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Figure 1: A schematic diagram of the laser beam delivery system for heating the sample and 
measuring temperature.

Figure 2: The beam size on the sample could be changed by moving the sample in and out of 
the focal region of the beam, thus varying the temperature of the sample.

Figure 4: Plots of stabilised temperature versus power on the industrial diamond, showing the
experimental and theoretical data/linear fit. These measurements were taken with USB 2000 
(wavelength 300 nm – 1000 nm) and NIR256 spectrometer (900 nm – 2500 nm), respectively.

Table 1: The thermographs images of the hot industrial diamond could be changed by moving 
the sample in and out of the focal region of the beam.

Figure 3: The temperature profile of the hot industrial diamond that was taken at the focal 
region of the beam. The temperature profile graphs show that the temperature increases very 
fast and became uniform across the centre of the sample and also fall-out the edge.

Figure 5: Theoretical graphs show the effect of laser beam size on surface temperature 
distribution and also the peak temperature rise in the micro-second scale.

INTRODUCTION
In principle all objects emit thermal radiation as a consequence of their temperature. The thermal 
radiation emitted by an object depends on its  temperature, surface condition and thermal properties. 
A thermography camera senses the emission from object, converts into temperature and display 
thermal images. The thermography camera is defined as measuring instrument used for non-contact 
measurements of the surface temperature of objects. The thermography camera generate thermal 
image of an object being viewed by converting radiant heat energy from the object into a signal that 
can be display on a monitor. The radiant heat emitted from the object is directly proportional to its 
temperature. Thermal image come into view as zones of different colours or shades depending upon 
the temperature range and mean temperature selected. The bright regions in the thermal image 
indicate high temperatures and the dark regions indicate low temperatures. In this study we make 
use of laser heating of High Temperature High Pressure (HTHP) industrial diamond, as well as the 
optically measured temperature profile of the HTHP industrial diamond surface. A XenCls
thermography camera was used to measure the temperature profile of the sample (HTHP industrial 
diamond). 

EXPERIMENTAL SET-UP
The experimental system for delivery of the laser beam is shown in figure 1. A continuous wave (cw) 
CO2 laser was used in the experiment (Edinburgh instrument, model PL6). A Helium Neon laser was 
aligned to be co-linear  with the CO2 beam to facilitate alignment of the invisible infrared CO2 beam 
throughout the optical system. A spatial filter was used to remove unwanted fluctuations in the 
intensity of the  laser beam. A focusing lens, 250 mm was used to focus the laser beam to a sample.  
The sample  was heated with the Gaussian beam profile and the temperature  profile across the 
sample was measured using the XenCls thermography camera. 

RESULTS

Figure 2 is the experimental data of the laser beam width against distance and the attached graphs 
are Gaussian intensity profiles. The Gaussian intensity profile enables one to determine the beam 
width. Figure 2 again indicates the temperature versus the distance of the beam width. Varying the 
beam width will also vary the temperature. Table 1 indicates the changes of a thermographs images 
of the hot industrial diamond as moving the sample in and out of the focal region of the beam, thus 
varying the temperature. Figure 3 are the surface temperature profile data that were measured using 
the XenCls thermography camera. USB 2000 and NIR 256 spectrometers were used to measured   
average temperature as shown in figure 4. Theoretical model graphs are show in figure 5. The 
theoretical curves show the surface temperature profile across the sample, peak temperature and 
average temperature, respectively.
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