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Abstract
In studies of multi-agent interaction, especially in game theory, the notion of equilibrium often
plays a prominent role. A typical scenario for the belief merging problem is one in which
several agents pool their beliefs together to form a consistent “group” picture of the world.
The aim of this paper is to define and study new notions of equilibria in belief merging. To do
so, we assume the agents arrive at consistency via the use of a social belief removal function,
in which each agent, using his own individual removal function, removes some belief from his
stock of beliefs. We examine several notions of equilibria in this setting, assuming a general
framework for individual belief removal due to Booth et al. We look at their inter-relations as
well as prove their existence or otherwise. We also show how our equilibria can be seen as a
generalisation of the idea of taking maximal consistent subsets of agents.

1 Introduction
The problem of multi-agent belief merging has received a lot of attention in KR in recent years
[13, 14, 5]. The problem occurs when several agents each have their own beliefs, and want to
combine or pool them into a consistent “group” picture of the world. A problem arises when two
or more agents have conflicting beliefs. Then such conflicts need to be smoothed out. In studies
of multi-agent interaction the notion of equilibrium often plays a prominent role (most famously in
[18]). It would therefore seem natural to investigate such notions in belief merging. The purpose of
this paper is to define and study some possible notions of equilibria in a belief merging setting.

To enable a clear formulation of such notions, we will employ the approach to merging advocated
in [5] and inspired by the contraction+expansion approach to belief revision [9, 16], in which the
merging operation is explicitly broken down into two sub-operations. In the first stage, the agents
each modify their own beliefs in such a way as to make them jointly consistent. This is called social
contraction in [5]. In the second, trivial, stage, the beliefs thus obtained are conjoined. In this
approach, the crucial question becomes “how do the agents modify their beliefs in the first stage?”
In this paper we assume agents do so by removing some sentence from their stock of beliefs. More
precisely we associate to each agent i its very own individual removal function !i which computes
the result of removing any given sentence. A social belief removal function is then a function which,
given a profile of individual removal functions as input, returns a (consistent) profile consisting of
the results of each agent’s removal. The central question studied in this paper is “when can the
outcome of a social removal function be said to be in equilibrium?”.

How can we express the idea of equilibrium in social removal? As our starting point we would
like to propose the following general principle for multi-agent interaction:

Principle of Equilibrium
Each agent simultaneously makes the appropriate response to what all the other agents do.

It remains to formalise what “appropriate” means. In the theory of strategic games (see, e.g., [20]
as well as Section 6 of the present paper) agents are assumed to have their own preferences over the
set of all outcomes. Then a Nash equilibrium [18] is a profile consisting of each agent’s selected
action, in which no agent can achieve a more preferred outcome by changing his action, given the
actions of the other agents are held fixed. Hence in this setting “appropriate” may be equated with

1A longer version of this paper (including the more important proofs) appears in the Proceedings of the 11th International
Conference on Principles of Knowledge Representation and Reasoning (KR 2008).
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“best” in a precise sense. We will see that the framework of social belief removal offers up new and
interesting ways of formalising what “appropriate” might mean.

Of course the explicit introduction of individuals’ removal functions raises the question of what
kind of belief removal function we should assume is being used. Do agents use AGM contraction
[1], or severe withdrawal [22], or perhaps a belief liberation function [6]? Luckily there exists a
general family, called basic removal [7] which contains all these families and more besides. Thus
we find it convenient to use this family as a basis.

The plan of the paper is as follows. In Section 2 we set up the framework of social removal
functions. Then in Section 3 we focus on the agents’ individual removal functions, reviewing some
results about basic removal functions and giving some concrete examples of such functions. In
Section 4 we introduce our first equilibrium notion, that of a removal equilibrium, and examine
its compatibility with some plausible minimal change properties, before proving the existence of
such equilibria for arbitrary basic removal profiles in Section 5. We also briefly look at the notion
of perfect removal equilibria. In Section 6 we move on to entrenchment equilibria, which can
be thought of as Nash equilibria of the strategic game where agent preferences over outcomes are
derived from their entrenchment orderings, and examine their relationship with removal equilibria.
We also suggest a possible refinement of this idea, the strong entrenchment equilibrium. In Section 7
we show how our equilibria can be thought of as generalising the idea of taking maximal consistent
subsets of agent. We finish with a concluding section.

Preliminaries: We work in a finitely-generated propositional language L. Classical logical con-
sequence and logical equivalence are denoted by ! and≡ respectively. W denotes the set of possible
worlds/interpretations for L. Given θ ∈ L, we denote the set of worlds in which θ is true by [θ].
The set of non-tautologous sentences in L is denoted by L∗. We will usually talk of belief sets, but
assume a belief set is always represented by a single sentence standing for its set of logical con-
sequences. We assume a set of agents A = {1, . . . , n}. A belief profile is any n-tuple of belief
sets. Given two belief profiles we shall write (φi)i∈A ≡ (φ′i)i∈A iff φi ≡ φ′i for all i, and write
(φi)i∈A ≡∧ (φ′i)i∈A iff

∧
i∈A φi ≡

∧
i∈A φ′i. Clearly we have ≡⊆≡∧ for belief profiles. We say the

belief profile is consistent iff the conjunction of its elements is consistent.

2 Social belief removal
As we said above, we assume each agent i ∈ A comes equipped with its own removal function !i,
which tells it how to remove any given sentence from its belief set. In this paper we view !i as a
unary function on the set L∗ of non-tautologous sentences, i.e., agents are never required to remove
%. The result of removing λ ∈ L∗ from i’s belief set is denoted by !i(λ). We assume i’s initial
belief set can always be recaptured from !i alone by just removing the contradiction, i.e., i’s initial
belief set is !i(⊥). We call any n-tuple (!i)i∈A of removal functions a removal profile.

Definition 1 A social removal function F (relative to A) is any function which takes as input any
removal profile (!i)i∈A and outputs a consistent belief profile F((!i)i∈A) = (φi)i∈A such that, for
each i ∈ A, there exists λi ∈ L∗ such that φi ≡ !i(λi).

Each social removal function yields a merging operator for removal profiles – we just take the
conjunction

∧
i∈A φi of the agents’ new belief profile. However in this paper our main interest will

be in the profile itself.
The above definition differs from Booth’s social contraction in two main ways. First, here we

explicitly associate from the outset an individual removal function to each i, whereas this was only
implicit in [5]. More importantly, unlike in social contraction, we will allow agents to use removal
functions which don’t necessarily satisfy the Inclusion property, i.e., removing a sentence may lead
to new beliefs entering i’s belief set. As is argued in [6], this situation can arise quite naturally. This
motivates the use of the term social removal rather than social contraction.
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What properties might we expect from a social removal function F? Throughout the paper we
will mention various postulates for F, but to begin with the following two properties have – on the
face of it – a strong appeal from a “minimal change” viewpoint:

(FVac) If (!i(⊥))i∈A is consistent then F((!i)i∈A) ≡ (!i(⊥))i∈A
(FVac∧) If (!i(⊥))i∈A is consistent then F((!i)i∈A) ≡∧ (!i(⊥))i∈A

Both these rules deal with the case the initial belief sets of the agents are already jointly consistent.
(FVac) says that in this case the agents’ beliefs should remain unchanged. Although intuitively
appealing, we will later have grounds for believing this rule is a touch too strong (specifically in
contexts where the agents’ individual removal functions might not adhere to the Vacuity rule –
see next section). Rule (FVac∧) is weaker. It requires only that the result should be conjunction-
equivalent to the profile of the agents’ initial belief sets.

3 Basic and hyperregular removal
What properties should be assumed of the individual removal functions !i? We will assume agents
always use basic removal [7].

Definition 2 A function ! : L∗ → L is a basic removal function iff it satisfies the following rules:
(!1) !(λ) (! λ
(!2) If λ1 ≡ λ2 then !(λ1) ≡ !(λ2)
(!3) If !(χ ∧ λ) ! χ then !(χ ∧ λ ∧ ψ) ! χ
(!4) If !(χ ∧ λ) ! χ then !(χ ∧ λ) ! !(λ)
(!5) !(χ ∧ λ) ! !(χ) ∨!(λ)
(!6) If !(χ ∧ λ) (! λ then !(λ) ! !(χ ∧ λ)

All these rules are familiar from the literature on belief removal. Rule (!1) is the Success postulate
which says the sentence to be removed is no longer implied by the new belief set, while (!2) is a
syntax-irrelevance property. Rule (!3) is sometimes known as Conjunctive Trisection [11, 21]. It
says if χ is believed after removing the conjunction χ ∧ λ, then it should also be believed when
removing the longer conjunction χ ∧ λ ∧ ψ. Rule (!4) is closely-related to the rule Cautious
Monotony from the area of non-monotonic reasoning [15], while (!5) and (!6) are the two AGM
supplementary postulates for contraction [1].

Note the non-appearance in this list of the AGM contraction postulates Vacuity (!(⊥) (! λ
implies !(λ) ≡ !(⊥)), Inclusion (!(⊥) ! !(λ)) and Recovery (!(λ)∧λ ! !(⊥)), none of which
are valid in general for basic removal. Inclusion has been questioned as a general requirement for
removal in [6], while Recovery has long been noted as controversial (see, e.g., [10]). Vacuity is a
little harder to argue against. It says if the sentence to be removed is not in the intial belief set, then
the belief set should remain unchanged. Nevertheless we feel there are plausible removal scenarios
in which it may fail, one of which will be described in Section 3.1 below when we introduce the
subclass of prioritised removal functions. For basic removals Inclusion actually implies Vacuity [7].

Note: The postulates are the same ones as in [7], but their appearance is changed to take into
account the fact we take ! to be a unary operator which returns a sentence (rather than a logically-
closed set of sentences). We also leave out one rule from the list in [7], which in our reformulation
corresponds to “!(⊥) ∧ ¬λ ! !(λ)”. This rule turns out to be redundant, being derivable mainly
from (!3).

As well as the above postulates, [7] also gave a semantic account of basic removal. A context is
any pair C = (≤,,) of binary relations over W such that (i) ≤ is a total preorder, i.e., transitive and
connected, and (ii) , is a reflexive sub-relation of ≤. From any such C we may define a removal
operator !C by setting

[!C(λ)] = {w ∈ W | w , w′ for some w′ ∈ min≤([¬λ])}.
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That is, the set of worlds following removal of λ is determined by first locating the ≤-minimal
worlds in [¬λ], and then taking along with these all worlds which are less than them according to,.
We call !C the removal function generated by C. [7] showed !C is a basic removal function and that
in fact every basic removal function is generated from a unique context. For another, closely-related,
family of belief removal functions see [8].

In this paper, another property which we will find useful, especially for technical reasons, is
Hyperregularity [12]:

If ! (λ ∧ χ) (! λ then ! (λ ∧ χ) ≡ !(λ).

This rule says if the removal of λ∧χ excludes λ then removing λ∧χ is the same as removing just λ.
This property is very strong. Not only does it imply Vacuity, but in the presence of (!1) and (!2) it
implies (!3)-(!6). It is probably too strong to be required in general. Indeed given (!1) and (!2)
it can be shown to imply the“Decomposition” property of removal, i.e, either !(λ ∧ χ) ≡ !(λ) or
!(λ ∧ χ) ≡ !(χ), which has been noted as overly strong in [9, p66]. Despite this it is nevertheless
still satisifed by several interesting sub-classes of basic removal (see Section 3.1 below), and when
proving results we will sometimes find it a useful stepping-stone towards the more general basic
removal. In terms of contexts, it corresponds to requiring the following condition on (≤,,), for all
w1, w2, w3 ∈ W :
(C-hyp) If w1 , w2 and w2 ∼ w3 then w1 , w3

(where ∼ is the symmetric closure of ≤), i.e, whether or not w1 , w2 depends only on the ≤-rank
of w2.

Definition 3 A hyperregular removal function is any basic removal function satisfying Hyperregu-
larity.

In [7] it was shown that hyperregular removal functions correspond precisely to the class of
linear liberation operators from [6].

3.1 Some examples of basic removal functions
We now give three concrete families of operators, all of which come under the umbrella of basic
removal. These families will be useful when we come to describing examples of equilibria.

(i). Prioritised removal Let 〈Σ,/〉 be any finite set of consistent sentences Σ, totally preordered
by a relation / over Σ. Intuitively the different sentences in Σ correspond to different possible
extensions, prioritised by / (and with sentences lower down in the ordering given higher priority).
Given such a set, for any λ ∈ L∗ let Σ(λ) = {γ ∈ Σ | γ (! λ}. Then we define !〈Σ,'〉 from 〈Σ,/〉
by setting:

!〈Σ,'〉(λ) =
{ ∨

min' Σ(λ) if
∨

Σ (! λ
% otherwise.

In other words, after removing λ, the new belief set is just the disjunction of all the /-minimal
elements in Σ which do not entail λ. In case there is no sentence in Σ which fails to imply λ, then
the result is just %. We will call any removal function definable in this way a prioritised removal
function. A similar family of removal has also been studied in [4].

One can easily check that !〈Σ,'〉 satisfies (!1)-(!6) and so forms a basic removal function.
Note however that !〈Σ,'〉 will fail to satisfy Vacuity (hence also Hyperregularity) in general. For
example suppose Σ = {p,¬p} but/ is the “flat” ordering on Σ which ranks both sentences equally.
This would correspond to a situation in which an agent has equally good reasons to believe p and
¬p. The belief set corresponding to this is then !〈Σ,'〉(⊥) = p ∨ ¬p, i.e., since the agent cannot
choose between p and ¬p, he commits to neither. But !〈Σ,'〉(p) = ¬p. That is, the direction to
remove p tips the balance in favour of ¬p, and the agent thus comes to believe ¬p, even though p
was not in the initial belief set. We take this plausible removal scenario as indication that the Vacuity
rule may be too strong in general.
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(ii). Severe withdrawal [22]. A severe withdrawal function may be represented by a logical chain
ρ = β1 ! β2 ! · · · ! βm, with !ρ(λ) = βi, where i is minimal such that βi (! λ (equals% if no such
i exists). Severe withdrawal functions always satisfy Inclusion and Hyperregularity. It is easy to see
they form a special case of prioritised removal. Severe withdrawal functions also have a simple
representation in terms of their generating contexts (≤,,). They are just those basic removals for
which ≤=,.
(iii). σ-liberation [6]. σ-liberation functions again use a sequence of sentences σ = (α1, . . . , αs).
Given such σ and λ ∈ L∗, define a sequence of sentences fi(σ, λ) inductively on i by setting
f0(σ, λ) = %, and then for i > 0,

fi(σ, λ) =
{

fi−1(σ, λ) ∧ αi if fi−1(σ, λ) ∧ αi (! λ
fi−1(σ, λ) otherwise.

In other words, fs(σ, α) is obtained by starting with%, and then working through σ from left to right,
adding each sentence provided doing so does not lead to the inference of λ. (In [6] the direction was
right-to-left, but this difference is inessential.) Then !σ(λ) = fs(σ, λ). (This is very closely-related
to the “linear base-revision” of [19].) σ-liberation functions do not satisfy Inclusion in general, but
they do satisfy Hyperregularity (and hence also Vacuity). In terms of their generating contexts, σ-
liberation functions correspond to those contexts (≤,,) which satisfy the Hyperregularity condition
(C-hyp) and for which , is transitive.

The three families described above are inter-related as follows: severe withdrawal⊂ σ-liberation
⊂ prioritised removal. The inclusions are strict. In addition to these three, [7] showed basic removal
includes many other well-known families of removal functions, including systematic withdrawal
[17], AGM contraction and even AGM revision. In the rest of the paper we shall assume the
domain of a social removal function is the set of all n-tuples of basic removal functions.

4 Removal equilibria
When is the outcome of an operation of social removal in equilibrium? Our first idea is the following.

Definition 4 (φi)i∈A is a removal equilibrium for (!i)i∈A iff it is consistent and, for each i ∈ A,
φi ≡ !i(¬

∧
j *=i φj).

This definition is a direct formulation of the idea that each agent removes precisely the “right”
sentence to be consistent with every other agent. As such this seems like a good candidate for a first
formalisation of the word “appropriate” in our Principle of Equilibrium from the introduction.
Example 1 Assume A = {1, 2} and suppose both agents use severe withdrawal to remove beliefs.
Let !1 and !2 be specified by the logical chains (p∧ q) ! q and (¬p∧¬q) ! (¬p∨¬q) resp. Then
there are three possible removal equilibria for the profile (!1, !2): (1) (p∧ q,%), corresponding to
a case where 1 removes nothing and 2 removes everything, (2) (%,¬p ∧ ¬q), corresponding to the
opposite case, and (3) (q,¬p∨¬q), corresponding to the case where both agents give up something,
but not everything.

We might be interested in requiring the following property for social removal functions:

(FREq) F((!i)i∈A) is a removal equilibrium for (!i)i∈A.
Is (FREq) even consistent? In other words, do removal equilibria always exist for any profile of
basic removal functions? We shall shortly answer this question in the affirmative. But before that
we examine such equilibria in the special case when (!i(⊥))i∈A is consistent, and examine the
compatibility of (FREq) with (FVac) and (FVac∧). First, the following example shows (FREq) is
not compatible with (FVac).
Example 2 Again suppose A = {1, 2}. Suppose agent 1 uses the prioritised removal function
!〈Σ,'〉 where Σ = {p,¬p} and / is the flat priority ordering, and suppose agent 2 uses the se-
vere withdrawal function specified by the single element logical chain (p). We have !1(⊥) ≡ %
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and !2(⊥) = p. Then !1(⊥) ∧ !2(⊥) is equivalent to p and so is clearly consistent, but
(!1(⊥), !2(⊥)) is not a removal equilibrium. This is because, while we do have !2(¬%) ≡ p,
we have !1(¬p) ≡ p (≡ %.

Thus for general basic removal profiles, we cannot require both (FREq) and (FVac). At first
glance it might be thought (FVac) is unquestionable, and so it is (FREq) which must be given up.
However we believe that as soon as one takes the step – as we do – to relax Vacuity for individual
removal !, then (FVac) itself becomes less “untouchable”. Thus we believe this incompatibility
with (FVac) should not by itself be taken as reason to reject (FREq). Furthermore the next result
(which may be proved using the same construction as in Prop. 9 below) shows (FREq) is compatible
with (FVac∧).
Proposition 1 If (!i(⊥))i∈A is consistent then there exists a removal equilibrium (φi)i∈A for
(!i)i∈A such that (φi)i∈A ≡∧ (!i(⊥))i∈A.

In Example 2 we do indeed have a removal equilibrium which is conjunction-equivalent to
(!1(⊥), !2(⊥)), namely (p, p).

Note that in Example 2, agent 1 uses a removal function which does not satisfy Vacuity. The
next result says that if we do insist on Vacuity for individual removal functions, then we do achieve
compatibility with (FVac).
Proposition 2 Suppose each !i satisfies Vacuity, and suppose (!i(⊥))i∈A is consistent. Then
(!i(⊥))i∈A is a removal equilibrium for ((!i)i∈A).

However, even if the !i satisfy Vacuity, this might not be the only removal equilibrium. That is, even
in this restricted domain case, (FREq) is not enough by itself to imply (FVac) or even (FVac∧).
Example 3 Let ! be the σ-liberation function determined by the sequence (p,¬p). Then the belief
set associated to ! is !(⊥) = p. Now suppose we have n agents, all using this same removal
function !. Then for the resulting removal profile there are two removal equilibria. As well as the
expected (p)i∈A we also get (¬p)i∈A!

It might seem bizarre that (¬p)i∈A should be recognised as an equilibrium in this example. Why
should the agents all jump across to ¬p when they can just as well stay with the comfort of p? In
fact the situation is analogous to that with Nash equilibrium itself. We shall expand on this point
later after we introduce the notion of entrenchment equilibria.

By restricting the domain of F further, we do force a unique removal equilibrium in the case
when the initial belief sets are jointly consistent.

Proposition 3 Suppose each !i satisfies Inclusion (and hence also Vacuity). Then if (!i(⊥))i∈A is
consistent then it is the only removal equilibrium for (!i)i∈A.

5 Existence of removal equilibria
In this section we prove that removal equilibria are guaranteed to exist when the agents use basic
removal functions to remove beliefs. First we concentrate on the case when all agents use hyperreg-
ular removal, providing two concrete social removal operators which satisfy (FREq). We will build
on this case to prove existence in the general basic removal case.

5.1 The hyperregular case: First method
Our first social removal function F1 requires the upfront specification of a linear order on A. Without
loss we take this order here to be just the numerical one on A = {1, 2, . . . , n}. Given a removal
profile (!i)i∈A, we define F1((!i)i∈A) = (φi)i∈A inductively by setting

φi = !i(¬
∧

j<i

φj).
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In other words, φ1 is just taken to be agent 1’s initial belief set !1(⊥), and then each agent takes
his turn to remove the negation of the conjunction of the belief sets of all those agents whose turn
has already passed. By an easy induction on i, and using the fact each !i satisfies (!1), we know
¬

∧
j<i φj ∈ L∗ and so !i(¬

∧
j<i φj) is well-defined. In particular we know from (!1) that

φn = !n(¬
∧

j<n φj) (! ¬
∧

j<n φj and so (φi)i∈A is consistent.

Proposition 4 If all !i satisfy Hyperregularity then F1 returns a removal equilibrium for (!i)i∈A.

F1 might not return a removal equilibrium for general basic removal profiles. This can be seen
on Example 2, where running the above procedure returns the non-equilibrium (%, p).

What other properties does F1 satisfy? Well to begin, it can be shown to satisfy (FVac) (in
the hyperregular case). Also, let’s say two removal functions ! and !′ are revision-equivalent iff
!(λ)∧¬λ ≡ !′(λ)∧¬λ for all λ ∈ L∗. (i.e., the revision functions defined from them via the Levi
Identity [16] are the same). Then we have:

Proposition 5 F1 satisfies the following rule for social removal functions:

(FRev∧) If !i and !′
i are revision-equivalent for each i ∈ A then F((!i)i∈A) ≡∧ F((!′

i)i∈A).

In fact F1 satisfies this property even in the general basic removal case. Letting F1((!i)i∈A) =
(φi)i∈A and F1((!′

i)i∈A) = (φ′i)i∈A, the proof proceeds by induction on i that
∧

j≤i φj ≡
∧

j≤i φ′j .
This result implies that if we are only interested in the result of merging, we could just focus on
revision functions only.

One questionable property of F1 is we always get φ1 = !1(⊥) for any input removal pro-
file. Thus agent 1 never leaves his initial belief set. He assumes a dictator-like role. Our second
construction aims at rectifying this.

5.2 The hyperregular case: Second method
Our second construction is just like the first, except now, at the start of the process, agent 1 removes
some fixed, possibly consistent, sentence χ (chosen independently of the given removal profile)
rather than remove ⊥ as before. Formally, the function F2 makes use of an auxilliary function s
which takes as arguments a removal profile (!i)i∈A together with a sentence χ ∈ L∗, and outputs a
belief profile (ηi)i∈A. The ηi are defined inductively by setting η1 = !1(χ), and then for i > 1,

ηi = !i(¬
∧

j<i

ηj).

Note that if χ ≡ ⊥ then this is just F1((!i)i∈A). Is this a removal equilibrium? In fact the result of
this operation will be a removal equilibrium for agents 2, . . . , n, but not necessarily for agent 1.

Proposition 6 Assume all !i satisfy Hyperregularity and let s(χ | (!i)i∈A) = (ηi)i∈A. Then for
each i > 1, ηi ≡ !i(¬

∧
j *=i ηj), but in general η1 (≡ !1(¬

∧
j>1 ηj).

In case η1 (≡ !1(¬
∧

j>1 ηj) we just try again with s(χ ∧ ¬
∧

j>1 ηj | (!i)i∈A). Precisely, F2

is defined via the following iterative procedure:

1. Calculate s(χ | (!i)i∈A) = (ηi)i∈A.

2. If η1 ≡ !1(¬
∧

j>1 ηj) then STOP and output F2((!i)i∈A) = (ηi)i∈A. Otherwise set χ :=
χ ∧ ¬

∧
j>1 ηj and go to step 1.

In case the termination condition in step 2 is not met, it can be shown χ (≡ χ∧¬
∧

j>1 ηj , so we
generate a stricly stronger sentence to input back into s(· | (!i)i∈A) in step 1. Hence the process
continues at most until we input ⊥. But in this case s(⊥ | (!i)i∈A) = F1((!i)i∈A) as we have
seen. Hence:

Proposition 7 If all the !i satisfy Hyperregularity then F2 satisfies (FREq).
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For example, if we run this method on Example 3, taking χ = p, we obtain the 2nd equilibrium
F2((!)i∈A) = (¬p)i∈A. Hence we see F2 does not validate (FVac∧). It also does not satisfy
(FRev∧), since it can be shown the σ-liberation function from Example 3 is revision-equivalent to
the severe withdrawal function !ρ determined by the 1-element chain ρ = (p). But if we again take
χ = p then F2((!ρ)i∈A) = (p)i∈A.

Note although agent 1 no longer has dictator-like powers in F2, agent j still dominates all agents
k for which 2 ≤ j < k, in the sense that if F2((!i)iA) = (φi)i∈A, we always end up with φj =
!j(¬

∧
s<j φs). This means j never takes into account the beliefs of k > j when calculating his

new beliefs.
A natural question to ask is: is every removal equilibrium for (!i)i∈A obtainable by the above

iterative method for appropriate choices of ordering of agents and starting points χ? The next
example shows the answer is generally no.
Example 4 Suppose three agents, all using severe withdrawal functions specified respectively by
the following logical chains: !1 : (p ↔ ¬q) ! (p ∨ q), !2: ¬q ! (p ∨ ¬q), !3: ¬p ! (¬p ∨ q).
Then the reader may check (φ1, φ2, φ3) = (p ∨ q, p ∨ ¬q,¬p ∨ q) is a removal equilibrium (giving
a merging result of φ1 ∧ φ2 ∧ φ3 ≡ p ∧ q). However, note this equilibrium has the special property
that for each i, there is no proper subset X ⊂ {j ∈ A | j (= i} such that φi ≡ !i(¬

∧
j∈X φj).

Hence this point cannot be reached using F2, since as we just remarked, there we always end up
with φ2 ≡ !2(¬φ1).

In the above example it could be said that at the point (p ∨ q, p ∨ ¬q,¬p ∨ q) the three agents
are all in a state of perfect tension with regard to one another. Each agent contributes equally to the
equilibrium. We make the following definition:

Definition 5 Let (φi)i∈A be a removal equilibrium for (!i)i∈A. Then it is a perfect removal equilib-
rium iff for each i, there is no proper subset X ⊂ {j ∈ A | j (= i} such that φi ≡ !i(¬

∧
j∈X φj).

The next question is: do perfect removal equilibria always exist for any given removal profile?
The answer is no, because according to the definition we may not have φi ≡ !i(¬

∧
j∈∅ φj), i.e.,

we may not have φi ≡ !i(⊥). However, we may conceive of examples in which, for every removal
equilibrium there exists at least one agent i for which φi ≡ !i(⊥). Indeed this will typically happen
in the case of drastic removal profiles, see Section 7 below.

5.3 Existence: The general case
We have established that if all agents use hyperregular removal, then removal equilibria are guar-
anteed to exist. We now extend this fact to the case of arbitrary basic removal profiles. Given an
arbitrary (!i)i∈A, we first convert each !i to its hyperregular version !h

i , and then show that every
removal equilibrium for (!h

i )i∈A can be converted into an equilibrium for the original profile. To
do this we go back to the semantic representation of basic removal functions which was mentioned
after Defn. 2.

Definition 6 Let ! be a basic removal function and (≤,,) its generating context. Then the hy-
perregular version of ! is the removal operator !h generated by (≤,,h), where ,h is defined by:
w1 ,h w2 iff w1 , w3 for some w3 s.t. w3 ∼ w2 (where ∼ is the symmetric closure of ≤).

The following are the relevant properties of !h:

Proposition 8 (i). !h satisfies Hyperregularity. (ii). For all λ ∈ L∗, !(λ) ! !h(λ). (iii). ! and
!h are revision-equivalent.

Now, suppose we start with arbitrary (!i)i∈A and suppose we have found some removal equi-
librium (φ′i)i∈A for the hyperregular versions (!h

i )i∈A. Then for each i set

φi = !i(¬(
∧

j<i

φj ∧
∧

j>i

φ′j)).
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Proposition 9 (φi)i∈A is a removal equilibrium for (!i)i∈A. Furthermore (φi)i∈A ≡∧ (φ′i)i∈A.

The second part of this proposition implies that if we are interested only in the result of merging,
we might as well just use the Hyperregular versions.

6 Entrenchment equilibria
In this section we investigate another equilibrium notion for social belief removal, which is more
directly comparable to the usual notion of Nash equilibrium in strategic games. To do so we will
first show how any removal profile (!i)i∈A defines a particular strategic game G((!i)i∈A) and then
use the Nash equilibria of this game to define our new notion of equilibrium. We start by recalling
the definitions of strategic game and Nash equilibrium. (See, e.g., [20].)

Definition 7 A strategic game (over A) is a pair 〈(Ai)i∈A, (!i)i∈A〉, where, for each i ∈ A:

• Ai is the set of actions available to agent i,
• !i is a total preorder over ×i∈AAi, i.e., the preference relation of agent i.

The set ×i∈AAi is the set of action profiles for the agents in A, i.e., the set of tuples consisting of a
chosen action ai ∈ Ai for each agent i. Given two action profiles (ai)i∈A and (bi)i∈A, (ai)i∈A !j

(bi)i∈A means agent j prefers (the outcome resulting from) the action profile (bi)i∈A at least as
much as (ai)i∈A.

Definition 8 A Nash equilibrium of a strategic game 〈(Ai)i∈A, (!i)i∈A〉 is an action profile (a∗i )i∈A
such that, for each j ∈ A, and any aj ∈ Aj we have (ai)i∈A !j (a∗i )i∈A, where ai = a∗i for i (= j.

In a Nash equilibrium no single agent can change his action in a way which leads to a more preferred
outcome for him, given that the other agents’ actions remain fixed.

How can we define a strategic game from a removal profile? Well first note in our situation of
social belief removal too each agent takes an action – he chooses which sentence to remove. That
is, the set of possible actions of agent i may be identified with L∗. What, then, is the preference
relation of agent i over the resulting set of action profiles ×j∈AL∗? Clearly each agent prefers any
action profile leading to a consistent outcome over one which leads to inconsistency. But what is
his preference between different profiles leading to consistent outcomes? One natural idea is that
agents prefer to remove less entrenched sentences [9]. Given agent i is using removal function !i,
his entrenchment ordering (over L∗) "E

i is given by

λ "E
i χ iff !i (λ ∧ χ) (! λ.

Thus χ is at least as entrenched as λ iff the removal of the conjuction causes λ to be excluded. It
expresses that agent i finds it at least as easy to discard λ as χ.

Proposition 10 If !i is a basic removal function, and "E
i is defined from !i as above then "E

i

forms a standard entrenchment ordering in the sense of [9]. In particular "E
i is a total preorder

over L∗.

Given this, agent i’s preference relation !E
i over the set ×j∈AL∗ is may be specified completely

as follows. Given any two action profiles (λj)j∈A and (χj)j∈A, we set (λj)j∈A !E
i (χj)j∈A iff one

of the following two conditions holds:
either (i). (!j(λj))j∈A is inconsistent

or (ii). (!j(λj))j∈A and (!j(χj))j∈A are both consistent and χi "E
i λi.

Since "E
i is a total preorder over L∗, it is easy to check !E

i forms a total preorder over the set of all
action profiles.

Definition 9 Given a removal profile (!i)i∈A, the strategic game 〈(L∗)i∈A, (!E
i )i∈A〉 defined from

(!i)i∈A as above will be denoted by G((!i)i∈A).
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Given all this, we are ready to define our next equilibrium notion.

Definition 10 (φi)i∈A is an entrenchment equilibrium for (!i)i∈A iff it is consistent and (φi)i∈A ≡
(!i(λ∗i ))i∈A for some Nash equilibrium (λ∗i )i∈A of the game G((!i)i∈A).

Put more directly, an entenchment equilibrium is an outcome (φi)i∈A which is consistent and for
which no single agent may deviate and remove a less entrenched sentence without destroying this
consistency. This brings us to the following social removal property:

(FEEq) F((!i)i∈A) is an entrenchment equilibrium for (!i)i∈A.

What is the relationship between entrenchment equilibria and removal equilibria?

Proposition 11 Every removal equilibrium for (!i)i∈A is an entrenchment equilibrium for (!i)i∈A.
Furthermore if all !i are hyperregular then every entrenchment equilibrium for (!i)i∈A is a re-
moval equilibrium for (!i)i∈A.

Thus if all agents use hyperregular removal then the two notions of equilibrium coincide. How-
ever, in general, not every entrenchment equilibrium is a removal equilibrium, since for example if
(!i(⊥))i∈A is consistent then it is always an entrenchment equilibrium, because ⊥ is always min-
imally entrenched for any basic removal function. However we have already seen that it might not
be a removal equilibrium.

As we saw in Example 3, even in the hyperregular case, if (!i(⊥))i∈A is consistent it might still
not be the only entrenchment equilibrium. It might seem irrational for both agents to give up p in this
example, when it’s possible for both to remove a less entrenched sentence (i.e. ⊥) while preserving
consistency. This kind of counterintuitive result is not restricted to entrenchment equilibria. In
fact it is inherent in the concept of Nash equilibrium itself. It has long been recognised that the
Nash equilibrium does not rule out sub-optimal solutions in the case where agents have identical
preferences over outcomes. This is illustrated by the following example, taken from [20, p16].

Example 5 Suppose two agents {1, 2} who wish to go to a concert together, but must choose be-
tween going to a Mozart (Mo) concert or a Mahler (Ma) concert. Thus the set of actions for both
agents is A = {Mo, Ma}. We assume both agents have identical preferences over the four possible
action profiles. Firstly, the agents want to reach agreement, so the two profiles in which they choose
different actions are the least preferred. Moreover, both agents prefer to see the Mozart concert.
Thus the preference relation ! of both agents is specified completely by

(Mo, Ma) ∼ (Ma, Mo) ≺ (Ma, Ma) ≺ (Mo, Mo).

(Just for this example we are using ∼ and ≺ to denote the symmetric closure and strict part of !
respectively.) In this game there are two Nash equilibria (Ma, Ma) and (Mo, Mo). Even though
both agents have a mutual interest in reaching (Mo, Mo), the Nash equilibrium does not rule out the
inferior outcome (Ma, Ma).

This anomaly led several authors to propose refined equilibria concepts for strategic games. One
such refinement, the strong Nash equilibrium [3], says roughly that no set – not just singletons as
with Nash – of agents can make a joint change in strategy which leads to a more preferred outcome
for all agents in that set.

Definition 11 A strong Nash equilibrium of a strategic game 〈(Ai)i∈A, (!i)i∈A〉 is an action profile
(a∗i )i∈A such that, for any X ⊆ A, and each tuple (ai)i∈X , there exists j ∈ X such that (ai)i∈A !j

(a∗i )i∈A, where ai = a∗i for i (∈ X .

This leads to the corresponding refinement for entrenchment equilibria.

Definition 12 (φi)i∈A is a strong entrenchment equilibrium for (!i)i∈A iff it is consistent and
(φi)i∈A ≡ (!i(λ∗i ))i∈A for some strong Nash equilibrium (λ∗i )i∈A of the game G((!i)i∈A).
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The following property thus strengthens (FEEq):

(FEEq+) F((!i)i∈A) is a strong entrenchment equilibrium for (!i)i∈A.

In Example 3 the only strong entrenchment equilibrium is (p)i∈A. For hyperregular removal pro-
files, it can be shown function F1 defined earlier satisfies (FEEq+), but F2 does not. Thus strong
entrenchment equilibria always exist for hyperregular removal profiles. However at the time of writ-
ing it is an open problem whether they always exist for general basic removal profiles. It would also
be interesting to try and find a necessary and sufficient condition for a removal equilibrium to be a
strong entrenchment equilibrium (even in the hyperregular case).

7 Equilibria as maxiconsistent sets
The simplest kind of removal function is what might be termed drastic removal, in which the result
of removing λ is !(⊥) if λ is not entailed by the initial belief set, or % if it is entailed. That is, an
agent either leaves his belief set unchanged, or throws out all beliefs. Drastic removals correspond
to the severe withdrawal functions determined by single-element logical chains.

If all agents use drastic removal, then removal/entrenchment equilibria reduce to taking maximal
consistent sets of agents. X ⊆ A is maximally consistent iff (i)

∧
i∈X !i(⊥) is consistent, and (ii)∧

i∈Y !i(⊥) is inconsistent for all X ⊂ Y ⊆ A.

Proposition 12 Suppose all !i are drastic removal functions. Then (φi)i∈A is a removal (or en-
trenchment) equilibrium for (!i)i∈A iff {i | φi ≡ !i(⊥)} is a maximally consistent subset of A.

Thus we see that the main notions of equilibria studied in this paper (removal and entrenchment)
can be seen as generalisations of the idea of taking maximal consistent sets.

8 Conclusion
We have defined several notions of equilibrium in the framework of social removal functions, for-
mulated purely in the language of belief removal operators. Assuming all agents use basic removal
functions to remove their own beliefs, we proved our equilibria are always guaranteed to exist. We
gave several examples to illustrate these notions, and we showed that they generalise in some sense
the idea of resolving inconsistency by taking maximal consistent subsets of agents.

For future work, we want to generalise our results to handle social removal under integrity con-
straints [14]. An IC social removal function is a function taking as arguments a removal profile and
a consistent sentence Ψ, which returns a belief profile which is consistent with Ψ. The equilibrium
notions described in this paper should extend to this setting. For example an IC removal equilibrium
could be defined to be any belief profile (φi)i∈A for which φi ≡ !i(¬(Ψ ∧

∧
j *=i φj)) for all i.

Social belief removal functions have obvious similarities to social choice rules [2]. A social
choice rule takes as input a profile of total preorders over the set of alternatives together with a given
subset A of the alternatives, and outputs a subset of A – the chosen elements of A for the group. By
conjoining the elements of the output of a social belief removal function we obtain an output of the
same type as with social choice rules, but the input of a social belief removal function can be viewed
as richer than that for social choice, since a basic removal function corresponds to a total preorder
≤ plus a reflexive sub-relation,. It would be interesting to explore any (im)possibility theorems for
social removal functions.
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