Optical trapping and tweezing using a spatial light modulator

Y.Ismail^{1,2}, M. G. Mclaren^{1,3}, A. Forbes^{1,2,4}

¹ CSIR National Laser Centre
² School of Physics, University of KwaZulu-Natal
³ School of Physics, University of the Witwatersrand
⁴ School of Physics, University of Stellenbosch

Presented at the 2009 South African Institute of Physics Annual Conference University of KwaZulu-Natal Durban, South Africa 6-10 July 2009

Optical tweezing is based on the manipulation of micron sized particles in 3 dimensions

When light impinges onto a particle there is a transfer of linear momentum

Experimental set-up of optical trap

Schematic illustrating a silica bead of diameters, 4µm trapped within a Gaussian beam

Trapping of 4 micron sized silica beads

The equi-partition method can be used to determine the strength of the trap

Calibrating the trap by the Equi-partition method

Page 9

Novel beam trapping using a spatial light modulator

Digitally generating beams using a spatial light modulator (SLM)

© CSIR 2009

Optical set-up to achieve novel beam trapping

Trapping along a Bessel Beam column

Page 14

 \mathbf{Z}

Vortex beam of order l = 1 rotated in the anti-clockwise direction

Video illustrating the rotation of iron fillings trapped within a vortex beam

Trapping of a silica bead using a Super Gaussian beam

Video illustrating a SG trap

Page 16

Future work

Venturing into the field of Micro-fluidic

An important aspect of Microfluidics is the study of fluid properties within a channel of dimensions of approximately tens to hundreds micrometers achieved by the use of optical tweezing. The basic micro-fluidic channel is made up of polydimethylsiloxane (PDMS).

Micro-fluidic channel

Applications in Micro-fluidics:

Particle manipulation within a channel
Measuring fluid properties
Particle sorting

Measuring the drag force within a Micro-fluidic channel

Thank you

Join the Mathematical Opticsresearch team!

•Opportunities: MSc and PhD studentships, Post docs and Sabbaticals

Contact:

Dr Andrew Forbes or Dr Stef Roux

•www.csir.co.za/lasers/index_mathematical_optics.html

Thank you

