
Simple Tangible Language Elements for Young Children
Andrew Cyrus Smith

CSIR Meraka Institute
PO Box 395

Pretoria, 0001, South Africa
+27 12 8414626

acsmith@csir.co.za

3rd Author
3rd author's affiliation

1st line of address
2nd line of address

Telephone number, incl. country code

3rd E-mail

ABSTRACT

We propose simple tangible language elements for very young

children to use when constructing programmes. The equivalent

Turtle Talk instructions are given for comparison. Two examples

of the tangible language code are shown to illustrate alternative

methods of solving a given challenge.

Categories and Subject Descriptors

D.3.2 [Programming Languages]: Language Classifications.

D.2.6 [Software Engineering]: Programming Environments -

interactive environments. H.5.2 [Information Interfaces and

Presentation]: User Interfaces – haptic I/O, interaction styles.

General Terms

Design, Human Factors, Languages.

Keywords

Programming, children, syntax, tangible, turtle talk.

1. INTRODUCTION
In the late 1960’s Seymour Papert and his small team developed a

simple programming language aimed at children. This language is

Logo [2,p210]. Papert’s aim in developing the original

programming syntax was to have a simple environment in which

children can discover and explore the potentially exciting,

creative, and stimulating world of end-user programming. To

make the results of the programming concrete to the children,

Papert and his team at MIT introduced a so-called turtle. The

turtle existed both on the computer screen and in the real-world.

Close to 40 years have passed since the original Logo

development, but not much has changed in the way Logo is used:

a programmer still needs to be computer literate to make full use

of the programming environment.

It can be argued that a programming environment which is based

on the direct manipulation of tangible programming elements can

reduce the cognitive burden of the coder. In such an environment

there is a direct and obvious link between the input and resultant

output when coding: there is a one-to-one mapping between the

tangible instruction and the resultant behaviour of the output

device when the instruction is executed.

In this paper we explore an approach to simple programming

which does not require either a PC or the ability to read or write

(letteracy). Our approach is based on tangible programming which

utilises tangible objects that are decorated with symbols that

convey their meaning.

2. TANGIBLE PROGRAMMING
The approach relies on the direct manipulation of identical cubes.

All cubes have the same symbol embedded on the surface and the

symbol pertains to the immediate function of the cube. We have

concretised the system inputs in the form of tangible cubes. The

system output is a tangible toy car.

The system presented here abstracts [1,p82] the underlying

implementation of a system that senses the specific cube

orientation when placed at a discreet location, converts the

electrical representation of the cube into an instruction, and sends

the instruction in the form of an infra red signal to a toy car for

immediate execution. The toy car itself contains an embedded

processor which runs a programme for receiving infra red

commands through its own sensor and controls electrical motors

based on these commands. As far as the user is concerned, the

cubes contain the instructions and the toy car executes them.

The system uses metaphors for the four basic actions provided.

These actions are: moving a fixed distance forward and back, and

turning either left or right. The embedded programme in the car is

such that the car moves exactly one square forward or back, or

turns 90 degrees left or right and then stops.

3. LOGO AND SYMBOLS
The geometry used is in many ways similar to Turtle geometry

[2,p55]. As for the LOGO on-screen turtle, the tangible output

device has both a position and a heading. Position and heading

changes are effected by the cubes. Table 1 lists the symbols with

corresponding TURTLE TALK commands. Figures 1 and 2 show

coding examples using the cubes and TURTLE TALK, with the

resultant tangible output shown as well.

4. USAGE
Users are given a challenge to solve by making use of the four

available instructions. Programming is done by placing cubes

onto the programming mat in the desired orientation. The system

is then activated and the toy car’s motions closely observed. If the

8th International Conference on Interaction Design
and Children (IDC), Como, Italy, 3-5 June 2009

execution does not correspond to the user’s intentions, the

discrepancy is resolved by inspecting the sequence of cubes and

comparing them with the actions the toy car executed. The cubes

are then adjusted and the system activated again. This process is

repeated until the toy car behaves as intended.

Table 1: Programming symbols and corresponding TURTLE

TALK commands.

FORWARD

BACK

RIGHT

LEFT

The toy car moves exactly one unit (one square) on the execution

mat for each forward/reverse movement instruction received. In

Figures 3 and 4, the yellow blocks indicate the recommended

route to be programmed in order to meet the challenge. In one

scenario the challenge is simply to get the toy car to reach both

target objects #1 and #2. The second scenario requires that the toy

car reverses into target object #2. Possible solutions to these

challenges are given in Figure 5.

FRONT

FRONTF
R

O
N

T

F
R

O
N

T

FinishStart

Figures 1, 2: Two physical coding sequences for tracing a

square using the system described. The sequence is read from

left to right. TURTLE TALK code serves as a comparison.

The toy car movements are shown.

Figure 3: The test lay-out.

Figure 4: Diagrammatic representation of the test lay-out.

Figure 5: Solution to the first challenge (left), using forward

motions only, and to the second challenge (right), including

backward motions.

5. CONCLUSION
In this paper we have expressed the need for a simple tactile

programming environment. We then presented an environment

that potentially addresses this need. Examples of its use were

given.

6. ACKNOWLEDGMENTS
This research was funded by the South African Department of

Science and Technology.

7. REFERENCES
[1] Dourish, P., Where the action is, MIT Press, 2001.

[2] Papert, S. Mindstorms, Children, Computers, and Powerful

Ideas, Basic Books, Inc., 1980.

