
Real-time exposure fusion on a mobile computer

Asheer Kasar Bachoo

Signal Processing Research Group
Optronics Sensor Systems

Council for Scientific and Industrial Research (CSIR)
Pretoria, South Africa
abachoo@csir.co.za

Abstract

Within the context of video surveillance, object and incident de-

tection by an operator is minimized in over- and under-exposed

pixels. Multiple different exposures of the same scene can

be fused to create a well-balanced and detailed image that is

meaningful to a human operator or surveillance system. We

present an implementation for real-time video enhancement us-

ing videos of varying exposures. The algorithm increases the

details in over- or under-exposed areas that are present in a sin-

gle frame of fixed exposure. The processing power of a mo-

bile computer and its graphics processing unit (GPU) are able

to fuse three greyscale videos of resolution 1600×1200 at 20

frames-per-second.

1. Introduction

Surveillance systems make extensive use of video cameras for

the monitoring of people, objects and high risk areas. Environ-

ments monitored by the military and navy are generally com-

posed of harsh lighting conditions that introduce a large num-

ber of shadows and highlights into a captured frame. These

great variations in scene radiance tend to over-expose or under-

expose certain areas in a captured image. This is due to the

camera sensor’s dynamic range being much lower than that of

the scene. Advanced digital image processing will not reveal

any hidden details since the camera’s sensor system would have

clipped the pixel digital values in the over- and under-exposed

regions. The sequential capture of multiple images of the same

scene using different exposures is able to sufficiently capture

the required information in these scenarios. An image captured

using a short exposure time will not saturate bright image re-

gions while an image captured with a long exposure time will

show more detail in the dark regions.

The pixel depth provided by most camera sensors range

from 8-bit to 14-bit i.e. 256 to 16384 digital values, while the

range of radiance values in a natural scene, from a digital per-

spective, are several orders larger than that. Details present in

high dynamic range scenes can be captured through the use of

the following two techniques:

• High Dynamic Range (HDR) imaging: HDR imag-

ing methods allow a larger dynamic range of luminance

values that traditional imaging techniques do not offer

[1, 2]. These techniques aim to closely model the in-

tensities in the real world, such as strong direct light

sources. An HDR image will contain the full range of

luminances found in a scene. Tone mapping techniques

are used to render the HDR data to low dynamic range

hardware such as screens or common data files such as

JPEG images. HDR images are created using low dy-

namic range data.

• Exposure fusion: Exposure fusion selects the best re-

gions from each frame in a sequence of different expo-

sures of the same scene and seamlessly blends the re-

gions together to created a fused image [3, 4]. Regions

are selected based on user defined criteria such as maxi-

mum entropy, high contrast and saturation. Unlike HDR

imaging, tone mapping for the final rendered image is

not required since the output is the same bit depth as the

input. Exposure fusion also produces more natural look-

ing images and can create a large depth of field by fusing

together frames with different degrees of sharpness.

In this paper, we discuss real-time exposure fusion for creat-

ing detailed video output that can assist with surveillance. The

proposed implementation is a new contribution to the field of

real-time image enhancement. In addition, the hardware and

software platform is a mobile computer that can be deployed

quite easily into the field for testing. We begin by discussing the

background material and thereafter describe the algorithm and

implementation in detail. This is followed by the experimental

results and discussion. Concluding remarks are then presented.

2. Background

Goshtasby proposes an algorithm for exposure fusion that in-

creases the final image entropy [3]. The method proceeds by

splitting the image up into blocks and, for each block, the expo-

sure that has the highest entropy is selected. The selected blocks

of varying exposures are thereafter blended together to create

the final scene. It is an iterative algorithm that computes the en-

tropy of a fused image for different block sizes. The fused im-

age with the highest entropy is the final result. Goshtasby uses

rational Gaussian surfaces for image blending. Experimental

results are presented for still images.

Mertens et al. fuse multiple exposures of a scene through

pyramid blending [4]. In contrast to Goshtasby’s method, they

perform exposure selection at a pixel level (rather than block

level). Three measures are proposed for pixel selection: i) con-

trast, ii) saturation and iii) well-exposedness. These measures

are used to generate a scalar weight map that guides the fusion

process. A Gaussian pyramid of the weight map and a Lapla-

cian pyramid for each exposure are then used to perform the fi-

nal image blending. Similar to Goshtasby’s experimental setup,

results are presented for still images.

Real-time video enhancement can be achieved using dif-

ferent types of hardware [5]. A Field Programmable Gate Ar-

ray (FPGA) is a device with a large number of logic gates.

It is widely used in digital signal processing (DSP) for real-

time applications. FPGAs can be reconfigured in real-time to

form different circuits. This provides them with the ability to

have a wide range of applications with precise outputs. Custom

circuit and memory configurations can be used to exploit the

data layout and the algorithm for high performance. Special-

ized DSP chips also exist that process data captured by cameras

and video recorders. They have dedicated low level accelerators

and higher level general purpose processors for more complex

tasks. Common tasks include LCD display, auto white balance

and auto focus on cameras.

Desktop computers are used by most scientists and re-

searchers due to their low cost and the large number of pro-

gramming languages and software available for DSP. The cen-

tral processing unit (CPU) of desktop computers currently have

multiple cores for high performance computing. Recent ad-

vances include 64-bit platforms, up to 8 megabytes of level 2

cache memory and Single Instruction, Multiple Data (SIMD)

operations in the instruction sets. A disadvantage of the desk-

top processor is its large power consumption.

The graphics processing unit (GPU) is a common hardware

component in desktop and laptop computers. It is used primar-

ily for rendering graphics in modern computer games. In recent

years, the rendering pipeline of the GPU has been made ac-

cessible to programmers through the introduction of GPU pro-

gramming languages, making it capable of doing general pur-

pose computing for a wide range of scientific applications [6].

It employs the SIMD technique to achieve data and computing

parallelism. This technique provides huge performance gains in

certain parallel computing problems.

In the next section, we present a detailed description of the

fusion algorithm that uses the GPU and CPU on a laptop com-

puter to achieve real-time processing. This is a low cost solution

for real-time processing that evades the substantial development

time required by specialized solutions such as FPGAs. In addi-

tion, a variety of applications can be executed on a laptop mak-

ing it a highly flexible analysis tool.

3. Algorithm Details

A variation of Goshtasby’s algorithm is used for exposure fu-

sion. Our algorithm selects the image block with the highest

entropy and performs blending between blocks using bilinear

interpolation [7]. The block size is the only input parameter re-

quired and is user defined. The processing frame rate achieved

implies that the block size can be adjusted by the operator dur-

ing operation without any impact on performance. The expo-

sure fusion algorithm can be described as follows:

1. A block size w × w is specified for the computation of

entropy measures. The Shannon entropy measure for in-

formation can be found in the literature [8].

2. Given a sequence of n frames captured with different

exposures ek where k ∈ {0, . . . , n− 1}, each frame fk,

starting at the top left hand corner, is tiled into blocks of

size w × w. Blocks at the left and bottom edges may be

smaller in size than w × w. We will denote a block as

bkij
where ij, the center of a block, is a particular block

location in the frame. Figure 1 shows blocks at locations

ij in an image.

3. For each frame fk, corresponding to an exposure ek,

each block bkij
is selected and its entropy is computed.

4. For each block location ij, we now have n entropy mea-

sures. The block bkij
with the highest entropy is selected

r

s

yx

j−1 j+1

i−1

j

i

i+1

C

A B

D
p(l,m)

Figure 1: Bilinear interpolation for pixel blending.

for fusion into the final image at location ij.

5. All the blocks selected for each block location ij (in the

above step) are blended together, using bilinear interpo-

lation, for the final image.

Image blending at an interior pixel location (l, m) - a pixel

location surrounded by four blocks - is achieved by using the

pixel values at location (l, m) in the frames having the expo-

sures of the surrounding blocks. In Figure 1, these four blocks

correspond to the ones with their centers labelled A, B, C and

D. Let A, B, C and D denote a particular exposure index(k)

for a block. Then the mapping for an interior pixel is:

p(l, m) =
s

r + s

„

y

x + y
fA(l, m) +

x

x + y
fB(l, m)

«

+

r

r + s

„

y

x + y
fC(l, m) +

x

x + y
fD(l, m)

«

where fk(l, m), k ∈ {A, B, C, D}, is a pixel value at location

(l, m) in an acquired frame having exposure k. Figure 1 shows

how the parameters r, s, x and y are computed. The weighting

is derived from the horizontal or vertical distance to the block

centers in the image. Edge pixels with only two blocks in their

proximity are mapped using a linear combination of the two

image functions. Pixels at the corner of the image have only a

single mapping function i.e. the image function of the closest

block. In the next section, the real-time implementation of the

algorithm is presented.

4. Implementation for the CPU and GPU

The implementation of the exposure fusion algorithm utilizes

the processing power of the CPU and GPU. Computing hard-

ware are designed to have particular types of operation. For

example, CPUs are good for sequential operations while paral-

lel operations are suitable for the GPUs. Although GPUs have

a fixed functionality shader programs can be executed in certain

stages of the pipeline. We utilize the fragment shader pipeline

to process image pixels. More information regarding GPU pro-

gramming can be found in the literature [9].

Certain image processing algorithms cannot be ported to

the GPU without reducing overall performance or drastically

increasing complexity of the program. This constraint arises

from the fact that pixels are processed in a random order and

CPU

n input frames output frame

GPU

data texture

n input frames

SEQUENTIAL OPERATIONS PARALLEL OPERATIONS (PER PIXEL)

− tile each input frame

− compute entropies

− store entropies in a texture

− find neighbouring blocks

− compute weights

− compute new pixel value

Figure 2: Flow of execution for the exposure fusion algorithm.

independently of each other on the GPU. The output at a partic-

ular pixel location cannot utilize outputs at other pixel locations.

Hence, it will be more costly to system performance if certain

algorithms executed only the GPU. Algorithms must be struc-

tured such that the full power of the GPU and CPU are utilized.

We structure the flow of execution as follows (shown in Figure

2):

1. n input frames representing the different exposures for

a scene are first transferred to the CPU for sequential

processing. At this stage, the entropies for each block in

the n frames are computed. The entropy data, together

with block information such as center locations, is stored

in a floating point texture.

2. Once the CPU processing has been completed, the n in-

put frames and the texture storing the entropy data is

transferred to the GPU. The GPU then executes a shader

program that performs operations on pixels in parallel -

neigbouring block locations are computed and the blend-

ing is performed. The data required for each pixel is ex-

tracted from the textures storing the entropy information

and the input data. The new pixel values are then stored

in an output frame and rendered to screen.

When using the GPU for general purpose computing, copy-

ing of image data between the CPU and GPU consumes a large

number of clock cycles when using texture fetches. This prob-

lem can be averted by using the pixel buffer object (PBO) pro-

vided by the OpenGL driver [10]. OpenGL is a low level graph-

ics rendering library that provides an interface to the GPU. The

PBO provides regions of GPU memory that are directly acces-

sible through identifiers. It achieves fast data transfer across the

CPU/GPU bus by using direct memory access (DMA). Our ini-

tial tests showed an increase in processing frame rate by a factor

of 6.

The texture that is used to store the entropy data is one with

format RGBA (4 channels i.e. Red Green Blue Alpha) and data

type 32-bit single precision floating point. It has a constant size

and this ensures that the DMA data transfer will have a fixed

execution time. The amount of data stored in the texture is de-

pendent on the block size for processing; smaller blocks pro-

duce more data than larger ones. In our implementation, a min-

imum block size of 32×32 is possible for video frame sizes of

1600×1200 or less. Each row in the data texture corresponds to

a particular image block and contains 3 columns; each column

is used to store data for a particular exposure. The 4 channels

provided by the RGBA format ensure sufficient memory for im-

age block data. The pixel format (RGBA) was not changed to 1

or 2 channels for lower memory bandwidth consumption since

it was felt that future work on the algorithm would require ad-

ditional image information.

The CPU and GPU code was optimized by reducing the

number of arithmetic and boolean operations. For example,

replacing certain division operations by multiplications (which

execute much faster than division operations). Other operations

were reduced by pre-computing frequently used variables and

by using built-in hardware functions. The most computation-

ally intensive portion of the algorithm is executed by the GPU

i.e. the pixel blending. The FPGA implementation of bilinear

blending is able to exploit particular properties of the algorithm

and the data layout [11]. Hence, the number of clock cycles

required by the processor are significantly lower than a GPU.

This is not possible on the GPU due to the random order of

pixel processing. As a result, a large number of if-then state-

ments are present in the GPU shader code. This is essential

for processing particular image blocks e.g., interior or corner

blocks. Future optimizations will consider creating different

shaders (pipelines) for particular image blocks and pixel loca-

tions. In this case, the execution speedup will be significant.

5. Experimental Results and Discussion

The exposure fusion algorithm was tested on a Dell Latitude

D830 Laptop. The hardware and software specifications of the

laptop were:

• Intel Core2 Duo 2.2 GHz processor.

• 4GB memory.

• Nvidia Quadro 140M NVS graphics card.

• Linux operating system (Gentoo).

• OpenSceneGraph for GPU processing using C++ and

OpenGL Shading Language.

The Nvidia Quadro 140M provides entry level computing per-

formance on a mobile platform. It has 16 shaders (pipelines),

a core speed of 400 MHz, memory speed of 700MHz and op-

erates with 10W power consumption. The memory capacity is

256MB with a bus width of 64-bits. We fuse together three

videos recorded using a Prosilica GE1660 video camera with

resolution 1600×1200 and 8-bit pixel depth. 10 scenes were

captured for testing the fusion algorithm. An example of an

HDR scene with multiple exposures and the final fusion are

shown in Figure 3(a) - 3(d). The 10 test scenes are shown in

Figure 4.

In Figure 3, a camouflaged dummy that is placed next to

the tree is not clearly visible using the auto exposure func-

tion provided by the camera. The auto exposure also creates

strong blown-out highlights in the foreground (the grass patch).

The short shutter time (Exposure 1) correctly exposes the grass

while the long shutter time (Exposure 3) is able to correctly

expose the camouflaged dummy next to the tree. All of these

details are successively fused into the final image (Figure 3(d)).

(a) Exposure 1. (b) Exposure 2 (auto ex-

posure).

(c) Exposure 3. (d) Fused frame.

Figure 3: A typical scene with a high dynamic range.

The normalized entropy of the input scenes and the fused

scenes are presented in Table 1. The entropy for the input scene

is computed using the second of the three exposures, which is

generally the auto-exposure provided by the camera. Block

sizes were selected based on human visual inspection of the

output provided by the algorithm. In most of the test scenes,

the global image entropy is increased by the algorithm. How-

ever, fused scenes with a slight decrease in entropy do show an

increase in image detail on closer inspection. Some fused re-

sults are shown in Figure 5. The performance of the algorithm,

in frames-per-second (fps), is shown in Table 2. The captured

video scenes were scaled for the non-native video resolutions.

Videos of resolution 1360×1024 refer to the frame size pro-

vided by older Prosilica cameras. The processing frame rate

tends to increase monotonically as block size increases. Across

all mentioned video resolutions, a minimum frame rate of 20 is

achievable when using a minimum block size of 64×64. The

algorithm execution time is independent of the scene content.

This means that the processing times for different scenes of the

same resolution are almost the same.

Table 1: Entropy of original image and fused image.

Image Block Original Fused Image

Size Entropy Entropy

BIKE 196 0.64 0.67

CARPARK 128 0.51 0.66

SHADOW 128 0.56 0.66

INTERIOR 196 0.65 0.67

MIDDAY 128 0.65 0.64

HIDDEN 128 0.51 0.64

INDOOR1 128 0.60 0.66

INDOOR2 128 0.65 0.67

VAN 128 0.50 0.64

TREE 128 0.64 0.66

Table 2: Exposure fusion performance (in frames-per-second).

Video Size
Block Size

32 64 128 256

256×256 195.37 196.56 198.23 na

512×512 101.75 103.55 103.83 104.61

1024×1024 28.14 34.09 35.84 35.95

1360×1024 19.75 26.59 27.87 27.65

1600×1200 19.92 20.21 20.25 20.31

The algorithm presented will maintain real-time execution

when the cumalative exposure times are less than the capture

time required for a particular frame rate. Day time scenes with

sufficient lighting easily satisfy these requirements. However,

there are limitations when lighting is extremely poor. In these

cases, low light, thermal or infrared sensors will provide more

information than sensors for the visible spectrum. Another im-

portant consideration is the selection of the different exposure

times. The exposures must be selected so that all or most of the

important scene details are captured. Currently, we use 3 expo-

sures which may be insufficient. Inclusion of more exposures

will introduce a bottleneck to the fusion process but will also

provide better pixel details.

A practical problem associated with the described algo-

rithm is the acquisition process for multiple exposures. This

can be achieved by using multiple video cameras that have been

calibrated. The calibration information can be used to associate

acquired pixel values with points in space and a cropped frame

of interest can be generated [12]. In this way, each pixel loca-

tion will now have multiple digital values corresponding to the

different exposures used. Alternatively, there are digital video

cameras available that allow a user to set a different exposure

for every frame acquisition in real-time. Emerging technolo-

gies also show that new sensors being developed can provide

separate readouts (multiple exposures) for each pixel for a sin-

gle acquisition [2].

The quality of the fused image is dependent on a number of

factors and there is a trade-off between performance and qual-

ity. Blending artifacts can be seen in Figure 5(f). Small block

sizes, for entropy computation, can produce finer details in the

fused image. However, sharp grey scale transitions between

edge blocks are not blended smoothly and this presents a low

quality fused image. Large block sizes enable the best blend-

ing but local details are sometimes lost. These problems can

be addressed by using a multiscale feature extraction and image

fusion/blending process or adaptive window size. A learning

process may also be incorporated every few frames to provide

information for an automatic block size selection process. How-

ever, the methods mentioned above may not satisfy the require-

ments for real-time execution.

Future work will consider looking at optimization tech-

niques on multi-core CPUs and improved shader code. More

complex image partitioning, automatic block size selection and

multiscale blending of image regions will also be considered.

New measures for exposure selection will also be examined.

6. Conclusion

In this paper, we have presented a real-time algorithm for expo-

sure fusion. Only a single input parameter is required, namely

the block size for entropy computation and blending. The test

results show that the algorithm increases the overall entropy in

MIDDAY HIDDEN INDOOR1 INDOOR2

INTERIORCAR PARK SHADOWBIKE

TREEVAN

Figure 4: The 10 scenes used in the experiments.

the final fused image and restores lost image details in over-

and under-exposed regions. The high processing frame rate

achieved for large video resolutions, using a laptop computer,

introduces new possibilities in terms of mobility and testing in

the real-world.

7. References

[1] P. E. Debevec and J. Malik, “Recovering high dynamic

range radiance maps from photographs,” in SIGGRAPH

97, Computer Graphics Proceedings, Annual Conference

Series, 1997, pp. 369–378.

[2] S. Nayar and T. Mitsunaga, “High dynamic range imag-

ing: Spatially varying pixel exposure,” vol. 1, 2000, pp.

472–479.

[3] A. Goshtasby, “Fusion of multi-exposure images,” Image

and Vision Computing, vol. 23, pp. 611–618, 2005.

[4] T. Mertens, J. Kautz, and F. van Reeth, “Exposure fusion,”

in Pacific Graphics, 2007.

[5] N. Kehtarnavaz and M. Gamadia, Real-Time Image and

Video Processing: From Research to Reality. Morgan

and Claypool, 2006.

[6] J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, and

J. Philips, “GPU Computing,” Proceedings of the IEEE,

vol. 96, no. 5, pp. 879–899, 2008.

[7] S. Pizer, E. Amburn, J. Austin, R. Cromartie,

A. Geselowitz, T. Greer, B. ter Haar Romeny, J. Zimmer-

man, and K. Zuiderveld, “Adaptive histogram equalization

and its variations,” Computer Vision, Graphics and Image

Processing, vol. 39, pp. 355–368, 1987.

[8] R. Gonzalez and R. Woods, Digital image processing.

Addison-Wesley Publishing Company, 2002.

[9] R. Rost, OpenGL(R) Shading Language (2nd Edition).

Addison-Wesley Professional, 2006.

[10] D. Shreiner, M. Woo, J. Neider, and T. Davis, OpenGL

Programming Guide. Addison-Wesley Professional,

2007.

[11] A. Reza, “Realization of the Contrast Limited Adaptive

Histogram Equalization (CLAHE) for real-time image en-

hancement,” Journal of VLSI Signal Processing, vol. 38,

pp. 35–44, 2004.

[12] J. de Villiers, “Real-time stitching of high resolution video

on COTS hardware,” in Proceedings of the 2009 Interna-

tional Symposium on Optomechatronic Technologies, ser.

ISOT2009, vol. 9, 2009, pp. 46–51.

(a) HIDDEN. (b) INDOOR1. (c) TREE.

(d) HIDDEN fused. (e) INDOOR1 fused. (f) TREE fused.

Figure 5: Fusion results.

