3, CF a(C,)
4 C«(C)" Iny.
5. C,«C,C, Muli.
6. C,«C, A Multi,
7. C« AQM v?tvk Exp.

Similar technique can be used to compute the square root
in a finite field GF(p") when p=>5 (mod8) and odd
m.

6 Quadratic residue
Let p be an odd prime, then the congruence

o

x* = a(mod p) (15)

for a given a, has three cases; there is no solution, in this
case, a is a quadratic non-residue modulo p . There is

one solution if a =0 ABOQ %v. In the last case there are
two solutions, then @ is a quadratic residue modulo p . A
simple way of identifying whether or not an integer is a

quadratic residue modulo p is the Legendre symbol.
Legendre symbol [8]

Let g be an integer and p > 2 a prime. We define the
Legendre symbol AQ\ .Bv as following:

0, if pla
hlu ={ 1, if ais a quadratic residue modulo p

-1, if ais a quadratic nonresidue modulo p
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Théh the number of solutions modulo p of the above

congruence is 1+ AQ\ EV.

By Fermat’s Little theorem, in GF Cuv the square of

al?=02 g 1, so a? "2 jieelf is +1, so we have the
following congruence:

2 1= 4% (mod p) (16)
P
In Qﬁ?sv“ﬁ m =2k +1, for some k
NU\: llH Nw ]H kil 2 7
= EAE+CMA% v +1 17)
2 2 pary
So that
iH | plp+1) (p-1)2
" 2
Q? Lv\w =|| g a (18)
)

Again the quantity @' can be computed using equation
(14) as shown in the previous section. The following
procedure computes the value of the Legendre symbol -

Legendre symbol
Require:  A(x) e GF(p”) L pope =2k +1

and k is an integer

Ensure: Find € = Aa\ﬁvm Ale-1)2 ABOQ. ﬁv
Lo =& Eq. (14)
2 G «CP a(C,)
3 C,«CF o(C)
4. C,«CC, Multi.
6 C,«C,4 Multi,
T c< Am.\wv?fc\m Exp.

7 Conclusion

Using elliptic curve cryptosystems requires picking
random values that satisfy the equation of the curve. On the
other hand, plaintext should be embedded as a point on the
curve before starting of the encryption process. These two
operations require solving a square root equation, and so it
is important to find an efficient method to find a square
root over a finite field.

In this paper we showed that an analogous fashion to
Ttoh-Tsujii Inversion algorithm, which is based on the
Frobenius map in characteristic p , can be used to simplify

the problem of finding the square root over OEF.
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