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Abstract: Identification of individuals using iris recognition is an emerging technology. Segmentation
of the iris texture from an acquired digital image of the eye is not always accurate - the image contains
noise elements such as skin, reflection and eyelashes that corrupt the iris region of interest. An accurate
segmentation algorithm must localize and remove these noise components. Texture features are
considered in this paper for describing iris and non-iris regions. These regions are classified using the
Fisher linear discriminant and the iris region of interest is extracted. Four texture description methods
are compared for segmenting iris texture using a region based pattern classification approach: Grey
Level Co-occurrence Matrix (GLCM), Discrete Wavelet Transform (DWT), Gabor Filters (GABOR)
and Markov Random Fields (MRF). These techniques are evaluated according to their true and false
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classifications for iris and non-iris pixels.
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1. INTRODUCTION

The iris [1] begins its formation in the 3rd month of
gestation. [t is a multilayered texture and an assortment
of variations are possible. They include contractile lines
related to the state of the pupil, irregular atrophy of the
border layer (crypts), small elevations of the border layer
(naevi), collections of chromatophores (freckles) and color
variation.

Segmentation of an iris image is a classical image
processing problem.  The following occurrences are
possible in the acquired iris image:

e Bright lighting can cause specular reflection off
the eye, which makes the processing stage almost
impossible at times.

e Poor lighting can hide the textural details and
introduce an uneven illumination component.

¢ Atmospheric conditions and human emotion affect the
state and size of the pupil. This causes the iris region
to vary in size.

e The iris may be partially hidden. This can be caused
by eyelashes and eyelids.

The focus of this research paper is to improve the iris
segmentation process by considering the above image
components as a normal occurrence in an iris image. The
iris region that must be extracted has texture properties that
are different from those of pixels of eyelashes, reflection,
pupil and eyelids. This provides the basis for a texture

feature extraction and pattern classification approach for
segmenting the different components from the iris image.
We compare four texture description methods for iris
segmentation: grey level co-occurrence matrix, discrete
wavelet transform, Gabor filters and Markov random fields.

Several approaches are documented that account for poor
or corrupted iris texture. Eyelash and reflection detection
has been proposed by Kong and Zhang [2]. They divide the
eyelash problem into two possibilities: separable eyelashes
and multiple eyelashes. Separable eyelashes are treated
as edges whereas multiple eyelashes are modelled using
an intensity variation model - eyelashes overlapping in a
small area have a low intensity variation. If the variance
of intensity in the area is below a threshold, the center
of the window is labelled an eyelash pixel. Reflections
are defined as strong and weak. A pixel of strong
reflection has an intensity value greater than a specified
threshold; a pixel of weak reflection is a transition region
between strong reflection and the iris. The approach
described above is effective. However, there is a use
of thresholding for determining eyelash pixels and the
threshold is not automatically determined. If the region
being thresholded does not have two distinct grey level
distributions - corresponding to iris and eyelash pixels - the
algorithm may fail. Incorrect threshold selection will also
affect the result negatively.

In the work of Huang et. al. [3], occlusion by eyelids,
eyelashes and specular reflection is considered. Edge data
is extracted using phase congruency information and this
is then used to determine the most likely boundaries of
noise and/or occlusion. The frequency distribution of
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iris images has been analyzed to determine occlusions
by eyelids and eyelashes [4]. Frequencies in the Fourier
domain provide an insight into the content of the iris region
- frequencies outside a specified range signify occlusion by
eyelids and/or eyelashes. This enables the system to accept
or reject an image for processing. Although effective,
the technique does not provide a solution to removing
the useless regions. In the next section, the methods
implemented are discussed.

2. METHODS

The proposed algorithm for segmenting iris images has
several important steps. Firstly, an iris image is provided
as input to the system and the iris boundaries are located.
Therafter, the located iris region is normalized using a
transform that makes it invariant to size. The normalized
image also has its contrast enhanced. Texture features
are then computed for the normalized iris region. These
features are either used to train a classifier or segment
the normalized iris region i.e. remove noise components.
The images processed during this investigation were taken
from the CASIA Iris Database and are 8-bit grey scale [5].
This database is available from the National Laboratory of
Pattern Recognition, Chinese Academy of Sciences.

2.1 Iris boundary localization

The inner and outer iris contours are located by modelling
them as circles and the eyelids are modelled using parabolic
arcs. This proceeds as follows:

1. The input image is globally thresholded using an
empirically determined grey scale value of 70. This
step segments most of the pupil and provides a binary
image. Canny edge detection is applied on the
binarized image and an edge map is generated [6]. The
pupil is then localized by an application of the Hough
transform on the edge map for circle detection [7].

2. The input image is processed in a second pass during
which greyscale opening and closing is performed.
This processing has the effect of reducing the noise
presented by eyelashes and reflection. Thereafter,
the image contrast is enhanced by linearly stretching
its histogram. An edge map is then generated from
the enhanced image using the Canny edge detector
and this data is fed to the Hough transform described
above. The position of the localized pupil is used as a
reference point for finding the center of the circle that
lies on the outer iris boundary.

3. The edge map generated in the above step is then
processed by a least squares algorithm that fits
parabolic arcs to the eyelids. The RANSAC algorithm
is incorporated into this process in order to minimize
the effect of outliers [8]. The circle parameters are
used to reduce the search space for eyelid points and
to help differentiate between upper and lower eyelids.
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(a) Input iris image with located boundaries

(b) Normalized iris region with eyelids masked out

Figure 1: Iris image pre-processing

The parabolic boundaries computed in the above steps are
used to mask out the eyelid pixels when texture analysis is
performed.

2.2 Iris normalization

Daugman’s rubber sheet model is used to transform the
extracted iris region to a dimensionless polar coordinate
system [9]. The normalized image is a rectangular grid of
size 544 x 96 pixels. This ensures continuity of texture
pixels and also allows fast execution of the discrete wavelet
transform. Eyelid regions are then masked out using
the parabolas fitted to the eyelid boundaries. Uneven
illumination in the iris image causes discontinuities that
break up objects when segmentation is performed. It may
also degrade object and texture details, making different
objects appear the same. The opposite can also occur -
similar objects can appear very different. As a result, the
multi-scale Retinex [10] is used for illumination flattening
before contrast enhancement is performed by histogram
adjustment [11]. Figure 1(a) shows an input iris image with
its boundaries located. Figure 1(b) is the normalized iris
region with the eyelids removed.

2.3 Texture segmentation

In real world problems, images do not demonstrate
uniform intensities - they contain variations in tonal
content. This represents the textures in the image and
their parameters are estimated during the processing stage.



These parameters give texture primitives varying degrees of
fineness, coarseness and periodicity of patterns. There is no
universal definition of texture since definitions are related
to the method of analysis [12]. Texture can be described
in terms of texture strength. Strong texture has well
defined primitives with a regular structure - elements and
spatial relations are easily determined. Weak textures have
primitives and spatial relations that are difficult to define
- they are referred to as random [13]. It can be regarded
as a grouping of similarity in the image [14]; a repetition
of basic structural patterns [15]; or as intensity variations
that follow a particular periodicity [16]. Once localization
and normalization of an iris region has been performed,
texture features are computed for the region pixels. These
features are filtered using local averaging. This establishes
a set of region properties for each pixel. Thereafter, pixels
with similar properties are merged into regions and these
regions are classified using pattern classification. A brief
description of the implemented texture analysis techniques
follows.

Grey Level Co-occurrence Matrix (GLCM): Discriminating
features for texture separation can be computed using the
statistical approach of grey level co-occurrence matrices
[17,18]. A GLCM is a matrix of second order statistics that
represents pixel configurations as probabilities of pairwise
grey level occurrences. These pairwise occurrences must
satisfy a particular relationship in order to contribute to
the probability matrix. The pixel-pair relationship denotes
a spatial dependency for a particular texture. These
dependencies are observed in the GLCM, from which a
number of features can be computed. This approach has
been found to be very popular and effective [19-22].
Considering an N x N window in a textured image,
the configuration of gray-levels can be represented by
the matrix Py 4(7, j) describing how frequently two pixels
with gray-levels ¢, j appear in the window separated by
a distance d in the direction # [13]. From Py, several
Haralick texture features can be extracted, among which
some have been used for our experiments [17, 18]. They
are:

N
CONT = Y~ (i - 5)*po.alis j) (1
ig=1
N
ENTR = — > p.a(i. j)log pp.a(i. j) )
i,5=1
N
MEAN = pi = jiz = ) iPy(i.J) (3)
i,7=1
<
SDEV = | Y~ Pu(i.j)(i — p)? 4)
t.j=1
where
N
Po(i) =Y po.ali,j) (5)
j=1
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The features above are the contrast (CONT), entropy
(ENTR), mean (MEAN;) and standard deviation (SDEV)
of the GLCM. These features were selected by considering
the guidelines presented in [23]. For computational
efficiency and improved co-occurrence relations of pixels,
we reduce the number of grey levels in the input image to
32. This is done using a straight forward linear scaling. We
use 6 € {0,45,90,135}, d € {1} and a 9 x 9 window for
computing GLCMs. These parameters produce 16 features
for each pixel in the input image.

Discrete Wavelet Transform (DWT): Wavelets are multi-
scale transforms that can be used to characterize texture
[24]. They provide information about the frequency
content of an image. In our context, the DWT applies
Haar wavelets to decompose images into Low-Low (LL),
Low-High (LH), High-Low (HL) and High-High (HH)
frequency components.

The DWT is applied to a 2D digital image f(z,y) by
filtering across the rows and then the columns of the result
[25,26]. This is followed by downsampling by a factor
2 to achieve the effect of scaling. The filtering process
produces detail (d;) and approximation (a;) coefficients
at scale j. Processing for the next level (5 + 1) consists
of using the a; as the input. These are the high and
low frequency components respectively. The filtering
and downsampling operations can be represented using
2 x 2 kernels which correspond to different frequency
components e.g. High-High or Low-High. Convolving
every 2 x 2 non-overlapping block of pixels produces a
result equivalent to applying a set of filters across the
rows and columns and then downsampling. Kernels for a
generalized Haar transform are shown in Figure 2.
Features computed are:

N
1 .

(6)
i=1
1 ,
AAD; = ; | d(i); — MEANS | (7)
1 N
ENER; = > [d(i);)? (8)

i=1

where d(i) is a detail coefficient at level j and N is the
number of coefficients at level j. ENER measures the
signal energy - high energies correspond to high frequency
variations. It measures variations in texture patterns at
different resolutions. AAD; measures the dispersion of
coefficients around the mean. MEAN, is the common
statistical property of a set of samples.

A generalized Haar algorithm decomposes the image,
extracting detail and approximation coefficients [24,27]. To
perform feature extraction, a 8 x 8 window is centered at
each pixel and 2 passes of the Haar algorithm is performed
on windowed pixels together with computation of the
statistical information. At each scale, 4 sub-images are
produced from the detail and approximation coefficients -
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Figure 2: Haar kernels operators LL, LH, HL, HH

LL, LH, HL and HH. Features are computed for LL, LH
and HL. For LL, the MEAN> and AAD; are computed. For
LH and HL, ENER; is computed. Thus, for each pass, 4
features are computed. In addition, the MEAN, and AAD,
are computed for the original image. This provides a total
of 10 features for the DWT transform of a texture.

Gabor Filters (GABOR): A popular method for texture
feature extraction is the multi-channel filtering approach
using Gabor filters [28-30]. This technique is able to
exhibit some characteristics of the human visual system.
It uses a multi-resolution system to extract information that
describes different characteristics of an image. An image is
convolved with a set of filters and the outputs are processed
to establish a set of texture properties for a pixel.

The Gabor function implemented has the following form:

.'1’32

1 2 2m .
g(z,y) = e:r;p{—i(ﬁ - %)}cos(% +¢) (9
T y

where:
_ ViIn2(287 4+1) (10)
oy = 2 _ (11)

B
%tan(f)

Frequency of the sinusoids is denoted % The spread of the
Gaussian in the # and y directions is controlled by &, and
o, respectively. The frequency bandwidth of the filter is
represented by By, the angular bandwidth by By and the
phase is ¢. Spatial rotation of the filter by 0 degrees can be
achieved using:

(12)
(13)

z =xzcosh+ ysind

'y’ = —zsinf + ycosf

and then substituting these new values for = and y.
The Gabor kernels require a number of parameters for
computation. The value for By is set to 1 (octave) and By
is 30 degrees [31]. Given a set of As, the corresponding
os can be determined from the o:A ratio. The application
dependent parameters are A, #, ¢ and 7. 7y is set to 0.5 and
# € {0°,30°,60°,90°,120°,150°}. The values for A are
{1.41,2.82}. ¢ should be set to 0 for creating a symmetric
filter or — 7 for an anti-symmetric filter. These parameters
were determined from empirical results.

The filtering produces feature images and the data in
these images can be used directly as features for texture
discrimination. In addition, each feature image Fj can

be processed further for feature extraction. The following
features can be derived for a point in £, centered within a
square window of width W

1
ENER; = 5 3 /[ ()] +[Fe (@ y)?
x,yeW

(14)

where N is the number of points in the region W.
Fdd and FEvem refer to anti-symmetric and symmetric
filter reponses respectively. The literature suggests using
Gaussian weighted windows in the above computation
[32,33]. We use a Guassian with spatial extent 1.3 times
larger than the Gabor wavelength.

Markov Random Fields (MRF): A Markov random field
texture model represents the global intensity distribution
of an image as the joint probability distribution of local
conditional systems of each pixel in the image. The image
intensity pixel depends only on a set of neighbourhood
pixels.

In order to model a texture region using MRFs the Markov
process, for a pixel ¢ in image X, is described by a
symmetric difference equation [34]:

X(c) = Z Ben[X(c+m)+ X(e—m)]+e. (15)

where e. is a zero mean Gaussian distributed noise
(estimation error), m is an offset from the center cell ¢
and (.,, are parameters that weigh a pair of symmetric
neighbours to the center cell. The (s form the features
vector that describes the Markovian properties of the
texture and govern the spatial interactions. A region R
of size w x w is defined together with the order of the
neighbourhood. The order describes the set of pairs of
symmetrical neighbours, and their offsets m from center
pixel ¢, that interact with the center pixel. For every pixel
¢ in R, its neighbouring pixels up to the specified order
describe a spatial interaction with the pixel. These spatial
interactions for all ¢ in R are modelled using the Gauss
model described above. We can represent Eq. (15) in
matrix notation:

X(c)=6"Q, +e. (16)

where 37 is a vector consisting of all the Bemand Q, is a
vector defined by:

X(c+my)+ X(c—m)
X(c+ms2)+ X(c—ms2)

Q= Xletmy) + Xe-my) | 17



The (s are estimated using a least squares approach.
Features for a region R are computed by a modified method
based on the one presented by Cesmeli and Wang [35]:

1
AAD, = — > 1 X(e) = BiQ, | (18)

ceER

where w? is the number of points in R. The neighbourhood
order is 2, which has 4 pairs of symmetric neighbours.
Hence, the number of texture features is 4. The region 2 is
9 x 9 in size.

Parameter estimation and features extraction: The
choice of parameters for texture description is important
for accurate image segmentation. Parameters for the
implemented methods are estimated empirically. The
feature images produced from the feature extraction
process are filtered (using local averaging of a 5 x 5
window) to remove sharp spikes. Texture features are
normalized so that the sample distribution for each image
has zero mean and unit variance. Table 1 summarizes the
texture description parameters.

Region merging: Clustering is used to group similar pixels
together based on their computed texture features. This
creates homogenous regions in an image that can be
segmented. Fuzzy clustering allows data to belong to more
than one class [36,37]. This is reflected by their degree
of membership in a particular cluster. It is based on the
minimization of the objective function

¢ N

_ E § 4, 1T
"T-m - u'i.j

j=1i=1

I x; — ¢ ||2 ,1<m< oo (19)

where m, the fuzzy factor, is a real number greater than 1,
u;; the degree of membership of x; in the cluster j and x; is
the ith d-dimensional data. The d-dimensional center of a
cluster is denoted by ¢; and || * || is the norm. The variables
C and N refer to the number of clusters and the number of
members per cluster respectively.

Fuzzy partitioning is an iterative optimization process. The
membership w;;, in matrix U, and the cluster centers ¢; are
computed by

1
Uiy = o] (”‘*_c”)T‘L (20)
k=10 lx; —ej |
ZN m
- U X
=1 "1 t
¢ = jwijm (21
D e Ul

The algorithm terminates when | u/:™! — uf; | is less than

e, where ¢ is a threshold between 0 and 1 and % an iteration
step.

Classifier design: The segmentation algorithm that is
implemented uses supervised classification to identify
image regions created by the fuzzy clustering algorithm.
A training phase incorporates a priori knowledge into a
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Figure 3: Average prediction accuracy
classifier. Ideally, the training images will effectively

represent the structure of the feature space of unknown
samples. A common issue in supervised classifier design is
the presence of a large number of pattern samples that make
the training process extremely inefficient. We first perform
sample selection before computing classifier parameters.
20 images are selected for training samples. In these
images, the different image regions are labelled, denoted
as IRIS, PUPIL, REFLECTION, SKIN and EYELASH.
The labelled image and the original image form the input
to an algorithm that computes texture features and then
uses the labelled image to construct sets of feature vectors
belonging to the image regions mentioned above. These
pattern sets are then reduced separately, recombined and
evaluated for information content.

A sample set f is reduced by removing redundant samples
using a KNN algorithm [38]. A k value is first specified
and then the algorithm proceeds by selecting a pattern x
from f and discarding its & nearest neighbours in f. The
selected feature vector is placed in a new set f,..,. The
initial set f will now contain neither x nor its k& nearest
neighbours. This process is repeated on f until it is empty.
From an empirical evaluation, we use &£ = 20 which selects
approximately 2500 vectors (about 5% of the total feature
set in the image) - this eases the computational burden
and also reduces the risk of overtraining. The information
content of the selected samples is measured by considering
their ability to predict labels of the initial sample set.
Given an unlabelled image pixel and its feature vector from
the initial sample set, we assign to the pixel the label of the
vector in the reduced set that is nearest to it (the Euclidean
distance is used for feature comparison). The predicted
labels are then compared to the actual class labels and a
normalized prediction accuracy is computed - 1 denotes the
ability to predict all labels correctly; 0 denotes no labels
being predicted correctly at all.

Figure 3 shows the average predication accuracy for the
20 training images. The accuracies for the GLCM,
GABOR and DWT methods are similar. However, the
MRF accuracy is significantly lower. This highlights
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Table 1: Summary of texture parameters

Method | Parameters Features Window size #Features
GLCM 0 € {0°,45°,90°,135°} CONT, ENTR 9x9 16
de {1} MEAN, SDEV
DWT 2 passes Original image - MEAN,, AAD, 8x 8 10
Each pass - LL: MEANs, AAD,
LH, HL: ENER,
GABOR | 7= 0.5,By = 1.0, By = 30° ENER, Dependent on A 12
0 € {0°,30°,60°,90°,120°,150°}
A€ {1.41,2.82}
MRF Order=2 AAD-> 9x9 4
the fact that more samples are required, as compared to class w; if

the other methods, to effectively represent its pattern set.
Since we are using a KNN approach to remove redundant
samples, we can conclude that the feature vectors of the
GLCM, GABOR and DWT are generally more compact
than the MRF. The KNN algorithm will retain important
information if clusters are compact since a selected feature
vector has had neighbours discarded that are very close
to it in feature space. In the case of the MRF, a pattern
not similar to the selected one but included in the set
of k nearest neighbours will be discarded. Compactness
is highly desirable for homogeneity. Our method of
subset selection of samples provides a good estimate of
the original feature space since 88 to 95% of the patterns
can be correctly predicted for the different texture analysis
methods. The selected samples are used to estimate
parameters for the classifier.

A classifier that uses the 2 class Fisher linear discriminant
is implemented for region classification [11].  The
selected sample sets for the 20 training images and their
corresponding labels are used to compute a discriminant
for every combination of two classes (producing 10
discriminants). This is done for each texture method
to complete the learning process. Given the five image
region classes (IRIS, PUPIL, REFLECTION, SKIN and
EYELASH) we have 10 two category combinations
e.g. IRIS-EYELASH, REFLECTION-PUPIL, etc. For
each pair of categories, the Fisher method computes a
weight vector w for the separating plane. As such, an
n-dimensional sample is projected to a single dimension.

The 1-dimensional Fisher projections for each class pair are
then modelled as two Gaussians (one for each class). For
each class of projected 1-dimensional points, the mean g
and standard deviation o are computed. The distribution
for the set of points is assumed to be the univariate Gaussian

function
1 2
glz,p,o) = o exp [—0.5 ( ) ] (22)

Hence, for each pair there are 2 probability distributions.
Given these 2 distributions, we use Bayesian decision
theory to classify a feature. A pattern x is classified into

T — L

P(w; | x) = max(P(w; | x), P(ws | X)) (23)
where P(w | z) can be determined using Eq. (22) for a
particular class. For the ten discriminants, there are ten
outputs. The class label of a feature is defined as being the
most common label in the ten outputs. In the case of a tie,
a class is assigned randomly from those in the tie set. The
final regions are renamed such that PUPIL, REFLECTION,
SKIN and EYELASH are denoted NON-IRIS.

Iris segmentation using pattern classification:  Once
features are extracted from an image, they are either used
as input to the training algorithm or the image segmentation
algorithm. The method of segmentation that we use is
region growing. Regions are grown by clustering the
feature vectors, where each cluster represents an image
region. Image regions are identified by classifying the
cluster centroids using the Fisher linear discriminant.
The clustering algorithm has parameters that need to be
supplied and a stopping criterion to be defined. For
simplicity and completeness, it is assumed that the stopping
criterion for the iterative process is a binary function s that
uses the change in centroids at the current iteration and the
previous iteration to decide whether to proceed or not.

Let the centroids at step k be Cr, = {ei,ci,..., ¢}
and let the centroids at step & — 1 be Cp_y
{ef_.¢f_4,....¢f_,} where n is the number of
centroids. Then

0,]ci —ci | |[€e,Vi=1...n

$(Ck,Cg-1) = {

1, otherwise
(24)

The clustering process runs as long as s evaluates to 1. A
maximum number of iterations (80) is also introduced so
that the process is not exhaustive. We use function s for the
fuzzy clustering since evaluating a stopping criterion for
the membership matrix U is computationally burdensome.
The fuzzy factor m is 2 and € = 0.0001. The number
of classes for the clustering algorithm is 6. More details
regarding computing the number of clusters can be found
in [11]. The Euclidean distance is used as a measure of
pattern similarity.
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Figure 4: Test results

3. EXPERIMENTAL RESULTS AND DISCUSSION

100 test images were selected from the CASIA image
database for experimental analysis. Ground truths for
these input images were created manually by a human
operator. The segmentation algorithm described in the
previous section is executed 4 times, each time using one
of the 4 texture descriptors, for each input image. Since the
fuzzy clustering algorithm is randomly initialized, there is a
possibility that it settles in a local optimum. Therefore, we
perform 10 clustering test runs for each texture descriptor
and then compute the average number of true and false
pixel classifications for the 2 classes (IRIS and NON-IRIS)
for each image; the number of pixels in an input iris image
is 52224. The 100 segmentation results for each method
are then averaged to produce the final outcome.

Figure 4 shows the results obtained. In order to evaluate
the performance of each method, we considered the
segmentation accuracy at the finest level i.e. pixels.
This way, distinctions could easily be made since the
segmentation accuracy viewed as a percentage for each
class type does not appear significant across the different
methods. We summarize the results:

o IRIS: GLCM performs the best for segmenting IRIS
texture. On average, it segments 300 pixels more
than the next best method (GABOR). The GABOR
performs second best for this texture class. The MRF,
segmenting 589 pixels less than GABOR, lies in third
place. DWT performs the worst amongst the four
methods for segmenting IRIS texture. On average, it
segments 2163 pixels fewer than the GLCM.

e NON-IRIS: MRF provides the best discrimination
for NON-IRIS pixels. However, as seen above,
it performs poorly on IRIS pixels. The GABOR
functions perform second best for this class of pixels
(segments 121 pixels less than MRF). The DWT and
GLCM rank third and fourth respectively for this
class of pixels. The GLCM, while providing the
best segmentation for IRIS pixels, provides the worst
performance for the NON-IRIS class.

Table 2 provides a summary of Figure 4 by listing the
segmentation accuracy as a percentage. From a global
point of view, the four methods differ by 1-5% in their
abilities to segment each class. While this doesn’t appear
significant, one must keep in mind that the NON-IRIS
artifacts tend to be small in size compared to the rest of
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Texture Method | False Non-iris (%) | False Iris (%) | True Non-iris (%) | True Iris (%)
GLCM 14.8 9.4 85.2 90.6
GABOR 13.8 10.2 86.1 89.8
DWT 14.4 147 85.6 85.3
MRF 12.8 11.6 87.2 88.4

Table 2: Summary of results

the image. The observations above put this into perspective
by showing that these measurements fall in the region
of a few to several hundred pixels. This is sufficient to
rank the different methods for quality of segmentation.
Another observation is that no single method provides the
best discrimination for IRIS and NON-IRIS classes. This
highlights the fact that a texture feature set is suitable for a
particular type of texture and cannot be expected to perform
equally well with another type.

In Figure 5(a) and Figure 5(b), a normalized iris image
and its segmentation, using the GLCM texture descriptor,
is presented. Small regions, falsely classified as NON-IRIS
texture, can be seen in the result. A connected components
algorithm can be used to improve the segmentation by
removing these components in the image [7]. This is shown
in Figure 5(c).

Several false classifications for a GABOR filter output
are shown in Figure 6. This also occurs in some cases
when applying the other techniques. Several explanations
for this occurrence are possible: i) the window size for
computing texture features is too small, ii) the texture
features themselves are poor descriptors and iii) the Fisher (c) Connected components filtering
linear discriminant cannot easily separate the 2 types of
classes.

The segmentation algorithm classifies and labels the image
pixels into one of two categories - iris or non-iris. Using
these labels, the iris texture is extracted, as shown in Figure
7. This is the final segmentation of an iris image. Most
of the artifacts in the image are removed. Although the
segmentation is not 100% accurate, it is very effective.
The eyelashes, eyelids, reflection and pupil pixels have
been removed to a great extent. The feasibility of a
feature extraction and pattern classification approach for
segmenting iris images has been demonstrated.

Figure 5: Segmentation result using GLCM texture features

4. CONCLUSIONS

In this paper, we focussed on the classic problem of image
segmentation. Texture analysis and pattern recognition
techniques are used to extract useful iris texture from an
image of the eye. To our knowledge, this method of iris
segmentation is new to the field and we have developed
a feasible solution that provides good performance. The
experimental results show that no single method tested
in this paper can provide the best discrimination for the
IRIS and NON-IRIS classes. The GABOR kernels provide Figure 6: Segmentation using GABOR features
good segmentation for both the IRIS and NON-IRIS

classes; the GLCM method has the highest number of true

classifications for IRIS pixels while the MRF performs

(b) Segmented image
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(a) Input iris image

r

(b) Extracted iris texture

Figure 7: Extracted iris texture

similarly for NON-IRIS pixels. The DWT provides fair
performance but it has the lowest accuracy amongst all the
methods.

The feature sets used used in this study may not
be ideal for iris texture description.  Several other
methods are present in the literature for further study
e.g.  Fourier descriptors, fractals and other wavelet
functions. Optimal feature sets can be determined by
using combinations of different features and assessing
their segmentation or classification accuracy. Alternate
techniques for constructing homogenous image regions,
such as split-and-merge and the watershed algorithm, can
also be found in the literature [7]. Many different pattern
classification techniques are also available for study [38].
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