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Abstract—We present a confidence measure applied to individ-
ual disparity estimates in local matching stereo correspondence
algorithms. It aims at identifying textureless areas, where most
local matching algorithms fail. The confidence measure works by
analyzing the correlation curve produced during the matching
process. We test the confidence measure by developing an easily
parallelized local matching algorithm, and use our confidence
measure to filter out unreliable disparity estimates. Using the
Middlebury dataset and our own evaluation scheme, the results
show that the confidence measure significantly decreases the
disparity estimate errors at a low computational overhead.

I. INTRODUCTION

Stereo vision is an actively researched topic in computer
vision. In robotic systems, stereo vision provides a low-cost
alternative for range imaging compared to expensive laser
range-finders for applications such as 3D reconstruction and
obstacle avoidance. The major issue in such a system is the
correspondence problem: given two or more images of the
same scene from different viewpoints, find corresponding
pixels and the distance by which the pixel in one view is
translated relative to its corresponding pixel in the other view.
A number of solutions have been produced to the extent that
an online evaluation has been developed [1].

Solutions for the stereo correspondence problem consist
of complex modules such as plane-fitting, edge-preserving
smoothing and image segmentation. Among these solutions
are local matching algorithms, which can be easily parallelized
for real-time applications. Although these algorithms are
applicable in real-time systems, they generally produce
more errors compared to other more complex non-real-time
approaches.

We present a method of assigning a confidence to a disparity
estimate for local matching algorithms. Our approach is
expected to give low confidences to disparity estimates in
textureless regions, where many local matching algorithms
fail. While our approach is similar to a number of previously
developed confidence measures, in that the confidence of a
disparity estimate is a by-product of the matching process,
our analysis focuses on the basin of convergence (refer to
Fig. 3) of a disparity estimate.

To evaluate our confidence measure, we implement a local
matching algorithm. This confidence measure is expected
to be applicable across the different variations of these
algorithms because of the uniform structure of local matching
algorithms. We run our algorithm on the widely used
Middlebury dataset [1] in order to evaluate the performance
of our confidence measure using our evaluation scheme.

The remainder of the paper is structured as follows.
Section II briefly covers the related literature. Section III
discusses the local matching algorithm implemented. Section
IV discusses the confidence measure and how we use it
for disparity refinement. Section V discusses our evaluation
methodology and the results of experiments. The paper is
concluded in Section VI.

II. RELATED WORK

In stereo vision research, there have been several success-
ful approaches in representing the confidence of a disparity
estimate. The left-right consistency constraint [2]–[6] has
been traditionally used to characterize pixel ambiguity. The
constraint checks the left image reference disparity estimate
and compares it to the inverse mapping of the right image
reference disparity estimate. This approach is successful in
detecting occluded regions. There have been approaches that
analyze the matching score of the disparity estimate [7],
[8]. The confidence of a pixel is based on the magnitude
of the similarity value between the pixel in the reference
image and the matching pixel in the target image. Other
approaches analyze the curvature of the correlation curve [9],
[10] and assign low confidences to disparity estimates resulting
from a flat correlation curve. Approaches such as [11], [12]
estimate the confidences of pixels with two similar match
candidates. Research has also been conducted in determining
pixel confidence based on image entropy [13], [14]. Low
confidence scores are assigned to low entropy points in the
reference image. Recently, a new approach has been developed
which extrapolates confidence a posteriori from an initial,
given and possibly noisy disparity estimate [15].



III. STEREO ALGORITHM

According to [16], stereo vision algorithms generally per-
form the following steps:

1) matching cost computation, where a matching cost used
to quantify pixel similarity is formulated,

2) cost aggregation, where a support region is defined to
spatially aggregate the matching cost,

3) disparity computation, where the best disparity hypoth-
esis for each pixel is computed to minimize a cost
function, and

4) disparity refinement, where the computed disparity maps
are post-processed to remove mismatches or to produce
sub-pixel disparity.

We are interested in local matching algorithms, which gener-
ally perform the steps 1, 2 and 3. We include step 4 as our
confidence measure. Our interest in local-matching algorithms
is motivated by the following:
• they can be easily parallelized which allows them to

be implemented on graphics processing units or field
programmable gate arrays for real-time computation,

• they are generally used as an initial estimate for a number
of the state-of-the-art algorithms, and

• their uniform structure, shown in Algorithm 1, which in-
cludes steps 1-4 mentioned above, allows our confidence
formulation to be used across the different variations of
these algorithms.

However, local matching algorithms generally fail because of
a lack of texture in an image and occluded regions.

Algorithm 1 Stereo algorithm
INPUT: Stereo images, window size, disparity range.
OUTPUT: Disparity map, confidence map.

for each pixel in the left frame do
set support region around the pixel (left frame)
set search window in the right frame
for each pixel in the search window (right frame) do

set correlation window around the pixel
correlate support region with correlation window

end for
find best match
calculate disparity
calculate disparity confidence

end for

Local matching algorithms generally differ in steps 1 and
2, matching cost computation and cost aggregation. For a
comprehensive study of matching costs and cost aggregation,
the reader is referred to [17] and [18].

For our purposes, we use Birchfield and Tomasi’s sampling
insensitive matching cost [19]. We also perform the left-right
consistency check to detect occluded regions and filter them
out. Fig. 1 shows the Tsukuba image pair and its ground

Fig. 1. Tsukuba image pair at the top and its ground truth at the bottom
with the left image as reference.

Fig. 2. Computed disparity map of the Tsukuba image pair. Close objects
are bright while distant objects are darker.

truth. The resulting disparity map from our algorithm for the
Tsukuba image pair with a 5 × 5 aggregation window and
15 disparities followed by a 5 × 5 median filter, is shown in
Fig. 2. It should be noted that the algorithm implemented is
to be used as a testbed for our confidence measure and is not
meant to be compared with the state of the art.

IV. CONFIDENCE MEASURE

Our confidence measure is calculated as a function of
x, y, d, where (x, y) are the image coordinates and d is the
disparity. A typical correlation curve is shown in Fig. 3. Local
matching algorithms aim to find the disparity which minimizes
the error of this curve. In this instance the sum of absolute
differences (SAD) of the intensity values is used as the error



measure. By analyzing the basin of convergence, B, of the
disparity estimate, a confidence of the estimate can be inferred.
Given a disparity d, the confidence of a disparity estimate can
be computed as follows:

C(d) =
B

dmax − dmin
.

Here C(d) is the confidence for a given disparity, B
is the basin of convergence of the disparity estimate d,
and dmax − dmin is the disparity range. It is expected
that in textureless regions the correlation curve will have
multiple local minima with small B values, and since
C(d) is proportional to B we expect low confidences. A
high confidence value would have few local minima in the
correlation curve and a fully confident disparity estimate
would arise where the local minimum is the global minimum
of the correlation curve.

Our algorithm uses gradient ascent to determine B. Given
a disparity estimate d, we perform gradient ascent on both
sides of the estimate and determine the two local maxima.
The number of disparities covered by the two local maxima
is defined as the basin of convergence B.

Fig. 3. Correlation curve and the basin of convergence.

A. Disparity refinement

After computing confidences for all the disparity estimates,
we empirically select a threshold, T , to create a mask of
acceptable and unacceptable estimates. Acceptable disparity
estimates are defined as those satisfying C(d) > T . The
refined disparity map for T = 2 is shown in Fig. 4. By
comparing Fig. 2 and Fig. 4 one can visually see that most of
the noisy estimates arising from the local matching algorithm
are filtered out successfully.

Fig. 4. Refined disparity map for the Tsukuba image pair with T = 2.

V. EXPERIMENTS

The Middlebury stereo benchmark provides a testbed to
quantitatively evaluate stereo algorithms. Although the testbed
is widely used in the computer vision community, it requires
a dense disparity map. Generally, algorithms which perform
disparity refinement would also include a hole filling step.
Our algorithm does not perform hole filling because of the
errors it might introduce, which leaves a sparse disparity
map. Evaluating our sparse disparity map on the Middlebury
stereo benchmark would not be appropriate because most
errors would arise from the filtered out disparities. Thus we
use our own evaluation scheme.

Pixels are classified as containing no information, unreliable
information, or good information. We define occluded pixels
as containing no information, pixels with C(d) ≤ T as
containing unreliable information, and the rest of the pixels
as containing good information. In our evaluation we only
consider pixels containing good information.

We calculate the root mean square error (RMSE) as
follows:

RMSE = 100×

√√√√ 1
Np

∑
(x,y)∈p

(d(x, y)− dg(x, y))2,

where, p is the set of all pixels containing good information,
Np is the number of pixels containing good information,
d(x, y) is the estimated disparity at pixel (x, y), and dg(x, y)
is the ground truth disparity at pixel (x, y).

Included in our evaluation is the percentage computational
overhead for a chosen value of T . We include this metric
instead of time in seconds because the actual time depends on
the processor used to carry out the experiments. Percentage
computational overhead on the other hand is independent on



TABLE I
TABLE SHOWING THE RMSE WITH A CHOSEN WINDOW SIZE, NUMBER

OF DISPARITIES, AND THRESHOLD T = 0 FOR THE MIDDLEBURY
DATASET.

Image pair Window size Number of disparities T RMSE
Tsukuba 5× 5 15 0 7.56
Venus 5× 5 19 0 29.84
Teddy 9× 9 59 0 37.43
Cones 9× 9 59 0 30.13

TABLE II
TABLE SHOWING THE RMSE FOR A CHOSEN WINDOW SIZE, AN OPTIMAL
T VALUE AND THE PERCENTAGE COMPUTATIONAL OVERHEAD FOR THE

MIDDLEBURY DATASET.

Image pair Window size T RMSE Computational overhead(%)
Tsukuba 5× 5 2 6.56 2.33

Venus 5× 5 4 21.94 18.35
Teddy 9× 9 2 32.79 19.23
Cones 9× 9 6 23.38 17.60

the processing power.

The Middlebury dataset is used for evaluation. The results
for the Middlebury dataset on the different image pairs with
T = 0 are shown in Table I, while results with an optimal
value of T are shown in Table II.

In our experiments it was noted that the RMSE starts
increasing after a certain value of T for a selected window
size. This is due to the errors introduced by the window size.
Local matching stereo algorithms assume constant disparity
throughout the aggregation window, therefore errors known
as the ”foreground fattening” effect [16] arise. Also, since the
images have pixel resolution, a window size greater than a
pixel affects the resolution of our disparity estimates. Errors
are introduced where the image details are smaller than the
window size. Since our algorithm does not filter out these
errors, they are fixed with a changing value of T . The larger
the value of T , the smaller the value of Np while the errors
remain fixed. A plot showing the relationship between T and
Np with a 5 × 5 window size for the Tsukuba image pair is
shown in Fig. 5.

To show the effect of the window size on our evaluation, Fig.
6 contains a plot of T versus RMSE for varying window
sizes. Different window sizes tends to shift the curve up
or down. As the window size increases, the curve shifts
downwards until a point where a larger window introduces
more errors, causing the curve to shift upwards.

VI. CONCLUSIONS AND FUTURE WORK

We present a confidence measure to detect textureless
regions for local matching algorithms. The effectiveness of
our approach was demonstrated by implementing a local
matching algorithm and filtering unreliable depth estimates.
Our quantitative evaluation demonstrates that the confidence

Fig. 5. Plot of number of pixels Np versus Threshold (T ) with a 5 × 5
window size for the Tsukuba image pair.

Fig. 6. Plot of Threshold (T ) versus RMSE for varying window sizes.

measure decreases the disparity estimate errors at a small
computational cost.

We plan to use the developed confidence measure to
address the problem of temporal stereo, which entails using
previously computed disparity maps to seed new disparity
maps. The confidence measure will aid in identifying good
points to seed successive disparity estimates in the hope of
decreasing computation time for stereo reconstruction.
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[6] R. Trapp, S. Drüe, and G. Hartmann, “Stereo matching with implicit
detection of occlusions,” in ECCV ’98: Proceedings of the 5th European
Conference on Computer Vision-Volume II. London, UK: Springer-
Verlag, 1998, pp. 17–33.

[7] M. J. Hannah, “Computer matching of areas in stereo images.” Ph.D.
dissertation, Stanford, CA, USA, 1974.

[8] D. Smitley and R. Bajcsy, “Stereo processing of aerial, urban images,”
7ICPR, vol. 84, pp. 433–435, 1984.

[9] P. Anandan, “Computing dense displacement fields with confidence
measures in scenes containing occlusion,” IUW, vol. 84, pp. 236–246,
1984.

[10] ——, “A computational framework and an algorithm for the measure-
ment of visual,” Amherst, MA, USA, Tech. Rep., 1987.

[11] J. J. Little and W. E. Gillett, “Direct evidence for occlusion in stereo and
motion,” in ECCV ’90: Proceedings of the First European Conference
on Computer Vision. London, UK: Springer-Verlag, 1990, pp. 336–340.

[12] D. Scharstein, “View synthesis using stereo vision,” Ph.D. dissertation,
Ithaca, NY, USA, 1997.

[13] G. Leclerc and Y. G. Leclerc, “Constructing simple stable descriptions
for image partitioning,” 1994.

[14] D. Samaras, D. Metaxas, P. Fua, and Y. Leclerc, “Variable Albedo
Surface Reconstruction from Stereo and Shape from Shading,” in
Conference on Computer Vision and Pattern Recognition, Hilton Head
Island, South Carolina, 2000.

[15] R. Gherardi, “Confidence-based cost modulation for stereo matching,”
in ICPR, 2008, pp. 1–4.

[16] D. Scharstein, R. Szeliski, and R. Zabih, “A taxonomy and evaluation
of dense two-frame stereo correspondence algorithms,” in SMBV ’01:
Proceedings of the IEEE Workshop on Stereo and Multi-Baseline Vision
(SMBV’01). Washington, DC, USA: IEEE Computer Society, 2001, p.
131.

[17] H. Hirschmller and D. Scharstein, “Evaluation of stereo matching costs
on images with radiometric differences,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 31, no. 9, pp. 1582–1599, 2009.

[18] L. Wang, M. Gong, M. Gong, and R. Yang, “How far can we go with
local optimization in real-time stereo matching,” in 3DPVT ’06: Pro-
ceedings of the Third International Symposium on 3D Data Processing,
Visualization, and Transmission (3DPVT’06). Washington, DC, USA:
IEEE Computer Society, 2006, pp. 129–136.

[19] S. Birchfield and C. Tomasi, “A pixel dissimilarity measure that is
insensitive to image sampling,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 20, no. 4, pp. 401–406, 1998.


