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Abstract

With the increasing prominence and maturity of corpus-based
techniques for speech synthesis, the process of system develop-
ment has in some ways been simplified considerably. However,
the dependence on sufficient amounts of relevant speech data of
high quality remains a central challenge in under-resourced en-
vironments. In this paper we investigate the quality implications
when building baseline synthesis systems with reduced amounts
of speech data. This is done through a perceptual evaluation of
synthesis systems based on unil-selection and statistical para-
metric synthesis techniques. We show that — although it is pos-
sible to build an acceptable unit-selection synthesizer with as
little as 27 minutes of carefully recorded speech data — synthesis
quality obtainable from Hidden Markov Model-based synthesis
is more consistent and requires si gnificantly less speech data.

1. Introduction

By employing corpus-based techniques towards speech synthe-
sis, the development of basic synthesizers for new languages
has become more feasible. These techniques allow engineers
and speech technologists to rely on speech data to render more
intelligible and natural speech than before, whilst requiring
less linguistic knowledge and language- specific processing.
Although this has greatly aided in the development of sys-
lems for under-resourced languages (by reducing the number of
language-specific technical challenges and linguistic resources
required to develop new systems), the increased reliance on data
quality and quantity still present significant challenges. This
represents a significant obstacle when developing systems in
under-resourced languages. This is true for a number of rea-
sons including: a lack of skills (of technical nature) and basic
resources (e.g. text corpora) which results in the construction
of large corpora being either a costly or entirely infeasible en-
deavour.

Two corpus-based synthesis approaches have in the past
been successfully employed towards developing systems in
under-resourced contexts, namely unit-selection [1] and sta-
tistical parametric synthesis based on Hidden Markov Models
(HMMs) [2].

The advantage of using the unit-selection approach is that it
makes use of the data directly by building an acoustic inventory
and resynthesising unique utterances by selecting and concate-
nating these unit samples directly without signal modification,
This results in speech quality which resembles (he original au-
dio quality of the recordings, having a highly natural quality
due to the absence of signal distortion, if units from appropriate
linguistic contexts are available in the acoustic inventory, Al-
though this implies a high level of sensitivity on data quality
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and reliance on large quantities of speech data to cover rela-
tively sparse linguistic contexts, it has been demonstrated that
acceptable synthesis systems can be constructed with relatively
small speech corpora if recording conditions are carefully con-
trolled to limit the amount of variation in the speech corpus [3].

Alternatively, by constructing acoustic models from the
data, rather than using acoustic samples directly, a level of ro-
bustness against extreme variations in the data can be achieved
by the averaging process of maximum likelihood model esti-
mation, while context-specific models ensure that unique fea-
tures of acoustic units in different linguistic contexts are cap-
tured if enough training data exists. The main disadvantage of
this approach is that resynthesising speech from these models
(usually achieved by means of a vocoder) almost always re-
sults in speech with a slightly synthetic or unnatural quality
(e.g. “buzziness™, even when a large amount of speech data
is available to estimate models,

Considering the varying properties of these synthesis lech-
niques and the fact that the development of large amounts of
quality speech data is difficult and expensive, an interesting and
important question involves the perceived quality differences
of these synthesis techniques when speech data is limited. If
questions such as the general suitability and data dependence
of these techniques in the context and the minimum amount of
data required to build robust synthesizers can be answered, this
could have a significant impact on the design of synthesis sys-
tems for under-resourced languages.

In this paper, we thus construct a number of baseline syn-
thesis systems using these two techniques with varying amounts
of speech data and report on perceptual experiments compar-
ing synthesis examples. These experiments are based on simple
questions of preference where we attempt to establish the rela-
tive quality of the synthesis samples. We also employ the Dy-
namic Time Warping (DTW) algorithm to compare synthesis
samples with natural speech instances to determine the utility
of such a process for the purpose of measuring relative synthe-
sis quality.

The following section describes the details regarding the
experimental setup. This is followed by a section presenting
the results for each experiment, a brief discussion section and a
section with conclusions,

2. Experimental setup

In order to perform perceptual experiments as mentioned, we
construct complete synthesis systems in two South African lan-
guages, namely South African English and Afrikaans. In the
following two sections we describe the design and properties
of the corpora that were used and the details regarding the im-



plementations of our synthesis system. This is followed by a
section describing the nature of perceptual experiments and the
implementation of the DTW-based quality measure.

2.1. Speech corpora

Two small corpora, designed to ensure phonetic coverage and
carefully recorded to limit excessive variation in voice condi-
tions (including intonation) were employed to develop synthesis
systems (see Table 1).

Language | Gender | Utterances

Afrikaans | Female 522
English

Duration | Phonemes |

33 mins. 22218
31 mins. 18564

Male 447

Table 1: Complete corpora properties.

For the purpose of the perceptual experiments, we parti-
tioned the corpora into subsets of training data by removing
some test utterances (for the application of DTW), leaving 400
utterances for each language from which we defined 4 sets of
data containing 100, 200, 300 and 400 utterances respectively.
These selections were made to ensure phonetic coverage in each
case. The properties of each of these sets are summarized in Ta-
ble 2.

| Subset | Utterances | Duration | Phonemes |
Afr100 100 7 mins. 4656
Afr200 200 | 14 mins. 9049
Afr300 300 | 21 mins. 13647
Afr400 400 | 27 mins. 17833
Engl00 100 7 mins. 4317
Eng200 200 | 13 mins, 8544
Eng300 300 | 20 mins. 12968
Eng400 400 | 26 mins. 16991

Table 2: Partitioned corpora properties,

2.2, System development

For both languages, text analysis and basic linguistic mod-
ules were developed (e.g. phoneme sets, grapheme-to-phoneme
rules and syllabification routines) for the Speect speech syn-
thesis framework [4], which is based on the architecture of the
Festival Speech Synthesis System [5]. Thus, the synthesis back-
ends both rely on an identical text analysis process.

Phonelic alignments were performed automatically using
an HMM-based forced-alignment process boolstrapped with
data from the TIMIT corpus [6] as described in [7].

In the following two sub-sections details regarding systems
using the different techniques are briefly described.

2.2.1. Unit-selection synthesis

The process of constructing a unil-selection voice in Speect
closely follows the method implemented in the Festvox soft-
ware package [8], extracting Linear Predictive Coeflicients
(LPCs) and residuals for residual excited LPC resynthesis and
Mel Frequency Cepstral Coefficient (MFCC) vectors for the
calculation of join costs. The unit-selection algorithm imple-
mentation closely follows the Multisyn implementation [1].
One enhancement implemented in addition to the standard
Multisyn approach (which is especially helpful when synthesis-
ing from small corpora) is the fact that the constructed acoustic
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database consists of halfphone unils instead of diphones and
employs a hierarchical selection process where halfphones in
context (essentially diphones and larger units) are considered
first before relying on smaller units if larger units do not exist
in sufficient quantities.

2.2.2. Statistical parametric synthesis

Training of HMM models was done via the standard demonstra-
tion script provided for the HTS synthesis engine [9]. Phoneti-
cally aligned utterance files were obtained from a text-analysis
front-end, using the alignment procedure described above,

For the model tying decision tree, questions relating to sen-
tence and phrase context were based on the English demo while
further questions were generated based on phonetic categories
defined in the phone set (e.g. categories such as plosives, nasals
and vowels and voicing etc.). The only other customisation to
the training procedure involved changing the frequency ranges
for pitch extraction of the male voice,

2.3. Perceptual experiments

Three distinct experiments were defined for each of the lan-
guages:

1. A comparison of synthesis samples by unit-selection
with varying amounts of data.

2. A comparison of synthesis samples by HMM-based syn-
thesis with varying amounts of data.

3. A comparison between synthesis samples of HMM-
based and unit-selection synthesis.

The number of respondents who took part in the experi-
ments was 10 per language. The method of delivery was a web-
site which adhered to the following protocol for each experi-
ment:

e The sample comparisons were randomly ordered in pairs
which covered all the possible combinations of different
amounts of data.

e Each pair of samples, or particular combination, was
synthesised from the same sentence for 5 different sen-
tences from the test set of utterances.

e For each pair, the transcription of the senterice was dis-
played to the respondent,

e The respondent would listen to both samples in the pair.

e The respondent would then choose one of the samples
or indicate no preference, according to the open-ended
question “Which sample do you prefer?”.

The preference criteria was made non-specific intentionally
to limit the time required and complexity of the evaluation pro-
cess. This simplifies the task of the listener, making it more
manageable when listening to a large number of comparisons.
For similar reasons, the number of comparisons were reduced in
the case of the unit-selection comparison, as a number of sam-
ples from the 200- and 300-utterance unit selection dalabases
are identical since the system often selects units from the same
base of 200 utterances. On the other hand, the HMM-based ap-
proach averages over the number of utterances in its parameter
estimation, so differences might be perceivable, even between
the 200- and 300-utterance syntheses.



2.4. Dynamic Time Warping

In addition to having human respondents rate the test utterances,
we also calculate a similarity metric based on the Dynamic
Time Warping algorithm (see Algorithm 1).

[ Data: A synthelic and natural speech example of a
matching utterance.

Result: The mean frame distance over the best path
found.

Initialise the accumulated distance matrix

D(1,1) = d(1,1);

Initialise the most likely path B(1,1) = 1;

fori — 2to N do

for j — 1to M do

D@, 5) = mini<pcn D(i - 1,p) + d(p, 5);

B(i,j) =
argming ¢, <5 D(E — 1, p) + d(p, 5);
end
end
Backtrack over B to find the most likely path through
the matrix;

Calculate the mean frame distance over the path found;

Algorithm 1: Dynamic Time Warping [10]

The implementation of this procedure is based on the DTW
phonetic alignment procedure implemented in the Festvox sofl-
ware package, using the feature extraction parameters com-
monly used in this context, namely MFCCs with 12 coefficients
and their first order derivatives (24 coefficients) calculated from
Hamming windowed frames with length 25ms and Sms frame
shift. The frames are compared by calculating the Euclidean
distance between frames of feature vectors extracted for both
signals.

3. Results
3.1. Perceptual experiments

We present the outcomes of the perceptual evaluations in this
section by simply counting all the votes fora particular instance
in each comparison category over all respondents. In each com-
parison category, an overall level of equivalence is also quanti-
fied, calculated as follows:

|4~ B] 0
ATB+iE )
where A, B and E represent the number of votes for “sample
A”, “sample B” and “no preference” respectively,

For experiment 1, where we compared samples by the unit-
selection approach with different amounts of data, we obtain the
results for Afrikaans and English presented in Table 3.

These results indicate in each case a very distinet preference
for the synthesizer built with more data.

Experiment 2 is of similar nature to experiment 1; however,
in this case we compare HMM-based synthesizers (results pre-
sented in Table 4).

Itis evident from these results that a much larger percentage
of votes identify these samples to be equivalent (compared to
the unit-selection samples) and that on average the difference
between votes for each comparison is less than in the case of
unit-selection.

In the final perceptual experiment, we compared the differ-
ent techniques at the lower and upper extremes of data quanti-
ties (see Table 5).

equivalence = 1 —
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[ Comparison | A| B | E | Equivalence
Afr100 vs. Afr200 9| 32 9 0.54
Afr100 vs. Afr400 050 o 0.00
Afr200 vs, Afr400 6134 10 0.44
Engl00 vs. Eng200 | 10 | 35 ) 0.50
Engl00 vs. Eng400 | 2 | 48 0 0.08
Eng200 vs. Eng400 03218 0.36

100 vs. 200 19 [ 67 | 14 0.52
100 vs, 400 2|98 0 0.04
L 200 vs. 400 6| 66 | 28 0.40
Table 3: Experiment 1: Unit-selection data
Comparison [ A B[ E Equivalence |
Afr100 vs. Afr200 6|22 22 0.68
Afr100 vs. Afr300 712320 0.68
Afr100 vs. Afr400 2132116 0.40
Afr200 vs. Afr300 5117128 0.76
Afr200 vs. Afr400 6 | 18 | 26 0.76
Afr300 vs. Afr400 9|10 | 31 0.98
Engl00 vs. Eng200 | 10 | 16 | 24 0.88
Engl00 vs. Eng300 | 7 | 17 | 26 0.80
Engl00 vs. Engd00 | 4 | 21 | 25 0.66
Eng200 vs. Eng300 | 11 | 20 | 19 0.82
Eng200 vs. Eng400 7121 |22 0.72
Eng300 vs. Eng400 812 30 0.92
100 vs. 200 16 | 38 | 46 0.84
100 vs. 300 14 | 40 | 46 0.74
100 vs. 400 6| 53|41 0.53
200 vs. 300 16 | 37 | 47 0.79
200 vs. 400 13 [ 39 | 48 0.74
L 300 vs. 400 17 | 22 | 61 0.95

Table 4: Experiment 2: HMM-based data

This shows that when minimal data is used, HMM-based
voices are clearly preferable, however at 400 ulterances (26-
27 minutes of speech data) the nnit-selection approach starts
becoming somewhat more popular, especially for the English
voice.

3.2. Dynamic Time Warping

We also compared each of the synthesised test sentences with
natural speech instances via the DTW algorithm, determining
the average frame distances,

In Tables 6 and 7 we present the results representing the
average frame distance at each distinct data quantity level over
all utterances per language for each technique respectively.

[ Comparison | AT B]
HTS-Afr100 vs. US-Af100 | 42 6
HTS-Afr400 vs. US-Afr400 | 26 | 24
HTS-Eng]00 vs. US-Engl00 | 38 | 11

Equivalence

E

o| o]
0 0.96

1

1

3

1

0.46

HTS-Eng400 vs. US-Eng400 | 19 | 30 0.78
HTS-100 vs. US-100 80 | 17 0.37
HTS-400 vs. US-400 45 | 54 0.91

Table 5: Experiment 3: Unit-selection (US) versus HMM-based
(HTS) synthesis



[ Language | 100 | 200 400 ]
Afrikaans [ 4.11524 | 3.79383 | 3.55794
English | 3.57096 | 3.88060 | 3.82922

Table 6: DTW average frame distances (Us)

Language | 100 | 200 | 300 | 400
Afrikaans | 3.41558 | 3.24804 3.16199 | 3.09201
English | 3.06342 | 3.00894 | 2.96880 2.94408

Table 7: DTW average frame distances (HTS)

These results show that by comparin 2 even a few utterances
with instances of natural speech (and only one natural sentence
per utterance), one can detect an increase an improvement in
synthesis quality indicated by a reduction in the mean frame dis-
tance for samples synthesised with more speech data. This pat-
tern seems quite consistent in the case of HMM-based sample
comparisons. In the case of the unit-selection samples, the lrend
was somewhat less consistent, with the English voice using 100
sentences displaying an unexpectedly low average frame dis-
tance,

4. Discussion

In this paper we investigated the perceptual consequences when
constructing corpus-based speech synthesizers with minimal
amounts of data, and evaluated the use of DTW as a measure
of relative synthesis quality. For the presentation of perceptual
test results, we found it meaningful to combine all respondents’
votes into a single pool of votes as no clear bias by any indi-
vidual respondent for samples by a specific technique was ob-
served,

In the following sections we briefly discuss the results pre-
sented in the previous sections.

4.1. Experiment 1

When comparing samples by the unit-selection approach, the
preferences noted at the various data levels follow a distinct
trend. Synthesised speech quality clearly drops when the data
is reduced, despite the fact that the speech corpora were care-
fully recorded to minimise variation to which this technique is
sensitive. The clearly distinguishable improvements with every
increase in the number of utterances suggest that synthesis qual-
ity has not yet stabilised—more data would still be beneficial.
Thus it seems that we are at the lower threshold of data require-
ments for this technique to achieve acceptable quality synthesis.

4.2. Experiment 2

The comparison of samples by the HMM-based approach
stands in contrast. Although there is a steady improvement in
the synthesis quality of samples synthesised from more data, as
indicated by the consistent preference bias, there are also much
larger percentages of instances where the samples are judged
to be of similar quality. Therefore, the HMM-based samples
are less differentiable among one another than their unit selec-
tion counterparts, even between samples with large differences
in the number of training utterances employed. This was con-
firmed by a number of the respondents who commented that
their ear grew accustomed to the HMM-based syntheses over
time, to the point where they could not distinguish the qual-
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ity degradation between samples anymore. It suggests that this
degradation associated with limiting training data might be ac-
ceptable when resources are truly scarce.

4.3. Experiment 3

The comparison between the two synthesis methods shows (hat
HTS is clearly preferable when data is severely limited. When
more data is available, unit-selection is more competitive and
at 400 utterances (26-27 minutes), it is slightly preferred over
the HTS samples on average. However, the observation that
even at this level HMM-based synthesis is preferred in the case
of Afrikaans, emphasizes the facl thal synthesis quality is more
variable (sensitive to recording conditions) in the case of unit-
selection. This result also seems to agree with an earlier obser-
valion we made when building unit-selection systems, namely
that male voices are more likely to lead to acceptable quality
synthesizers when data is highly limited.

4.4. DTW

Using DTW to obtain a measure of synthesis quality by com-
paring samples with a test set of natural speech samples from
the same speaker seems to provide ratings which correlate with
perceived quality (especially in the case of the HTS samples).
However, we found a greater amount of variance in the mean
frame distance when comparing unit-selection samples. It is
possible that the reliability of this measure is adversely affected
when gross errors occur during synthesis (causing misalign-
ment of the path for comparison or resulting in large frame dis-
tances), which occurred occasionally especially in the case of
unit-selection where bad joins were present when data was lim-
ited. It is nevertheless possible that one might be able to obtain
useful ratings if a larger number of test samples are compared,
for inslance, by a K-fold cross-validation procedure. Such an
approach could also be combined with an analysis of the path
found, in order 1o rule out misalignments as a source of noise in
the measurements.

5. Conclusion

In the given scenario where speech data is limited, it is gener-
ally agreed that it is difficult to construct a good quality unit-
selection synthesizer. Therefore, the speech corpora used here
were very carefully recorded to minimise unnecessary varia-
tion, resulting in a rather monotonous speech quality. Under
these conditions unit-selection only really becomes feasible at
around 400 utterances (26-27 minutes). In contrast, we have
shown that it is possible to use corpora of this nature to con-
struct acceptable HMM-based synthesis systems with as few as
100 utterances (7 minutes) of data. Given these results, it might
even be possible to build prosodically more natural voices with
400 utterances using HTS, by relaxing the recording constraints
on variation slightly.

The advantage of using these corpus-based techniques for
synthesis compared to rule-based approaches (such as formant
synthesis) is that prosodic variation can be learned implicitly
from the speech corpus itself; reducing the need for explicit
definition. However, when data is limited, this might not be
feasible. The use of statistical parametric synthesis techniques
seems to be a prudent choice in this context, clearly outper-
forming unit-selection at the lower end of data availability, In
addition, such techniques may benefit from their modelling flex-
ibility if more sophisticated prosodic and other models become
available, thus eliminating the dependency on large amounts of



data to cover many linguistic contexts, Finally, the statistical
techniques are also likely to be important in multilingual envi-
ronments, where the same flexibility may support (for example)
code swilching by combining speech from speakers of different
languages.
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