Propagation of Porro 'petal' beams through a turbulent atmosphere

L. Burger^{1,2} and A. Forbes^{1,2,3}

¹ CSIR National Laser Centre
² School of Physics, University of KwaZulu-Natal
³ School of Physics, University of Stellenbosch

Presented at the 2009 South African Institute of Physics Annual Conference University of KwaZulu-Natal Durban, South Africa 6-10 July 2009

Nd:YAG laser with Porro prism resonator

Page 2

Nd:YAG laser with Porro prism resonator

Optics Express 15(21), 14065-14077, 2007

Porro prism resonator

Transmission through turbulence

South African Journal of Science 104(3-4), 129-134, 2008

Experimental results

Hypothesis – the effect of turbulence of centred and off-centre beams

Kolmogorov Turbulence Model

Fried's scale parameter (r_0) is the turbulence coherence length:

$$r_{0} = \left[0.423k^{2}\int_{h_{\min}}^{h_{\max}}C_{n}^{2}(h)dh\right]^{-3/5}$$

 C_n^2 is the refractive index structure constant *h* is height asl *k* is the wave number

For a fixed height:

$$r_0 = 1.68 \left(C_n^2 L k^2 \right)^{-3/5}$$

How to measure turbulence

- 1. Decompose the turbulence model into a series of orthogonal functions (basis set).
- 2. Construct a series of pseudo-random phase screens from the basis.
- 3. Implement optical wavefront changes from the pseudo-random phase screens.
- 4. Propagate the resulting beam to the far field and measure

Phase screen construction

Page 11

Transmission through turbulence

M² considerations

80% radius

5.00_deg_f=50_Ap=6.0000E-02_NF.

PLOT 1, Tue Jun 09 11:41:56 2009, 35

Results

Page 15

Results

Laboratory experiment using an SLM

Join the Mathematical Optics research team!

Opportunities: MSc and PhD studentships, Post docs and Sabbaticals

Contact: Dr Andrew Forbes or Dr Stef Roux

www.csir.co.za/lasers/index_mathematical_optics.html