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Abstract The effects of selected planar finite element
formulations, and their associated integration schemes,
on the stiffness of a checkerboard material layout are
investigated. Standard 4-node bilinear elements, 8- and
9-node quadratic elements, as well as 4-node elements
with drilling degrees of freedom are considered. Integra-
tion schemes evaluated include popular Gauss quadra-
ture rules, as well as modified 5- and 8-point integration
schemes. It is shown that, although checkerboarding may
be slightly alleviated when using elements with drilling
degrees of freedom, the homogenized checkerboard stiff-
ness is identical to that of standard bilinear elements.
This is significant since elements with drilling degrees of
freedom are derived from an 8-node parent element. We
do however demonstrate that modified reduced integra-
tion schemes, applied to quadratic elements, effectively
reduce the stiffness of a checkerboard material layout.
Furthermore, the proposed schemes effectively suppress
spurious zero energy modes which may occur on the el-
ement level in topology optimization.
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1 Introduction

Topology optimization has seen a resurgence in popu-
larity in recent times, largely credited to the paper of
Bendsøe and Kikuchi (1988). This increased research in-
terest has led to many significant advances, and has seen
the use of topology optimization in a number of applica-
tions and fields. Examples include minimum compliance
problems (against which most new procedures and theo-
ries are benchmarked), see for example Bendsøe (1989);
Zhou and Rozvany (1991), vibration problems consid-
ered by, for instance, Pedersen (2000); Dı́az and Kikuchi
(1992), compliant mechanism design with contributions
by, among others, Sigmund (1997); Bruns and Tortorelli
(2001) and multiphysics problems, see Sigmund (2001a,b).

It was however accepted relatively early on that there
are several numerical issues which need to be carefully
dealt with in order to achieve sensible results, for ex-
ample see Sigmund and Petersson (1998) for a review.
One of the numerical issues that has received significant
attention is the problem of checkerboarding. Checker-
boarding is characterised by a significant part of the ma-
terial layout forming a checkerboard pattern. That is,
if the finite element method is employed and elemental
densities are graphically represented on a finite element
mesh, the resulting pattern is reminiscent of a checker-
board.

It is pertinent at this stage to emphasise that topol-
ogy optimization is a challenging global optimization
problem. It should therefore be qualified that, although
it is instructive to study the mechanics of checkerboard
layouts, the severity of checkerboarding in a topology
optimization environment is dependant on a number of
factors, including optimization algorithm type and set-
tings (such as step limit or starting point), objective
function (checkerboarding is less prevalent in compliant
mechanism design than minimum compliance problems),
as well as problem discretization and whether or not con-
tinuation methods are applied. Furthermore, there have
been numerous schemes suggested to eliminate checker-
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boarding from a design generated using topology opti-
mization. Examples include works by Poulsen (2002a,b)
as well as many of the restriction methods. These schemes
naturally also have a significant effect on the checker-
boarding severity.

The checkerboarding problem was studied in detail
by especially Jog and Haber (1996) and Dı́az and Sig-
mund (1995). By interpreting the layout problem as a
mixed variational problem in density and displacement,
Jog and Haber attribute this problem to a violation of
the Babuska-Brezzi or LBB condition. Unfortunately, as
reported by Dı́az and Sigmund (1995), the conditions
under which the standard Babuska-Brezzi arguments are
applied to mixed variational problems are not met by the
layout optimization problem, see also Bendsøe (1995).

A different approach was adopted by Dı́az and Sig-
mund (1995). They suggested that the pattens can be
explained on the basis of local behaviour. They showed
that numerical approximations introduced by the finite
element method may, under certain circumstances, cause
material arranged in a checkerboard fashion to appear
artificially stiff. Under these conditions a local arrange-
ment in a checkerboard-like fashion appears to be locally
stiffer than any other arrangement of the two constitute
materials with the same volume.

In essence, they concluded that since quadratic Q9
elements are ‘softer’ than Q4 elements, they are less
likely to checkerboard. However, the numerical stabil-
ity of higher order elements (such as Q8 or Q9) comes
at a price. They are numerically more expensive than
lower order (Q4) elements. Nevertheless, with the ad-
vent of ever increasing computing power, this additional
expense may become less significant in future. It there-
fore remains of interest to study the use of higher order
elements to alleviate checkerboarding in topology opti-
mization problems. The work of Dı́az and Sigmund is
built upon here, by exploring the use of reduced integra-
tion schemes in higher order elements in order to further
reduce the stiffness of a checkerboard patch of elements.

In the earlier days of the development of the finite el-
ement method, numerical integration schemes attracted
significant attention (e.g. see Dovey (1974); Zienkiewicz
et al (1971); Irons (1971); Gupta and Mohraz (1972)),
possibly due to the limitations of the computing devices
available at the time.

Reduced integration schemes are numerically less ex-
pensive than higher order schemes. This saving in com-
putational effort on the element level comes at the ex-
pense of integration accuracy. However, the induced inte-
gration error is often on higher-order terms which, more
often than not, actually enhances finite element accuracy.
In summary, reduced integration may be able to simulta-
neously reduce cost, reduce accuracy in the evaluation of
integration expressions, and increase the accuracy of the
finite element analysis. This principle was recently suc-
cessfully applied by Long and Groenwold (2004), who

applied modified reduced quadratures to quadratic Q8
and Q9 elements.

Since planar elements with drilling degrees of freedom
are based on a quadratic ‘parent element’, and because it
is well known that quadratic elements are less susceptible
to checkerboarding than standard bilinear elements, the
stiffness of a checkerboard arrangement of elements with
drilling degrees of freedom is of interest.

Our paper is constructed as follows: In Section 2 the
modified numerical integration schemes employed in this
study are briefly described. Section 3 presents a very brief
discussion of element formulations with drilling degrees
of freedom. The theory used by Dı́az and Sigmund to
estimate the stiffness of a checkerboard patch is sum-
marised in Section 4. In Section 5 the numerical results
of employing reduced integration in evaluating elements
with drilling degrees of freedom, as well as higher or-
der elements such as Q8 and Q9, are presented. Finally,
conclusions are drawn in Section 6.

2 Reduced modified quadrature integration rules

Reduced integration is frequently used in evaluating the
element stiffness matrix of quadratically interpolated fi-
nite elements. Reduced integration ‘softens’ these ele-
ment, thereby increasing accuracy, albeit at the possible
introduction of spurious zero energy modes on the el-
ement level. To effectively suppress zero energy modes
usually associated with reduced integration schemes in
elements employing quadratic interpolation fields, two
modified quadratures have recently been employed by
Long and Groenwold (2004). As compared to fully inte-
grated elements, the new rules enhance element accuracy
due to the introduction of soft, higher-order deformation
modes. For completeness, and because these schemes are
not widely know, some details regarding the schemes em-
ployed are briefly presented here. For further details, the
reader is referred to Dovey (1974) or Long and Groen-
wold (2004).

2.1 Numerical integration schemes

The numerical integration schemes presented in this sec-
tion are based on those originally proposed by Dovey
(1974). Consider the area integral given by

I =

∫ 1

−1

∫ 1

−1

F (r, s) dr ds, (1)

where F (r, s) is any polynomial function of r and s. Any
polynomial expression of two variables can be expressed
in the form

F (r, s) =
∑

i,j

Aijr
isj . (2)
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No limits are placed on the summation indices i and j
as any arbitrary polynomial is being considered. Let any
N -point numerical integration rule be written as

I∗ =
N

∑

n=1

WnF (rn, sn) , (3)

where I∗ represents the numerical approximation to I.
Integration point n is given by (rn, sn) and the associated
weight is given as Wn.

Each term of (2) may be trivially integrated as fol-
lows:

∫ 1

−1

∫ 1

−1

Aijr
isj drds =

{

22Aij

(i+1)(j+1) i, j both even

0 otherwise

(4)

Based on this exact integral, a number of numerical
approximations may be derived with leading error terms
related to ever higher exponents.

2.2 A five-point rule

The 5-point rule is depicted in Figure 1(a). Due to sym-
metry, the weights Wα are identical. The rule is indicated
by

I∗ = W0F (0, 0) + WαF (±α,±α). (5)

The second term of (5) indicates four points when all
combinations of positive and negative signs are taken.
Now, combining (2) and (3), comparing with (4) and
grouping terms including A00, A20 and A02 and disre-
garding the centre weight (refer to Long and Groenwold
(2004) for details) leads to

α = 1/
√

3; Wα = 1 and W0 = 0, (6)

which is identical to the 2 × 2 Gaussian product rule.
However, the center point may be retained by selecting
a value for W0 and computing Wα and α. The scheme is
now defined by

Wα = 1 − W0/4, (7)

α =

(

1

3Wα

)
1
2

. (8)

It was shown by Long and Groenwold (2004) that it is
preferable if W0 is chosen such that 0 ≤ W0 ≤ 8

3 .

2.3 An eight-point rule

The 8-point rule is depicted in Figure 1(b). The rule is
described by

I∗ = WαF (±α,±α) + Wβ [F (±β, 0) + F (0,±β)] . (9)

The four equations associated with A00, (A02 and A20),
A22 and (A04 and A40) may be satisfied simultaneously
and the solution is

α =
√

7/9; Wα = 9/49; β =
√

7/15; Wβ = 40/49.

(10)

This rule gives similar order of accuracy as the 3 × 3
Gaussian rule. A scheme of lower accuracy is defined by

Wα = 1 − Wβ , (11)

α =

(

1

9Wα

)
1
4

, (12)

β =

(

2/3 − 2Wαα2

Wβ

)

1
2

. (13)

In this case both α and β are restricted to be between
0 and 1. This implies that Wβ be chosen such that 0 <
Wβ < 8

9 .

3 Elements with drilling degrees of freedom

In this section, a very brief account of formulations of
membrane elements with drilling degrees of freedom is
presented. These membrane elements account for in-plane
rotations based on a continuum mechanics definition of
rotation. The approach relies on a variational formu-
lation employing an independent rotation field, as pre-
sented by Hughes and Brezzi (1989). It utilizes the skew-
symmetric part of the stress tensor as a Lagrange mul-
tiplier to enforce equality of independent rotations and
the skew-symmetric part of the displacement gradient in
a weak sense. The stress tensor is therefore not a priori

assumed to be symmetric.
Hughes and Brezzi show that a displacement-based

functional can be derived by eliminating the skew-symmetric
part of stress from a mixed-type functional. Employing a
matrix notation similar to that in Zienkiewicz and Taylor
(1991), the result is the modified functional

ΠQ4γ
m (um, θz) =

1

2

∫

V

ε T
m CmεmdV

+
1

2
γ

∫

V

(ωxy − θz)
2dV −

∫

V

u T
m fdV, (14)

where ωxy is the rotational part of the displacement gra-
dient, given by

ωxy =
1

2

(

∂u

∂y
− ∂v

∂x

)

. (15)
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In the foregoing, εm represents the membrane strains,
Cm the membrane constitutive matrix, um denotes the
in-plane membrane displacement field [u, v] and f the
body forces.

The independent rotations θz are interpolated using
standard bilinear functions, while the in-plane displace-
ment approximation is taken as an Allman-type interpo-
lation, refer to Allman (1988).

In matrix form the first term of ΠQ4γ
m can be shown

to reduce to

k̃
Q4γ

m = t

∫

A

[

BQ4γ
m GQ4γ

m

]T

Cm

[

BQ4γ
m GQ4γ

m

]

dA,

(16)

where k̃
Q4γ

m is a 12 × 12 matrix, t is the constant ele-
ment thickness, and Cm is the constitutive matrix. The
penalty term, in matrix form, corresponding to the sec-
ond term of ΠQ4γ

m is derived as

pγ
m = γ

∫

A

{

bQ4γ
m

gQ4γ
m

}

[

bQ4γ
m gQ4γ

m

]

dA, (17)

where γ = γ̄G, (18)

with G the shear modulus and γ̄ an adjustable parame-
ter, see Long et al (2006). The element stiffness matrix
therefore becomes

kQ4γ
m = k̃

Q4γ

m + pγ
m. (19)

pγ
m is integrated by a single point Gaussian quadrature.

By fully integrating k̃
Q4γ

m and combining with pγ
m, spu-

rious zero energy modes are prevented, as demonstrated
by Ibrahimbegovic et al (1990). The same holds if a mod-
ified 8-point quadrature, or 5-point rule (see Geyer and

Groenwold (2003)), are employed to integrate k̃
Q4γ

m . The

forms of BQ4γ
m , GQ4γ

m , bQ4γ
m and gQ4γ

m can be found in,
for example, Ibrahimbegovic et al (1990).

4 Stiffness of a checkerboard patch of elements

In this section the essential theory and results of Dı́az
and Sigmund (1995) are briefly summarised. Since much
of the work presented in this section is based on their
work, and in order to ensure continuity for those readers
familiar with the work of Dı́az and Sigmund, their nota-
tion is used here. The section concludes with the main
results from the paper by Dı́az and Sigmund.

4.1 Effective properties of a checkerboard

Following the procedure set out by Dı́az and Sigmund,
it is now demonstrated how the effective properties of a
‘black-and-white’ checkerboard patch of finite elements
are computed. This represents a unit base cell Y which is

divided into four equal quadrants Y i such that E = E−

in Y 1 ∪ Y 3 and E = E+ in Y 2 ∪ Y 4, as shown in Figure
2.

The homogenized stiffness tensor is computed using
the well-known homogenization formulae by integration
over the base cell area as:

Ēijkl =

∫

Y

{

Eijkl − Eijpqε
∗

pq[χ
(kl)]

}

dy, (20)

where the Y −periodic test fields χ
(kl)
p are found as the

solution to the equilibrium equations
∫

Y

Eijkl

{

ε∗pq[χ
(kl)] − ε0

(kl)

pq

} ∂vi

∂yj
dy = 0, (21)

for all v ∈ V h, and k, l = 1, 2. For details consult Bendsøe
and Sigmund (2003); Dı́az and Sigmund (1995); Hassani
and Hinton (1998a,b,c).

The finite element space V h contains the same shape
functions as those used to approximate the displacement
field, defining

V h = {v(y) ∈ R2 : v(y) = Nα(y)vi
α,

if y ∈ Y i, i = 1, . . . , 4}, (22)

and where in the unit base cell, v(0, y2) = v(1, y2) and
v(y1, 0) = v(y2, 1). The effective material tensor, given
in (20) can be computed after solving (21) using three

linearly independent test strains ε0(kl)

pq , as discussed in
for example Bendsøe and Sigmund (2003); Hassani and
Hinton (1998a,b,c); Sigmund (1994).

In their paper, Dı́az and Sigmund (1995) find solu-
tions to (20) and (21) using analytical integration of the
finite element discretization. For an undistorted mesh of
elements, this is equivalent to using full numerical inte-
gration, i.e. a 4 point Gauss quadrature for standard 4
noded elements and a 9 point scheme for 9 node elements.

They also present the optimal strain energy density
w∗ for a known strain field ε̄ and average density ρ = 1/2
using: (i) rank 2 materials, (ii) materials with a base cell
described by a rectangular hole, as well as (iii) SIMP pa-
rameterizations, see Figure 3. They then compare these
values to the strain energy density calculated using a
patch of 4 square elements, as depicted in Figure 2 with
the same average density and applied strain field.

In particular, for rank 2 materials, it can be shown
(see Dı́az and Sigmund (1995) and Jog et al (1993)) that
the optimal strain energy density for fixed strain ε̄ and
density ρ = 1/2 is given by

w∗

Rank2(ε̄) =
1

2
max

ae∈Xρ,ρe=1/2
ĒRank2(a)ε̄ · ε̄, (23)

where

Xρ =
{

a ∈ R2 : a1 + a2 − a1a2 = ρ, 0 ≤ a1, a2 ≤ 1
}

,

(24)
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and ĒRank2 is the effective property tensor of the Rank
2 material and the a’s are as depicted in Figure 3(b).
For a void weak material (E− = 0), w∗

Rank2(ε̄) may be
expressed analytically. This result is compared to

w∗

Q4(ε̄) =
1

2
ĒQ4ε̄ · ε̄, (25)

and

w∗

Q9(ε̄) =
1

2
ĒQ9ε̄ · ε̄, (26)

where ĒQ4 and ĒQ9 are, respectively, the effective con-
stitutive tensor of the ‘black-and-white’ patch of Q4 and
Q9 elements, as depicted in Figure 2.

Similarly, for ρ = 1/2, the optimal strain energy den-
sity for a microstructure with a base cell described by a
rectangular hole is given by

w∗

RHole(ε̄) =
1

2
max

ae∈X,ρe=1/2
ĒRHole(a)ε̄ · ε̄, (27)

and for the SIMP material model,

w∗

SIMP(ε̄) =
1

2
ĒSIMP(ρ)ε̄ · ε̄ =

1

2

(

1

2

)p

E+ε̄ · ε̄, (28)

where ĒRHole and ĒSIMP are the associated constitutive
tensors. Given the preceding, the following relationships
can be proven:

– For rank 2 layered materials (denoted Rank 2),

w∗

Q4(ε̄) ≥ w∗

Rank 2(ε̄), and (29)

w∗

Q9(ε̄) < w∗

Rank 2(ε̄). (30)

– For a square cell with rectangular hole (denoted RHole),

w∗

Q4(ε̄) > w∗

RHole(ε̄), while (31)

w∗

Q9(ε̄) < w∗

RHole(ε̄). (32)

– For SIMP material model (denoted SIMP),

w∗

Q4(ε̄) = w∗

SIMP(ε̄), for p = 1, (33)

w∗

Q4(ε̄) > w∗

SIMP(ε̄), for p > 1, (34)

w∗

Q9(ε̄) < w∗

SIMP(ε̄), for p < p∗1(ν), and (35)

w∗

Q9(ε̄) > w∗

SIMP(ε̄), for p > p∗2(ν), where (36)

p∗1(ν) =
log (22/(6 − 5ν))

log(2)
, and (37)

p∗2(ν) =
log (2(6 − 5ν))

log(2)
. (38)

Dı́az and Sigmund suggest that checkerboarding is likely
to occur if the strain energy density, based on the effec-
tive material tensor of a checkerboard patch of elements
(e.g. ĒQ4, ĒQ9), is greater than that based on the effec-
tive material tensor of the relevant material parameter-
ization (e.g. ĒRank2, ĒRHole or ĒSIMP). These relations
can therefore be used to, not only explain why checker-
boarding occurs, but also in the case of the SIMP mate-
rial model, to recommend a suitable penalty parameter
p.

5 Numerical results

In this section, selected numerical results are presented.
Firstly, the effect of finite element formulation on the lo-
cal test field χ is explored qualitatively. Next, effective
material properties of a checkerboard patch of elements
are computed, employing various elements making use
of different integration schemes. These effective proper-
ties are then used to compute strain energy densities
for prescribed straining conditions. Finally, for the SIMP
material model, the effects of integration scheme on the
bounds of penalty parameter p∗1 and p∗2 are investigated.

The following elements are considered in this study:

– Q4, a standard 4-node displacement based element.
– Q4X, a 4-node element with drilling degrees of free-

dom, based on the variational formulation presented
in Section 3.

– Q8, the serendipity 8-node element.
– Q9, the Lagrange 9-node element.

The integration schemes evaluated are listed below:

– 4-point Gauss-Legendre scheme, which is standard for
evaluating Q4 elements and exact for undistorted el-
ements. It is also commonly used to evaluate Q8 ele-
ments, although it leads to a (normally non-communicable)
spurious mode on the element level.

– 5-point scheme, with varying center weight W0, see
Section 2.2.

– 8-point scheme with varying weight Wβ , see Section
2.3.

– 9-point Gauss-Legendre scheme, which is the stan-
dard 3 × 3 scheme used to evaluate Q9 element ma-
trices and is also commonly used for Q8 elements.

5.1 Effect of element formulation on local χ field

The solution to the cell problem (21) with Q4 elements
has been shown to be extremely simple. The periodic
deformation subjected to constant test strain is such that
the strain in the patch is constant. That is to say,

ε∗[χ(kl)] = 0. (39)

To illustrate this, the χ field for a patch of Q4 elements
subjected to a constant prestrain ε̄11 = ε̄22 = 1, and
ε̄12 = 0, is depicted in Figure 4(a).

It is now investigated whether the additional strain-
ing modes, associated with Q4X elements, result in non-
constant patch strains when subjected to similar test
strains. These elements are based on an 8-node parent el-
ement employing quadratic Allman-type shape functions
as outlined in Section 3. The side nodes are ‘condensed’
to the corner nodes and related to corner nodal rotations.
Q4X elements, therefore possess 3 degrees of freedom per
node in total, i.e. 2 in-plane translations and an in-plane
rotation.
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Unfortunately, as with Q4 elements, only constant
patch strains result for Q4X elements. This can be at-
tributed to the fact that, in the solution of the cell prob-
lem, the rotational degrees of freedom are not activated
by any of the test strains, and therefore neither are the
higher order straining modes. The resulting local χ field
is thus identical to that of Q4, as depicted in Figure 4(a).

In previous work, Long et al (2003) have shown that
Q4X elements do in fact yield slightly different results
in terms of checkerboarding than Q4 elements. This is
probably due to the fact that for realistic problems with
complex strain fields, the skew-symmetric part of the dis-
placement gradient becomes non-zero. Under these cir-
cumstances Q4X appears to be less stiff than standard
Q4 elements, tending to effectively suppress the forma-
tion of large areas of checkerboard material layout. To
illustrate, Figure 5(a) depicts the optimal topology of the
MBB beam employing Q4 elements and a ramping strat-
egy to increase the penalty parameter p linearly from 1
to 3 in 34 iterations, whereafter it is held at p = 3 for
a further 16 iterations after which the solution is ter-
minated. Figure 5(b) depicts the results employing the
same strategy, but this time employing Q4X elements.
Clearly, the severity of checkerboarding is significantly
reduced compared to the results employing Q4 elements.

However, in the limit of mesh refinement only con-
stant strains are experienced, and under these circum-
stances (fine meshes) more checkerboarding is expected.
Numerical experiments have supported this conjecture.
There is therefore no guarantee that Q4X elements will
not checkerboard, especially when fine meshes are em-
ployed. Having said that, elements with drilling degrees
of freedom have been shown to be useful in topology
optimization applications for other applications, e.g. see
Long et al (2003, 2005, 2004). Q4X elements are also
more accurate and more robust than standard Q4 ele-
ments, at only a slight increase in numerical expense.

The local χ fields for Q8 and Q9 elements are dis-
tinctly different to those associated with the Q4 and Q4X
elements. The material distribution results in nonzero
local strain variations as shown in Figures 4(b) and (c)
respectively.

The local χ fields for the Q8 and Q9 elements, de-
picted in Figure 4, are recognised as having a signif-
icant contribution from higher order straining modes.
Recently, Long and Groenwold (2004) have shown that
higher order deflection modes of quadratic elements can
be softened by employing reduced integration schemes.
In the following section, these reduced integration schemes
are employed to compute effective material properties of
checkerboards with the aim of reducing the strain energy
density associated with prescribed strains ε̄.

5.2 Effect of element selection and integration scheme
on effective properties of a checkerboard

A patch of 4 elements, arranged in a checkerboard as
depicted in Figure 2, is used to determine the effect of
element formulation and integration scheme on the effec-
tive material properties computed using homogenization.
In order to compare with results presented by Dı́az and
Sigmund, their material properties are used. Specifically,
the weak material has constitutive tensor

E− = 0, (40)

while the strong material has constants

E+
1111 = E+

2222 = 1, E+
1122 = 0.3, E+

1212 = 0.35. (41)

The variable weights selected for evaluation for the
5- and 8-point schemes are based on results presented
in Long and Groenwold (2004), wherein it was shown
that employing a very small adjustable weight W could
result in numerical instabilities, and therefore the use
of values W < 0.01 are not recommended. Settings of
W0 = 0.1(8/3) and Wβ = 0.1(8/9) were suggested for
improved stability and accuracy. It was also shown that
a value of Wβ = 40/49 results in a solution similar to that
computed by employing a full 9-point integration scheme
for undistorted elements. Values selected for evaluation
are therefore W0 = 0.01 and 8/30 and Wβ = 0.01, 8/90
and 40/49.

Effective material properties for the evaluated ele-
ments employing the various integration schemes and
weights to solve (21) and then (20) are presented in Table
1.

Undistorted Q4 elements are exactly integrated using
a 4 point Gauss quadrature, and all other higher order
integration schemes therefore yield the same result. The
resulting material constants are simply given by the av-
erage of the strong and weak material properties since
ε∗[χ(kl)] = 0 in (20).

A similar result is computed for the patch of Q4X el-
ements, as expected, since Q4 and Q4X elements result
in the same χ fields. The result is that the homogenised
material properties of Q4X and Q4 are identical. Fur-
thermore, the integration scheme employed has no effect
since the local strains are all constant. Note however,
that employing a 4-point scheme results in a rank defi-
ciency for Q4X elements.

Applying a reduced 4-point integration scheme in el-
emental calculations of Q8 elements is known to result
in one spurious straining mode. For an assembly of 2 or
more elements, this mode is largely non-communicable.
However, as shown in, for example Cook et al (2002);
Zienkiewicz and Taylor (1989); Long and Groenwold (2004),
the mode becomes communicable under certain circum-
stances, such as when elements are softly-supported (as
may be the case in topology optimization applications),
or in some dynamic problems (in which Escher modes ap-
pear). In the case considered here, the manner in which



7

the two solid elements are connected in the patch (simi-
lar to a one-node hinge) also allows the mode to become
communicable. In other words, the mode is not prevented
from propagating between diagonal elements, since ad-
jacent elements are empty.

Solution of the system of equations in (21) under
these circumstances is obviously not recommended, due
to the rank deficiency of the global stiffness matrix. How-
ever, for completeness singularity problems were sup-
pressed in order to compute ‘singular results’. Apply-
ing the 4-point scheme to the patch of Q8 elements and
solving (21) and then (20) results in a constitutive tensor
with all non-zero entries equal. This constitutive matrix
is therefore rank deficient, and a strain of ε = {ε̄, ε̄, 0}
results in zero stress and therefore zero strain energy.
This further emphasises that application of the 4-point
scheme in a topology optimization environment employ-
ing quadratic elements is not recommended.

The 5- and 8-point integration schemes are further
evaluated with the weights suggested by Long and Groen-
wold (2004). The 5-point integration scheme has been
shown, even at the low value of adjustable weight (W0 =
0.01), to suppress the spurious mode present when a 4-
point scheme is employed. This result is mirrored in the
results presented in Table 1. Application of the 8-point
scheme, naturally also suppresses communicable modes.
As shown in Long and Groenwold (2004), application of
the 8-point scheme with weight Wβ = 40/49 yields iden-
tical results to a 9-point scheme for undistorted elements.

Identical results are computed when a patch of Q9,
instead of Q8, elements are considered. However, appli-
cation of a 4-point integration scheme to compute the
element stiffness matrix of Q9 elements results in 3 spuri-
ous zero energy modes, two of which are communicable in
an assemblage of elements. As a result, even application
of the 5-point scheme results in a rank deficient global
stiffness matrix. Therefore, even though the computed
results are similar for Q8 and Q9 elements, Q9 elements
can only safely be used with 8- or 9-point integration
schemes.

Finally, applying a full (9-point) integration scheme
results in identical, to machine precision, effective mate-
rial properties for Q8 and Q9 elements. Since a 9-point
scheme represents a full integration scheme for an undis-
torted quadratic element, the result is identical to solv-
ing the expressions analytically. This suggests that there
is very little or no advantage in including the hierarchi-
cal bubble function, present in Q9 elements, in terms
of checkerboarding of undistorted elements. Results for
distorted elements may differ however.

5.3 Effect of integration scheme on strain energy
density of quadratic elements

Since it was shown in Section 5.2 that both Q4 and Q4X
elements result in identical effective material tensors in-
dependent of integration scheme, their results are not

considered in this section. Results for Q4 elements may
be found in the paper of Dı́az and Sigmund (1995). Fur-
thermore, since Q8 and Q9 elements produce identical
results, as shown in Table 1, only results for Q8 elements
will be presented here. Finally, due to the dominance of
the SIMP material model in recent years, only results
for SIMP will be focused upon in this subsection. How-
ever, the results to follow may be extrapolated to other
material parameterizations, such as rank 2 materials.

The material parameterization for SIMP is extremely
simple, with the equivalent material tensor given by

ĒSIMP(ρ) = ρpE+, with p ≥ 1. (42)

The minimum compliance problems can therefore be
written as

max
ρh∈XM

min
uh∈Kh

N
∑

e=1

1

2

∫

e

(ρe)pE+ε(uh) · ε(uh)dx − f(uh),

(43)

with relevant space of density

XM =

{

ρ ∈ L∞(Ω) : 0 ≤ ρ ≤ 1,

∫

Ω

ρ dx ≤ M

}

. (44)

For the SIMP problem, the strain energy density of
a patch with average density ρ can simply be written as

w∗

SIMP =
1

2
(ρ)

p
E+ε̄ · ε̄, (45)

for prescribed strain ε̄. It can easily be shown that the
strain energy density can be written in terms of principal
strains as

w∗

SIMP

E+
1111ε

2
I

=
1

2
(ρ)

p (

1 + 2νη + η2
)

, (46)

where η is the principal strain ratio η = εII

εI
, with |εI | ≥

|εII |, the principal strains.
Comparing this result to expressions for the (analyti-

cally or fully integrated) strain energy density of a patch
of elements, given by

w∗

Q4

E+
1111ε

2
I

=
1

4

(

1 + 2νη + η2
)

, (47)

for a checkerboard patch of Q4 elements, and

w∗

Q9

E+
1111ε

2
I

=
1

4

[

(47 − 35ν − 35ν2 + 25ν3)

22(6 − 5ν)
+

(50 − 26ν − 70ν2 + 50ν3)

22(6 − 5ν)
η+

(47 − 35ν − 35ν2 + 25ν3)

22(6 − 5ν)
η2

]

,

(48)

for a patch consisting of Q9 elements, Dı́az and Sigmund
were able to prove the propositions in (33) to (36). They
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conject that if w∗

SIMP is less than the strain energy den-
sity given by the equivalent patch of elements, checker-
boarding is likely to occur.

Whereas Dı́az and Sigmund compare (46) to equa-
tions (47) and (48), we compare the strain energy density
given in (46) to the numerically integrated counterparts
of (47) and (48), computed with Q8 elements using var-
ious numerical integration schemes.

To illustrate, w∗

Q8(η), computed using Q8 elements

with full (9-point) integration, is plotted for unit E+
1111

and εI and for ν = 0.3 in Figure 6. To reiterate, since
Q8 and Q9 elements result in identical effective material
properties (see Table 1), the result of w∗

Q9 is identical and

given by (48), assuming the same integration scheme is
employed. Also plotted in Figure 6, is w∗

SIMP(η) com-
puted using (46) for various values of penalty parame-
ter p and ρ = 1/2. Clearly, for values of 1 ≤ p < p∗1,
w∗

Q8(η) < w∗

SIMP(η), i.e. checkerboarding is unlikely, and

when p ≥ p∗2, w∗

Q8(η) ≥ w∗

SIMP(η), i.e. checkerboarding

is likely to occur (in both cases, independently of η).

For values of p∗1 < p < p∗2, w∗

Q8(η) could be such that

w∗

Q8(η) < w∗

SIMP(η) or w∗

Q8(η) > w∗

SIMP(η), depending
on the strain being experienced. For example, if p = 3,
w∗

Q8(η) < w∗

SIMP(η) for −1 ≤ η / −0.53 and w∗

Q8(η) >

w∗

SIMP(η) for −0.53 / η ≤ 1.

Values of p∗1 and p∗2 can similarly be computed for
each Poisson’s ratio ν and plotted, as shown in Figure
7. Values of p can therefore be selected using this figure
so as to minimize the likelihood of checkerboarding. If
values of p as large as possible are desired (to penalize
intermediate densities), a value of p∗1 as large as possible
is sought. If p∗1 cannot be altered, the ‘next best’ would
be to increase p∗2.

Figures 8 and 9 depict the effect of applying the 5-
point integration scheme on strain energy density, as a
function of principal strain ratio η, for a patch of Q8
elements. The plot is for a material with ν = 0.3, and as
before, unit E+

1111 and εI . For clarity, only the 5-point
scheme with weights W0 = 0.01 and W0 = 8/30 are
depicted, together with the results computed using the
4-point and 9-point schemes for reference.

Clearly, applying the 5-point scheme with W0 = 0.01
or 8/30 significantly reduces the strain energy density
associated with the considered straining modes. It can be
shown that there is a monotonic increase in strain energy
density with an increase in W0. In fact, for weights close
to the the maximum permitted value, 8/3, a higher strain
energy density is estimated than for the 9-point scheme.

Also shown in Figure 8 are the strain energy densi-
ties w∗

SIMP, calculated for different values of p. As said,
if w∗

Q8(ε̄) > w∗

SIMP(ε̄), checkerboarding is likely to occur.
Therefore, application of reduced integration schemes
clearly reduces the likelihood of checkerboarding for a
given p. Alternatively, it allows for the use of larger val-
ues of p without increasing the effective stiffness of the
checkerboard patch of elements.

Finally, the minimum of w∗

SIMP computed using (46)
occurs at η = −ν, in this case η = −0.3. Increasing p
simply decreases values of w∗

SIMP. However, computing
the strain energy density of a patch of Q8 elements em-
ploying the various integration schemes, affects not only
the value of w∗

Q8(η), but also shifts the turning point to-
wards η = −1 as the integration scheme becomes ‘softer’.
Unfortunately, this means that the gap between p∗

1 and
p∗2 is increased as will be shown in the next subsection.

For clarity, Figure 9 shows an enlargement of Figure
8, concentrating on the lower left corner. As described
earlier, applying a 4-point integration scheme (which is
equivalent to a 5-point scheme with W0 = 0), results in
zero strain energy being experienced at η = −1, corre-
sponding to the rank deficiency in the constitutive ma-
trix Ē. Figure 9 also highlights the difference between
the results employing the 4-point scheme and those us-
ing the 5-point scheme with W0 = 0.01 and 8/30, which
is not clear in Figure 8.

Figures 10 and 11 depict the results for the same
problem employing the 8-point scheme. Again, the re-
sults of the 4- and 9-point schemes are plotted together
with results for w∗

SIMP for various values of p. Employ-
ing the 8-point scheme with Wβ = 40/49 clearly pro-
duce very similar results to those employing the 9-point
scheme as expected. Again, employing low values of Wβ

(such as 0.01 or 8/90) produce significantly lower values
of strain energy density. Once again, an enlargement of
Figure 10 is depicted in Figure 11. Slightly higher values
of strain energy density are computed using the 8-point,
compared to the 5-point, scheme for low weights, such
as 0.01. This is significant, especially since the 5-point
scheme is not recommended for Q9 elements.

5.4 Effect of integration scheme on penalty bounds p∗

1

and p∗2

Comparing the strain energy density for a checkerboard
patch of Q8 elements, using the various integration schemes,
to the corresponding expression for the SIMP material
model in (46), limits on p can be determined for which
w∗

Q8(ε̄) < w∗

SIMP(ε̄), denoted p∗1(ν) and for which w∗

Q8(ε̄) >

w∗

SIMP(ε̄), denoted p∗2(ν). This can be done for each value
of Poisson’s ratio ν, as graphically depicted in Figure 7.

In Figure 12, the values of p∗1(ν) for Q8 elements
employing the 5-point scheme are plotted, normalised
with respect to the fully integrated equivalent, (shown
in Figure 7). Also plotted as a reference are the val-
ues computed using 4- and 9-point integration schemes.
The figure shows that employing the 5-point scheme with
W0 = 0.01 increases p∗1 significantly, almost to the level
of the 4-point scheme. Compared to analytical or full in-
tegration, at a Poisson’s ratio of ν = 0.3 (common in en-
gineering materials) an increase of approximately 10% is
achieved through application of this integration scheme.
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A slightly less marked increase is achieved by employing
the 5-point scheme with W0 = 8/30.

Figure 13 depicts the results employing the 8-point
scheme. In this case, the increase is approximately 10%
for both weights Wβ = 0.01 and Wβ = 8/90. Once again,
as expected, employing the 8-point scheme with a weight
Wβ = 40/49 results in identical trends to the results
computed with the 9-point scheme.

Figures 14 and 15 depict the values of p∗2(ν) for a
patch of Q8 elements employing 5- and 8-point schemes,
respectively. It was shown in Section 5.3, that for the
4-point scheme as η → −1, w∗

Q8 → 0. This implies that
p∗2 → ∞. The results for the 4-point scheme are therefore
not shown in Figures 14 and 15.

The scale of improvement for p∗2 is considerably higher
than that of p∗1. Improvements of well over 300% for the
5-point scheme using W0 = 0.01 and around 300% for
the 8-point scheme with Wβ = 0.01 are achieved. The
result is in a relatively wide range of values for p, in for
which checkerboarding likelihood depends on strain con-
ditions. However, since reduced integration does not add
to element numerical cost (in fact cost is reduced) and
accuracy is improved with no loss of stability, as shown
in Long and Groenwold (2004), it is recommend that our
reduced integration schemes be implemented for topol-
ogy optimization problems.

6 Conclusions

Based on the theory of Dı́az and Sigmund (1995), the
stiffness of checkerboard patches of various elements, em-
ploying different integration schemes have been assessed.
Standard bilinear isoparametric 4-node elements and higher
order 8- and 9-node elements, as well as 4-node elements
with in-plane rotational degrees of freedom have been
evaluated. Full, reduced and modified reduced integra-
tion schemes were employed. Combinations of element
formulations and integration schemes which ‘soften’ the
effective material properties of a checkerboard, thereby
effectively reducing the likelihood of checkerboarding,
were sought.

Firstly, when analyzed according to the theory pro-
posed by Dı́az and Sigmund (1995), it was shown that
both 4-node elements with drilling degrees of freedom
(Q4X) and without (Q4) result in identical effective ma-
terial properties for a checkerboard patch of elements.
The additional degrees of freedom present in Q4X ele-
ments do not ‘soften’ the patch since the 3 linearly in-
dependent test strains, applied to compute the effective
material properties, do not activate the nodal in-plane
rotations. It was however numerically demonstrated that
for practical problems, where nodal rotations are non-
zero, checkerboarding is somewhat reduced. However,
since in the limit of mesh refinement only constant strain
states are experienced, there is no guarantee that Q4X
elements will unconditionally eliminate checkerboarding.

Next, the stiffness of a checkerboard consisting of
higher-order elements, evaluated using various reduced
integration schemes, were considered. We started by show-
ing that the checkerboard stiffness in a regular mesh con-
sisting of Q8 and Q9 elements is identical, assuming of
course that the same numerical integration scheme is em-
ployed in elemental calculations.

We then showed that Q8 elements using 5-, 8- or 9-
point integration schemes are problem free in terms of
rank deficiencies on the elemental level, whereas Q9 el-
ements are only rank sufficient when employing the 8-
or 9-point schemes. Although traditionally the ‘hour-
glass’ mode present in Q8 elements is said to be non-
communicable in an assemblage of two or more elements,
the ‘black-and-white’ checkerboard patch presents a prac-
tical example of a situation where this mode can in fact
propagate through the mesh. We therefore illustrated
that a 4-point reduced integration scheme is, in theory,
unsuitable for the evaluation of Q8 or Q9 elements in
topology optimization.

Of the evaluated combinations, the most significant
improvements in terms of reducing the effective stiffness
of a checkerboard, were achieved by employing a 5-point
integration scheme (with associated variable weight W0 =
0.01) applied to Q8 elements. When compared to Q9 ele-
ments with full integration, employing this combination
increases the value of p∗1 by approximately 10%, while p∗2
is increased by over 300% for common engineering mate-
rials. Therefore, in principle, a 10% higher value of p can
be used without any increased risk of checkerboarding,
while a 300% increase in p can be affected before checker-
boarding becomes likely, indepedent of the strain state.
This benefit is also cost-effective since employing the 5-
point scheme simultaneously reduces computational cost
on the element level, and increases the accuracy of the
finite element approximation.

It is therefore recommended that Q8 elements em-
ploying a 5-point integration scheme be used, instead
of Q8 elements with a 4- or 9-point scheme, or Q9 ele-
ments with full integration, when higher order elements
are employed in topology optimization applications using
undistorted elements.
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Fig. 1 Reduced modified integration schemes.
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Fig. 4 Local χ fields for various elements resulting from
mean strain field ε̄11 = ε̄22 = 1 and ε̄12 = 0.

(a) Q4 elements. (b) Q4X elements

Fig. 5 Optimal topologies of the MBB beam using symmetry
and employing (a) Q4 and (b) Q4X elements.
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Fig. 6 Strain energy density of fully integrated Q8 elements.
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Fig. 9 Strain energy density of Q8 elements with 5-point
integration scheme. Zoom of Figure 8.
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Fig. 10 Strain energy density of Q8 elements with 8-point
integration scheme.
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Fig. 11 Strain energy density of Q8 elements with 8-point
integration scheme. Zoom of Figure 10.
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Fig. 12 Effect of integration scheme on p∗

1: 5-point scheme.
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Fig. 13 Effect of integration scheme on p∗

1: 8-point scheme.
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Fig. 14 Effect of integration scheme on p∗

2: 5-point scheme.
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Fig. 15 Effect of integration scheme on p∗

2: 8-point scheme.
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Table 1 Effective constitutive terms for different elements employing various integration schemes.

Integration Adjustable Ē2211=
Element Scheme Weight Ē1111 Ē1122 Ē2222 Ē1212

Q4 4pt N/A 0.50000 0.15000 0.50000 0.17500
Q4 5pt Any 0.50000 0.15000 0.50000 0.17500
Q4 8pt Any 0.50000 0.15000 0.50000 0.17500
Q4 9pt N/A 0.50000 0.15000 0.50000 0.17500

Q4X 4pt∗ N/A 0.50000 0.15000 0.50000 0.17500
Q4X 5pt Any 0.50000 0.15000 0.50000 0.17500
Q4X 8pt Any 0.50000 0.15000 0.50000 0.17500
Q4X 9pt N/A 0.50000 0.15000 0.50000 0.17500
Q8 4pt∗ N/A 0.11375 0.11375 0.11375 0.11375
Q8 5pt W0 = 0.01 0.11413 0.11391 0.11413 0.11386
Q8 5pt W0 = 0.1 8

3
0.12428 0.11814 0.12428 0.11682

Q8 8pt Wβ = 0.01 0.11420 0.11357 0.11420 0.11376
Q8 8pt Wβ = 0.1 8

9
0.11783 0.11211 0.11783 0.11387

Q8 8pt Wβ = 40

49
0.17184 0.09407 0.17184 0.11582

Q8 9pt N/A 0.17184 0.09407 0.17184 0.11582
Q9 4pt∗ N/A 0.11375 0.11375 0.11375 0.11375
Q9 5pt∗ W0 = 0.01 0.11413 0.11391 0.11413 0.11386
Q9 5pt∗ W0 = 0.1 8

3
0.12428 0.11814 0.12428 0.11682

Q9 8pt Wβ = 0.01 0.11420 0.11357 0.11420 0.11376
Q9 8pt Wβ = 0.1 8

9
0.11783 0.11211 0.11783 0.11387

Q9 8pt Wβ = 40

49
0.17184 0.09407 0.17184 0.11582

Q9 9pt N/A 0.17184 0.09407 0.17184 0.11582
∗ Singularity problems suppressed to perform the calulation.


