
Language Modeling for What-with-Where on GOOG-411

Abstract
This paper describes the language modeling architectures and
recognition experiments that enabled support of ’what-with-
where’ queries on GOOG-411. First we compare accuracy
trade-offs between a single national business LM for business
queries and using many small models adapted for particular
cities. Experimental evaluations show that both approaches lead
to comparable overall accuracy. Differences in the distributions
of errors also lead to improvements from a simple combina-
tion. We then optimize variants of the national business LM
in the context of combined business and location queries from
the web, and finally evaluate these models on a recognition test
from the recently fielded ’what-with-where’ system.
Index Terms: Language modeling, directory assistance, voice
search, speech recognition

1. Introduction
Today successful commercial speech recognition systems typ-
ically depend on limited domains and strong language mod-
els in order to reach usable accuracy. For example most de-
ployed dialog systems will prompt callers for what they can say
(e.g. “What city and state?”). As computational capacity, avail-
able data, and model sizes have grown, systems are providing
usable accuracy for increasingly open tasks, which in turn pro-
vide increasing value to users.

Most directory-assistance applications make use of speech
recognition (e.g. 800-555-TELL, 800-FREE-411, 800-CALL-
411, http://www.livesearch411.com). Some detail about ap-
proaches considered has been presented [1, 2, 3]. Most of
these systems have leveraged the existing directory assistance
UI-model that starts with “What city and state?” This is in con-
trast to more general call-routing applications, “How may I help
you?” [4], and increasingly in contrast to web search engines
for local information (e.g. http://maps.google.com) which have
migrated to a single text-input box.

800-GOOG-411 is an automated system that uses speech
recognition and web search to help people find and call busi-
nesses. By first asking callers for the city and state, the sys-
tem can make the probabilities for the expected business queries
conditional on each city. When we open the dialog by moving
to a new domain of combined ’what-with-where’ queries, we
both confound the recognition problem, and lose the ability to
have explicit models for different cities. This direction raises
two experimental questions: 1) Can a single national business
LM compensate for what might be lost when city-specific infor-
mation is not available with an open dialog? and 2) Can models
derived from separate sub-dialog states predict natural combi-
nations of those states?

Section 2 describes the data sources and text processing
used to estimate the language models. Section 3 describes the
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basic design of two language modeling approaches considered
for business queries; a single national business LM approach
(section 3.1) and city specific business language models (sec-
tion 3.2). Section 4 compares experimental results for these
two approaches, and for a simple combination strategy. Sec-
tion 5 describes the extension of the national business LM to a
system that predicts less restrictive business queries, and shows
the recognition performance of these systems on a transcribed
test set from production data.

2. Data sources and text processing
Table 1 summarizes the three data sources used to train our lan-
guage models. The GOOG-411 transcripts were collected over
a little more than one year, and the sample of Google Maps
queries considered business queries, collected over the last two
years. Both of these datasets are anonymous query counts. The
business databases are a compilation of commercially available
US business listings. Each of these data sources has its own
normalization challenges.

Previously [5] we found that the US business listings were
not very helpful, and did not consider that source for the na-
tional business LM described below. Note that others have pro-
posed strategies to get more value from similar databases [6].

Source Relevance Uniq # Total #
GOOG-411 trans. highest 2M 10M
Google Maps high 20M 2B
Business DBs low 20M 20M

Table 1: Data sources for language modeling.

Fig. 1 shows an overview of the two-step data preparation
phase used to process the data sources. After initial text normal-
ization, an annotation step identifies substrings of a given query
that are either a business/category or a location.

For example, consider the query “looking for restaurants in
Portland Oregon.” A business annotator identifies “restaurants”
as a business/category, while the location annotator identifies
“portland Oregon” as a city-state. This separation enables both
task-specific data selection (location and business), and task-
specific text normalization.

The output of this second step is used to build the business
and location language models described in Section 3.

3. Language Modeling Alternatives
In this section we consider two types of language models for
business queries: a single national LM and a system built from
many city-specific models.
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Figure 1: Steps of the data preparation phase.

3.1. National Business LM Estimation

To build a national business language model, we trained two
individual tri-gram models from our normalized sources: one
from Google Maps queries and one from transcribed GOOG-
411 queries. The model estimated from Maps queries included
words that occurred 3 or more times, while no vocabulary prun-
ing was necessary for the model of GOOG-411 queries. Kneser-
Ney smoothing [7] was used for both models.

Interpolation weights were estimated by evaluating per-
plexity (PPL) on a development set from the GOOG-411
queries. Empirically, a weight of 0.8 for the GOOG-411 model
was best for this evaluation. The interpolated model was then
entropy pruned [8] to fit into the memory of a single machine.

The resulting N-gram sizes for the two models, and their
combination are shown in Table 2. A similar national N-gram
was also estimated for locations, using the GOOG-411 data
from that dialog state together with the location information ex-
tracted from Maps queries. The resulting model, referred to as
the citystate-LM, is smaller than the national business-LM and
is described in more detail in Section 5.

Model # 1-grams # 2-grams # 3-grams
GOOG-411 0.11M 0.93M 1.8M
Maps 0.50M 5.9M 13M

Interpolated 0.51M 6.1M 14M
Pruned interpolated 0.51M 5.9M 8.2M

Table 2: N-gram sizes for individual & interpolated models.

3.2. City-Specific LM Estimation

The city-specific system uses a hybrid LM that combines full-
query lists in parallel with a de-weighted unigram. Individ-
ual unigram and query weights were estimated from frequency
counts in the training data. The weighting of the unigram with
respect to the full queries was optimized on development tests.
Initially the unigram was employed as a decoy path for re-
jection, but because high-confidence values through the uni-
gram were often correct, we optimized independent confidence
thresholds for the distinct grammar paths.

To compensate for data sparcity, the city-specific models
were smoothed against increasingly general models of region,
state, and country. Interpolation weights for data sources and
regionalization were optimized on a development set. For these
experiments, the size of the city-specific models was held con-
stant across cities. Because of the smoothing with increasingly
less specific models, smaller cities with fewer queries ended up
with less city-specific data in their models.

The city-specific system also includes a semantic stage for
inverse text normalization. This stage maps the query variants
like “comp usa” and ”comp u s a,” to the most common web-text

query form “compusa”.
The city-specific system was designed earlier and there

were a few implementation differences from the national-LM
system: it used a different text normalization framework with-
out explicit spell checking; the data sources were sampled at
slightly different times; and all optimizations minimized “sen-
tence semantic error“ which considered the mis-match of the
output of the inverse text normalization.

4. Experimental Results
4.1. Tests and Measures

The recognition tests were held out and manually transcribed
GOOG-411 calls. The tests were split into city-state (47K ut-
terances) and business queries (56K). We report three types of
measures: perplexity, word error, and sentence error. For sen-
tence error, we ignored inconsistency in spaces and apostrophes
(kinko’s vs kinkos). All systems were evaluated with the same
fairly standard acoustic models (triphones with decision tree
clustering, 16 Gaussians / state, 3 state units, using STC, and
ML estimation followed by MMI, with a PLP-based front-end
and LDA).

4.2. Overall Performance

The top line of Table 3 shows WER/SER for all data for the
national business LM and city-specific business LMs. While
the performance is close, each system does better with the mea-
sure more closely related to its structure. There are at least two
factors to consider in the evaluation. First, more of the word-
errors in the city-specific system can be tracked to difference
in compounding and apostrophes, which are ignored by the se-
mantic measure used to optimize that system. Second, by using
full-sentence query models without a smooth N-gram backoff,
the city-specific system is more likely to get the utterance com-
pletely right or completely wrong.

The accuracy of the national business LM, which consumes
only a couple GBs of memory, is very close to the city-specific
system that includes 100s of GBs of memory in total, and re-
quires the explicit city-state question in the dialog. More di-
rectly, because it uses no city-specific information, the national
business LM opens the possibility of a new combined state
where callers provide both the business and the city simulta-
neously.

4.3. Error Analysis and Combination

Table 3 shows word error and sentence error for different sub-
sets of the data on three systems: the national-LM system,
the city-specific system, and a simple combination scheme de-
scribed below. Each system uses a different approach to cover
the tail of the distribution. The national business LM covers
the tail with a large N-gram, while the city-specific LM tries to
cover the tail of the national distribution by having a list of the
common queries for each specific city.

The “national” lines in the table show accuracy numbers for
increasingly less common queries. The “head” contains queries
that are in the most common 10K, the “body” contains queries
from the next 290K, and the “tail” is everything else. From
these lines, it’s clear that the city-specific system provides a
sentence error improvement as we move toward the tail of the
distribution.

For the “city-size” lines in the table we’ve grouped all utter-
ances by city and sorted those cities into three groups based on
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Data group % of queries National LM City-Specific LM Combination
all 100 21.8 / 29.0 23.1 / 26.8 20.3 / 24.3

national head 41 10.5 / 11.6 12.5 / 11.4 12.2 / 11.0
national body 25 19.4 / 25.4 20.8 / 22.7 18.9 / 20.5
national tail 34 31.5 / 52.8 32.1 / 48.5 26.9 / 43.3
big cities 33 23.1 / 31.2 27.0 / 31.8 22.6 / 27.8

medium cities 33 20.9 / 27.7 21.3 / 24.5 19.1 / 22.8
small cities 33 21.5 / 28.1 20.6 / 23.8 18.8 / 22.3
city head 64 14.5 / 17.9 11.3 / 11.3 11.1 / 11.0
city body 14 26.0 / 38.3 21.6 / 29.5 19.8 / 27.7
city tail 21 34.9 / 56.4 48.2 / 71.6 39.5 / 62.1

Table 3: Error analysis: WER/SER (%) across different data subsets.

their frequency, with each group representing equal numbers of
utterances. For this test, we can cover about a third of the data
with the most common 70 cities, while it takes thousands of
cities to cover the least common third. The result is expected,
the national business LM system does the best with the large
cities that dominated our data, while the city-specific system
does increasingly better with smaller cities.

The last lines of the analysis table use a city-specific refer-
ence for the definition of head and tail. The “city head” is test
utterances that are in the most common 10K query list for each
city, the “city body” is utterances covered by the rest of the city-
specific query lists, and the “city tail” is utterances not modeled
by the city-specific query lists. With this last set the difference
is more plain: both systems are poor, but the national N-gram
does much better with the city-tail than the city-specific uni-
grams. For the rest of the queries, the city-specific query lists
do much better than the national N-gram.

Based on these observations we investigated a simple com-
bination scheme where we use the result from the city-specific
system unless that result came through the unigram. In that
case, we take the result from the national business LM. This
gives us city-specific query models together with a smooth na-
tional back-off mechanism. Without optimizing the combina-
tion, we see large gains in both word error and sentence error.
Most notably, on the tail of the national distribution, the combi-
nation improved the sentence error of the national business LM
by 9.5% and the sentence error of the city-specific system by
5.2% absolute.

5. Predicting a New Domain
5.1. Text Data and an Unseen Testset

Having a single language model was necessary to have a more
open dialog by asking for both ”what and where” at the same
time. To predict these new queries, we considered two types of
language models.

The first LM was an interpolation between the citystate-
LM and the national business-LM described in section 3.1. The
interpolation weights were picked to reduce the total error on
both business and city-state recognition tests.

The second LM combined the same two LM pieces using
a hierarchical language model (HLM) [9] which explicitly in-
cludes paths for a business query, a city-state query, or multiple
combinations of the two in a single utterance. Having an HLM
therefore allows us to estimate explicit priors for different types
of combined queries, while still re-using LM pieces that were
already highly-optimized for existing GOOG-411 data. The
HLM also enables rapid adaptation of these priors. The topol-

ogy for the HLM, shown in Fig. 2 was constructed manually.
All paths starting at node 0 and ending at node 5 represent pos-
sible queries. We estimated the initial topology and the asso-
ciated arc weights from a small “onebox” (text) evaluation set
built from Google web queries that get a Maps business result.

We chose to use the HLM in the first “what-with-where”
production system, and then transcribed a new test set from
production data. Table 4 summarizes errors across all models
and across four test sets. The citystate and business test sets
contain transcribed GOOG-411 queries from the original sys-
tem that first asked for a city and then a business. The “what-
with-where” test set contains the transcribed queries from the
recently fielded “what-with-where” system. Looking across the
data we had before fielding the “what-with-where” system, the
HLM results are comparable to that of the national business LM
as well as the interpolated business and city-state LM. The pro-
duction “what-with-where“ recognition test shows about a 35%

relative reduction in both WER and SER by the HLM compared
to simple interpolation. Looking across all models, we also see
a strong correlation between perplexity on onebox text data, and
recognition error rates on spoken “what-with-where“ data.

Given that strong correlation, we should note that to date,
we’ve been unable to do better on this recognition task using
an LM derived more directly from the web text queries used to
optimize the HLM. This suggests that the HLM is allowing us to
combine spoken-domain knowledge from GOOG-411 queries
together with text knowledge from web queries, to help predict
a new spoken domain.

5.2. Future Work and Dialog Considerations

These data and the general structure of the HLM suggest many
future directions. The arc weights and maybe even the topol-
ogy will most likely change as we obtain examples of spoken
queries in this combined domain. More basically, we may ex-
pect that the same HLM structure that enabled an efficient mi-
gration path to a more natural combined domain, eventually also
limits the modeling potential in that new domain. For example,
with enough data in the new domain, we might expect a simple
N-gram to start to model many of the city-specific dependencies
that the initial HLM structure intentionally removes.

Allowing callers to say what and where together also may
not be an obvious improvement for directory assistance. To
a first degree, if callers can give a natural response that pro-
vides the information for two dialog states in one, then we’ve
saved time, and given ourselves a more interesting recognition
challenge. But the new prompt may confuse some callers, it
adds more semantic complexity in interpretting the caller’s re-
sponse (was it what-only, where-only, or what-with-where?),
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0 1<S>:<S>
<epsilon>:<epsilon>
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{what}:{what}/0.05126
3
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in:in/2.8294

to:to/7.5241
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<epsilon>:<epsilon>/1.4293

4

<epsilon>:<epsilon>/0.36101

{where}:{where}

<epsilon>:<epsilon>/2.9681

5</S>:</S>/0.05277

Figure 2: An HLM “What/Where” model.

# of citystate business onebox what-with-where
Model N-grams WER / SER WER / SER PPL WER / SER

citystate-LM 2.4M 5.8 / 8.3 - - -
business-LM 14M 9.4 / 12.7 21.8 / 29.0 441 19.1 / 40.9
bus-city-interp 14M 6.7 / 9.5 21.9 / 29.0 284 15.8 / 35.6
bus-city-HLM 14M 8.0 / 11.0 22.1 / 29.4 186 10.4 / 22.7

Table 4: Perplexity, accuracy, combined domain (onebox), and unseen data (what-with-where).

and given the recognition complexity of the new task, the re-
covery paths of the dialog are now complicated by an increase
in initial recognition errors.

To a second degree, allowing for the mixing of what-with-
where may also give the caller a more natural path for queries
like “Metropolitan Museum of Art,” “Stanford University Golf
Course.” or even “American Airlines,” where location can be
implicit or unknown.

Lastly, optimizations of dialog recovery strategies for the
full system, which includes both an initial “what-with-where”
question followed by an optional city-specific recovery mech-
anism, suggest that having two paths for the caller to get in-
formation might provide another opportunity for combination
wins. If the errors of the two paths are decorrelated, then when
one path isn’t working for the caller, it’s a better bet to try the
other. The details of the dialog optimizations needed to get to
comparable performance in task completion and total time us-
ing “what-with-where” recognition will be described in a future
paper.

6. Conclusion
This paper described the development of the language modeling
that enabled recognizing “what-with-where“ queries for a com-
mercial business directory assistance system. We showed that
using a single national business LM reached similar accuracy
levels as a city-specific system on a business query recognition
task, and that additional wins are obtained with combinations of
the two approaches. Then we showed that an HLM composition
of national business and location LMs can be optimized to pre-
dicted a naturally combined domain of more open business text
queries. Finally we showed that the HLM optimized to predict
the combined text data performed best on an unseen recogni-
tion test set collected from the production “what-with-where“
system.
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