
A LAYERED DISTRIBUTED SIMULATION ARCHITECTURE TO
SUPPORT THE C2 ENTERPRISE

Arno Duvenhage
Derrick G. Kourie
Gerhard P. Hancke

University of Pretoria
Pretoria

 South Africa

aduvenhage@csir.co.za, dkourie@cs.up.ac.za, gerhard.hancke@up.ac.za

Keywords:
Layered Architecture, QDEV, C2 Enterprise, Interoperability, Modelling and Simulation, Virtualisation

ABSTRACT: Modelling and simulation can be applied to support Joint Command and Control which involves the
interoperability of network-centric systems as well as legacy command and control systems. It is assumed that software
will always be the glue between these systems and that a capability is required to demonstrate, support and evaluate
interoperability. This paper discusses the layered software architecture of a C++ software application framework for
developing applications that support the Command and Control Enterprise. The framework provides for both
interoperability and modelling and simulation – the modelling and simulation features of the framework can provide
for key interoperability support capabilities that would otherwise not exist. Applications that have been built using the
framework are also described.

1 Introduction

This article deals with a Joint Command and Control
(JC2) context that relies on the interoperation of various
military systems as well as civilian systems. There are
potential advantages in leveraging the power of
Modelling and Simulation (M&S) in such J2C contexts
that involve Joint Operations across the whole of the
defence force as well as other services.

It is assumed that the different command and control
systems (legacy and net-centric) involved in joint
operations will act as loosely coupled services within a
bigger enterprise. This C2 Enterprise consists of many
systems that were not designed to work as services and
that do not all support the common communications
protocols. A layered, distributed architecture framework
is presented that provides M&S and interoperability
capabilities within the C2 Enterprise.

The proposed simulation application framework makes it
possible to support the C2 Enterprise in the following
ways:

• The inherent M&S capability within the framework
makes it possible to create applications and tools that
can deploy virtual systems and equipment. The
virtual systems and equipment are deployed to
interact with the C2 Enterprise systems as the real
systems would. This fools the enterprise into thinking
all systems are available, even though specific
systems could not be deployed.

• Applications and tools created with the framework
are ideally equipped with the right components to
interoperate with external systems and simulators.

• The framework can be used to create software
bridges, adapters or gateways for existing systems
that have to be part of the enterprise, but do not
necessarily support the correct protocols or
interfaces.

The framework design builds on past experience with
using modelling and simulation for decision support
within the military environment. The framework
represents the next step in the modelling and simulation
capability that has become heavily focused on the
ongoing JC2 work for Joint Operations. This
environment also requires rapid application development

mailto:gerhard.hancke@up.ac.za
mailto:dkourie@cs.up.ac.za
mailto:aduvenhage@csir.co.za

to quickly evaluate possible software solutions for
interoperability problems with ad-hoc user requirements.

The paper briefly discusses the background to the
framework and how it evolved, followed by two sections
that detail the requirements for the framework
architecture and discuss the framework design. The paper
then gives a brief overview of the framework
implementation and the applications built with the
framework up to now. The paper ends with a conclusion
and a discussion on possible future work. The future work
includes applying the framework in other environments
where virtualisation and interoperability can be useful.
The focus in this paper is on the software framework
architecture and not on the principles, practises or
formalisms of M&S.

2 Background

The Council for Scientific and Industrial Research
(CSIR), South Africa, has been providing an M&S
service to the local defence force and industry for more
than a decade. The M&S capability (developed in-house)
was initially referred to as the Virtual Ground Based Air
Defence Demonstrator (VGD) and was primarily applied
in the air defence environment. The capability has
however been steadily upgraded during the past few years
in support of joint operations. The increasing focus on
joint operations and interoperability is also clear from the
literature on VGD:

• The design and application of an early version of
VGD is discussed in Implementing a Low Cost
Distributed Architecture for Real-Time Behavioural
Modelling and Simulation (Euro SIW 2006) .

• Using VGD for decision support is discussed in
Modelling and Simulation of a Ground Based Air
Defence System and Associated Tactical Doctrine as
Part of Acquisition Support (Fall SIW 2006) .

• The design of VGD is again discussed in A Peer-to-
Peer Simulation Architecture (HPC&S 2007) .

• Migrating to Real-Time Distributed Parallel
Simulator Architecture (SCSC 2007) proposes an
update to the VGD architecture to transform it from a
discrete time based to a Quantised Discrete Event
(QDEV) based simulation.

• A State Estimation Approach for Live Aircraft
Engagement in a C2 Simulation Environment (Fall
SIW 2007) review a method used to inject real-time
sensor data into VGD.

• The Contribution of Static and Dynamic Load
Balancing in a Real-Time Distributed Air Defence
Simulation (SimTecT 2008) proposes an update to
VGD that will automatically balance the load when
distributing complex scenarios.

• An Alternative to Dead Reckoning for Model State
Quantisation when Migrating to a Quantised
Discrete Event Architecture (ECMS 2008)
investigates the use of alternative algorithms for
converting model interaction from discrete time
based to QDEV architecture.

• The Evolution of a C2 Protocol Gateway (Euro SIW
2008) discusses the interoperability capability
developed in parallel with VGD.

The current software framework is the result of a need for
rapid application development and is a culmination of the
original M&S capability and the more recent C2 protocol
gateway and interoperability work. The framework has a
layered architecture consisting of three main layers as
well as additional application specific layers: a publish-
subscribe-type Inter Process Communications (IPC)
backbone layer; a Quantised Discrete Event (QDEV)
infrastructure layer, and; an interoperability layer. The
framework architecture is described in more detail in
Section 4 of this paper. The next section discusses the
requirements for the framework.

3 Framework Requirements

The framework requirements can be divided into three
main points: interoperability with C2 systems;
virtualisation of C2 equipment using M&S, and; good
code quality (i.e. scalability, usability, extendibility and
other such metrics)

The framework requirements listed in this section are
based on experience gained with the ongoing M&S
research as well as an extensive literature review. The
requirements were also checked against a UML Use Case
diagram for the framework.

3.1 Interoperability with C2 Systems

To function within the C2 enterprise the framework
should enable the following:

• interoperability with legacy and net-centric C2
systems and simulators,

• protocol translation when communicating with real
systems and other simulations,

• object attribute translation when translating to and
from external data representations,

• generic and extendable internal object data model,
• protocol bridging (acting as an adaptor or gateway

for systems that do not support the correct protocol or
interface), and

• dynamic addition and removal of nodes when
running distributed.

3.2 Virtualisation of C2 equipment using M&S

Applications and tools created with the framework can
support the C2 enterprise by deploying virtual systems
when the real systems cannot be deployed. This
introduces the following requirements:

• dynamic addition and removal of simulation objects
like services and models,

• operator in the loop (OIL) support (with seamless
switching between constructive and virtual modes),

• running in real-time and the ability to catch up if the
simulation was slowed down temporarily (soft real-
time),

• running in reverse, running as fast as possible and
pausing execution,

• the ability to jump in time, and
• a configurable frame rate.

It should be possible to distribute the execution over
multiple nodes for increased performance. Parallel
execution (distribution over multiple CPU/Cores on one
node) should also be considered – to utilise the power of
multi-core nodes.

3.3 Good Code Quality

The framework is intended for rapid development of
technology demonstrators and prototyping of software.
More often than not the applications are also subject to
ad-hoc changes in user requirements. The quality of the
framework code base will ultimately determine how the
framework is used. The framework code base should
adhere to the following:

• use of Standard Template Library (STL),
• use of 3rd party components,
• object-oriented design,
• memory usage tracking,
• built-in profiling,
• real-time execution,
• fault-tolerance,
• long up times,
• usability,
• maintainability,
• extensibility,
• reliability, and
• portability.

The framework should additionally support XML based
scenario loading and saving. It should also support

logging and off-line review (debriefing) of scenario
execution.

Ultimately the framework should make it easy for
application developers to create good quality applications
and tools that support the C2 Enterprise.

4 Framework Design

A layered architecture was proposed in order to meet
various aspects of the requirements outlined in the
previous section. The framework architecture is divided
into five layers shown in Figure 1. The five layers are:
the backbone layer; the infrastructure layer; the
interoperability layer; the simulation layer, and; the
application layer. The shaded layers are not part of the
framework yet, but will be required for future applications
of the framework and will be discussed briefly in Section
7 of this paper.

Using a layered architecture has the following
advantages:

• The framework is more usable in the sense that
changes in one layer don't affect other layers as
much. Each layer is a different C++ project that can
be compiled and modified without affecting the other
layers.

• Applications have a reduced development time since
application development involves extending and
using existing components rather than creating
everything from scratch.

• Applications have a reduced build time since you
only have to compile the layers that have changed.

• It supports multiple teams working on the same code
base since different teams would normally focus on
different layers of the framework. This allows
different teams of developers to develop multiple
independent simulations concurrently using the same
framework code base.

The layers of the framework can be mapped onto specific
layers of the OSI model (Figure 1) to get some
perspective on the functionality of each layer – from the
application developer’s point of view.

4.1 The Backbone Layer

The backbone layer contains the inter process
communication (IPC), memory management and
networking components. This layer supports distributed
and parallel execution of processes. The backbone layer
components are grouped according to their function: core
components, common components, network interfaces and
backbone components.

Core Components
The backbone layer contains an object factory that can
uniquely identify and inherently construct any object
within the object hierarchy. Abstract and concrete class
types can be added into the object hierarchy and any
object in the hierarchy is automatically added to the
factory. The factory enables automatic construction of
objects based on type.

An object can be added to the object hierarchy by
inheriting from a specific interface and including the

relevant class members. Objects can be identified within
the hierarchy in two ways: based on the object's class
name (string value), and based on the hash value of the
class name for faster lookups.

Operations to check the type of object pointers as well as
perform safe casting are available in the backbone. The
object type information also indicates parent type which
allows an object to be identified based on the object's type
as well as the type of any one of the object's parents
within the object hierarchy.

Figure 1: VGD Layers

The core components include a custom memory manager
that helps track down memory leaks. All objects in the
backbone object hierarchy inherit from a base class that

have the memory operators overloaded to store the file
and line number of the allocation and to register the
allocation. It is then possible to at any point examine the

registered memory allocations. Doing this when the
applications exits provides the location in the source code
of memory allocations that were never de-allocated
(memory leaks). It is possible to add additional features
like memory buffer overwrite and underwrite protection
to the overloaded memory operators.

The core components also include:

• error and exception handling classes,
• a custom pseudo random number generator,
• a high performance timer,
• a customizable output class (console output, logging,

etc), and
• operating system abstractions that support portability.

Common Components
The backbone layer contains the following common
components:

• advanced containers like bidirectional maps and
indexed maps,

• utilities for performing string hashing, etc.,
• multi-threading base class and process control,
• utilities for retrieving raw and formatted time of day,

date, etc.,
• a time manager capable of translating between

simulation time and the time external systems and
simulations are running at,

• generic IPC components that enable state
quantisation and integration (makes QDEV
simulation possible).

Network
The networking components are split into two main
component types:

• Network interfaces: The network interface
components do the low-level reading and writing of
binary data from various interfaces like files, network
transport interfaces and even hardware interfaces like
RS232. The network interface classes all present the
exact same interface, providing a unified way of
accessing binary streams.

• Network coders: A coder object is a wrapper for an
interface object and is responsible for translating or
formatting higher-lever application data. Unlike
network interface classes, network coder classes do
not present the same interfaces, since the interfaces
are application specific. Any network interface can
however be used by any network coder.

The interoperability layer uses extended network coders
referred to as protocol coders that translate the various
data formats and protocols used by the different external
systems and simulations. The interface-coder-concept
allows any available interface to be used with any
protocol coder. This adds to the flexibility of the
interoperability capability of the framework.

Backbone Node
The IPC is based on a publish-subscribe-type message
passing scheme among backbone objects. The backbone
node components represent the bulk of the IPC
functionality within the backbone. Data flows from one
backbone object to another in the form of issues, where an
issue encapsulates an event or list of events. What issues
a backbone object can publish and where the issues go are
determined by the titles a backbone object registers and
the subscriptions other backbone objects make to these
titles.

Issues are also inherently generated by the backbone layer
for each object in the following cases:

• The backbone generates a title issue whenever an
object registers or deletes a title. The issue is then
broadcast to all objects on all nodes.

• The backbone generates a subscription issue
whenever an object registers or deletes a subscription
to a title. The issue is then broadcast to all objects on
all nodes. Any object that has the relevant title
registered will then process the subscription to that
title.

• The backbone generates a subscription issue in
response to the delivery of a title issue if the recipient
of the title issue has a subscription to the relevant
title. The subscription issue is then sent to the object
that originated the title issue.

This passing of issues allows backbone objects to register
and delete titles and to add and remove subscriptions to
other titles in an ad-hoc fashion during runtime:
registering a title will trigger a subscription issue from all
objects that have a interest in the title; making a
subscription will create a subscription issue that is
processed by all the objects that have the relevant title
registered.

An object can publish any type of information in the form
of issues. Issues contain objects which are also called
titles. Titles are also part of the core object hierarchy.
The basic title interface contains methods for streaming
and de-streaming the title attributes to and from a binary
stream. This means that title objects can be automatically
created by the core object factory as well as be converted
to and from binary when transmitted from one node to
another. This makes it very easy to support any number

of title types without having to modify the backbone
layer.

Title subscriptions deliver all the data published on the
title (i.e. a subscribing object will receive everything the
relevant publishing object publishes). This is the default
subscription type: objects can also subscribe to only have
access to the last issue from each publisher. More
subscription types can also be implemented. The
common components in the backbone that enable state
quantization and integration (mentioned earlier) can then
be used by an object to decrease the amount of
information that is required to flow over the backbone.

The backbone runs at a fixed frame rate which determines
the simulation time step size. Each backbone object has a
very simple interface that is called by the backbone at a
pre-configured trigger-frame (i.e. at every n'th frame
where n is the trigger-frame). The backbone calls an
object to give it time to update itself and read and publish
issues.

The backbone layer uses a separate component, called a
hub, to transfer issues from one node to another. The hub
manages the inter process communication (IPC) without
affecting the rest of the backbone layer. The hub
interface is part of the backbone layer, but the hub
implementations are part of the infrastructure layer and
will be discussed in more detail in the next section.

The backbone executes each simulation frame in five
steps using conservative (or lock-step) time management:

1. The backbone reads all the issues published in the
previous frame.

2. The backbone then delivers the issues to the correct
backbone objects. The backbone keeps on reading
and delivering issues until all nodes are finished with
the previous frame.

3. The backbone then calls all the backbone objects that
have a trigger frame matching the current frame. The
backbone objects update themselves and get a chance
to publish any new issues. New published issues are
temporarily stored in the backbone.

4. The backbone then sends out all the new published
issues to the other nodes.

5. The backbone then indicates to other nodes that it is
finished with its current frame and continues to the
next frame.

The reading of issues and sending out of issues as well as
the distribution of the issues among different nodes are
handled by the backbone hub. The node also uses the hub
interface to signal the end of its current frame. The hub
interface will be discussed in more detail in the next
section.

Backbone objects always publish issues for the next
frame and the backbone only sends out those issues once
all the objects have been called. This can be seen as a
form of double buffering since objects only have access to
new issues in the next frame. This situation is ideally
suited to parallelisation and the backbone can safely call
objects concurrently within a frame. Concurrently calling
backbone objects makes sense when objects become very
resource intensive. This will allow the framework to
better utilise the potential of multi-processor systems or
multi-core CPUs.

4.2 The Infrastructure Layer

The infrastructure layer extends the generic IPC
capability of the backbone layer for modelling and
simulation of spatial, time-based objects. This layer also
includes components to help debug and measure the
performance of simulation objects. The infrastructure
layer components are grouped according to their function:
hub components, datamodel components, common
components, terrain components, Simulation Object
Model (SOM), Simulation Reference Model (SRM),
bootloader components, the node control service, Object
Performance Measures (OPM) and some basic title
objects.

Backbone Hub Components
The backbone uses a separate component, called a hub, to
transfer issues from one node to another. The hub
implementations are found in the infrastructure layer and
not in the backbone layer since it was desirable to be able
to configure the hub with the boatloader using the XML
scenario.

The hub specifies the type of inter process communication
(IPC) used. This makes it possible to change the
backbone infrastructure from a distributed peer-to-peer
TCP scheme to a parallel memory-mapped scheme (or
any other scheme), by only replacing the hub. The hub is
in charge of doing any relevant optimisation or
configuration of the transport medium.

The hub controls the inter-node communication,
synchronisation, node addressing and inter-node
connection brokering. It also controls which objects can
be loaded onto which nodes. This gives the hub full
control over how a scenario is distributed among multiple
nodes (for load balancing, etc). The hub interface allows
the backbone node to read and deliver issues published in
the previous frame, synchronise with other nodes and
send out new published issues.

Data Model, Common Components and Terrain
The infrastructure layer contains components for defining
the internal data model of the software as well as
components for defining multiple external data models to
represent data from external systems. The infrastructure
also contains components that can then translate between
the external and internal data models. Improving the data
model representation and translation is actively being
pursued.

The infrastructure layer contains the following common
components:

• a set of constants used for coordinate conversions,
unit conversions, geodetic systems, etc., and

• an xml parser that parses xml files as a set of objects.

The infrastructure layer contains the following terrain
components:

• terrain loading components,
• terrain-based line of sight (LOS) calculation

components.

The terrain components are designed to be easily
extendable to support different terrain formats. The
terrain is loaded as a set of terrain tiles. The terrain and
the relevant tiles can be specified in the scenario file.

Simulation Object Model
Simulation Object Model (SOM) components extend the
backbone components: the backbone object and basic
object titles are extended for modelling and simulation of
spatial, time-based phenomena; the backbone objects are
extended to allow loading and saving object attributes to
and from XML.

Simulation Reference Model
The Simulation Reference Model (SRM) contains the
coordinate representation classes for Meridian and
Cartesian coordinates and vectors as well as orientation.
The SRM also contains coordinate conversion classes for
converting from one coordinate system to another. The
SRM currently supports the Earth-Centred-Earth-Fixed
(ECEF) and the North East Down (NED) coordinate
systems.

Bootloader Components
The bootloader components perform the XML scenario
loading and saving. The boatloader introduces an object
interface that enables object attribute loading and saving
in a XML format.

Any object that is in the backbone’s object hierarchy and
inherits from the XML interface can be loaded by the
boatloader. The boatloader identifies and creates objects
from the object hierarchy based on the object type name.
This means that the XML scenario element names should
correspond to the relevant object class and namespace
names as defined in the backbone object hierarchy. The
boatloader XML object interface adds methods to the
object that enable it to read and write XML. Each object
is in charge of loading and saving its own attributes.
This, along with the use of the backbone object factory,
allows the boatloader to support an arbitrary number of
objects.

Node Control Service
The Node Control service is a backbone object extended
to handle the backbone execution and time management.
It tries to keep the backbone executing in real-time when
appropriate and will try to catch up if the execution was
temporarily delayed or slowed. It also does the
synchronisation of events like pausing and stopping
between different nodes.

The node control service provides an interface that can be
used by the application layer to control the simulation
execution and has to be present on each node.

Object Performance Measures
The performance of the backbone and speedup during
distribution needs to be measured and analysed. This
helps to optimise the application. The infrastructure layer
has some profiling built in to help measure the following:

• the overall application load, which provides an
indication of how well the application in running in
general,

• the object execution times, which allows per object
optimisation if required,

• the backbone overhead (as a percentage of frame
time), which shows how much of the time is spent on
modelling and how much on overheads like reading
and writing issues (the overhead is an indication of
the amount of issues transported over the backbone
and gives an indication of how successfully the
application could be distributed),

• the hub bandwidth usage (throughput and overhead),
which gives an indication of the utilisation of the
underlying transport medium when running
distributed, and

• the ratio of titles sent to local objects vs. titles sent to
objects on other nodes, which indicates how well the
objects are distributed among the different nodes
(objects that interact closely, exchanging a lot of
data, should typically be located on the same node to
minimize intra-node bandwidth usage).

4.3 The Interoperability Layer

The interoperability layer adds the protocol coders, links
and services required to inter-operate with external
command and control systems and simulators. The
interoperability layer consists of the following:

• the protocol coder components,
• common interoperability services,
• the link objects for the protocol coders, and
• the titles specific to the interoperability services and

links.

The protocol coder components are extended network
coder components (discussed earlier). Communicating
with external systems and simulations involves creating
one or more network coders which are responsible for
translating between the external system and the
application. These protocol coders operate on the syntax
or structure of the foreign data and only map one data
format onto another without understanding the data (i.e.
on a syntax level and not on a semantic level).

The protocol coders are not backbone objects and need to
be wrapped inside extended backbone objects, called Link
objects that can be loaded from the scenario file and
called by the backbone. The link objects also have the
ability to synchronise with the external systems and
buffer incoming data when real-time execution cannot be
maintained.

There is also a gateway service, which is a backbone
object, extended to act as a router for the titles from the
different links. The gateway service can route data to and
from other backbone objects and can even filter and
modify the titles if required.

4.4 The Simulation and Application Layers

The simulation layer allows developers to create unique
simulations or tools by adding the required models,
services, etc. This includes 2D/3D displays, operator
interaction, logging, etc.

The application layer can be anything from a Graphical
User Interface to a console box. This layer is responsible
for the user interaction with the relevant application. The
user interaction normally involves objects from the
simulation layer as well as from the application layer.

A typical rapid application development code base would
consist of many different simulation and application layer
implantations that could be reused, extended or modified
to quickly create new technology prototypes or
demonstrator applications.

5 Framework Implementation and
Applications

The entire framework design, as discussed in the previous
section, is currently implemented using C++ for the
Microsoft Windows platform. Porting to Linux is not
actively pursued at this stage, but the design and
implementation do support it.

Real-time performance is desired, but in most cases this is
actually soft real-time since the operating system itself
does not support hard real-time applications. There are
however some cases where interoperability with existing
systems that have very strict timing requirements is
required. In these cases satisfactory results have been
obtained by putting the time critical components of the
relevant protocol coders in separate high priority threads
and managing the inter-thread communication (locking,
etc.) very carefully.

The bulk of the backbone, infrastructure and
interoperability layer implementation were done by one
of the authors of this paper (Arno Duvenhage) as part of
his Masters studies in Software Engineering. The
following should give an indication of the complexity of
each layer:

• Backbone: 80 classes, 8100 lines of code
• Infrastructure: 70 classes, 7970 lines of code
• Interoperability: 40 classes, 7050 lines of code

Some interoperability links as well as the framework
applications, discussed next, involved other software
developers from the CSIR. Multiple applications have
already been built with the framework. Three of these
applications are discussed in the next section.

5.1 Testing the Gap-filling Capability of Short Range
Radars

During a specific training exercise, aircraft transponder
data as well as real track data from a Local Warning
Radar (LWR) were available. Because of the positioning
of an LWR or the terrain profile, there might be gaps in
its coverage. The gaps can normally be filled by
deploying short range radars at specific points on the
terrain.

To test this, a model of a short range radar was deployed
using an application created with the framework. The
model was run on the live transponder data. The tracks
generated by the model as well as tracks generated by the
real LWR were then used to generate an air picture for a
virtual air defence battery simulated in VGD. By doing
this it was possible to determine the usefulness of short

range gap-filling radars as well as optimal positioning.
This is an example of deploying virtual equipment within
the C2 Enterprise.

5.2 C2 Protocol Gateway and Router

The framework was used to build a gateway application
that can act as a message router for various systems and
simulators. The C2 Enterprise can consist of many
systems and simulators that cannot on their own connect
to other systems in the enterprise. The gateway
implements all the links required to connect to the
relevant systems and exchange information with these
systems. The gateway also translates the information to
and from an internal representation. This allows the
gateway to root information between systems, acting as a
C2 hub.

An example would be the LWR (mentioned in the
previous example) that cannot interface with a specific air
picture display system. Using the gateway application it
was possible to transfer LWR tracks as plots onto the air
picture display system in real time. This gateway has
been used successfully at several defence force field
exercises.

5.3 C2 Protocol Gateway for an Existing Simulator

The gateway application (discussed in the previous
section) was wrapped in a Dynamically Linked Library
(DLL) and loaded by VGD. VGD is a virtual simulator
and can simulate and entire air defence battery with
specific air defence operator terminals implemented. The
DLL allowed VGD access to live air picture data and
operators could then use VGD to exercise and evaluate
tactical doctrine on live targets. This is an example of the
framework being used to create a bridge between an
existing system (in this case VGD) and live systems
(representing the C2 Enterprise).

6 Conclusion

It is assumed that software will be the glue between C2
Enterprise systems. The complexity of interoperability
and deployment of C2 systems is however easily
underestimated. This makes specifying the software
requirements difficult and implementing and maintaining
the software becomes very cumbersome. The
requirements are sometimes unclear and frequently
change as new systems are introduced. The complexity
of the enterprise also makes it impractical to deploy all
the systems during field exercises.

The key to enhancing the quality of C2 software solutions
is using a software application framework specifically

designed with quality and rapid development in mind.
The framework should also support multiple teams
working on different applications. This paper discusses
such a framework and gives its design and the current
applications of it as proof of its success.

The code-base has not undergone the rigorous testing and
validation required to qualify it for use in operational
systems. For now it remains part of the support capability
provided by the CSIR. The performance and scalability
of the framework also still need to be formally analysed
and documented.

It is worthwhile mentioning that the use of the framework
in no way negates the use of HLA. The framework can
be applied to enhance the capability and quality of
federates and could very well be extended to be a federate
development framework. This is discussed in the next
section.

7 Future Work

The M&S and interoperability capabilities of the
framework will need to be extended as the research
continues and the C2 Enterprise grows. The framework
development efforts are currently focused on extending
the interoperability layer as well as packaging the
framework for use in existing systems and simulators. To
this end, it might be usefull looking into a plugin
architecture for links and coders that allow dynamic
addition of coders and links during runtime, without
having to recompile the code.

Figure 1 shows two layers of the framework that are not
currently implemented, but will be required for future
applications of the framework:

• A model optimisation layer that assists in determining
optimal model configurations.

• A communications effects layer that enables accurate
simulation of communications equipment and links.

The framework can possibly be extended to be a HLA
federate development framework. It is possible to create
an interoperability link component for the framework that
supports HLA and the framework already supports
modelling and simulation. The framework also has the
potential to parallelize the federate’s internal elements by
calling backbone objects concurrently.

Essentially all the components of the framework except
the application specific models and services that contain
sensitive information can be made an open source project.
Making the framework open could advance the

framework’s development as well as increase the number
of applications created with it.

Acknowledgements

The authors would like to thank both the Armaments
Corporation (Armscor) of South-Africa and the Council
for Scientific and Industrial Research (CSIR) of South-
Africa for supporting this research.

References

[1] W.H. le Roux: “Implementing a Low Cost
Distributed Architecture for Real-Time
Behavioural Modelling and Simulation” 2006
European Simulation Interoperability Workshop,
Stockholm, Sweden, June 2006.

[2] S. Naidoo and J.J. Nel: “Modelling and Simulation
of a Ground Based Air Defence System and
Associated Tactical Doctrine as Part of Acquisition
Support” 2006 Fall Simulation Interoperability
Workshop, Orlando, Florida, September 2006.

[3] B. Duvenhage and W.H. le Roux: “A Peer-to-Peer
Simulation Architecture” 2007 High Performance
Computing and Simulation Conference, Prague,
June 2007.

[4] B. Duvenhage and D.G. Kourie: “Migrating to
Real-time Distributed Parallel Simulator
Architecture” 2007 Summer Computer Simulation
Conference, San Diego, California, July 2007.

[5] A. Duvenhage and W.H. le Roux: “A State
Estimation Approach for Live Aircraft
Engagement in a C2 Simulation Environment”
2007 Fall Simulation Interoperability Workshop,
Orlando, Florida, September 2007.

[6] B. Duvenhage and J.J. Nel: “The Contribution of
Static and Dynamic Load Balancing in A Real-
Time Distributed Air Defence Simulation”
SimTecT 2008 Conference, Melbourne, Australia,
May 2008.

[7] A. Duvenhage and B. Duvenhage: “An Alternative
to Dead Reckoning for Model State Quantisation
when Migrating to a Quantised Discrete Event
Architecture” 2008 European Conference on
Modelling and Simulation, Nicosia, Cyprus, July
2008.

[8] B. Duvenhage and Derrick G. Kourie: “Migrating
to Real-time Distributed Parallel Simulator
Architecture” Masters Thesis in Computer Science,
University of Pretoria, South Africa, 2008.

[9] A. Duvenhage and L.Terblance: “The Evolution of
a C2 Protocol Gateway” 2008 European
Simulation Interoperability Workshop, Edinburgh,
Scotland, July 2008.

ARNO DUVENHAGE is a Researcher for the Council
for Scientific and Industrial Research (CSIR), South
Africa. He joined the CSIR’s Mathematical and
Computational Modelling Research Group in January
2005 as a Software Engineer. Arno’s current work
involves modelling and simulation for decision support,
focusing on joint operations, specializing in distributed
and networked systems. Arno has a BEng Degree in
Computer Engineering from the University of Pretoria,
South Africa, and is currently busy with a Masters in
Software Engineering.

DERRICK KOURIE joined the Computer Science
Department at Pretoria University as a senior lecturer in
1978. As co-director of the Fastar/Espresso Research
Group, he supervises various MSc and PhD projects. As
staff member, he has various teaching responsibilities and
co-ordinates graduate admissions. His experience includes
a 20 year spell as editor of the South African Computer
Journal, service on various academic and professional
committees, engagement in peer-reviewing activities, and
industry consultation.

GERHARD HANCKE joined the University of Pretoria
in 1976, where he is a Professor and Coordinator of the
Computer Engineering Program in the Department of
Electrical, Electronic and Computer Engineering, as well
as Head of the Research Group on Distributed Sensor
Networks. He is a member of the Editorial Board of the
Elsevier "Ad Hoc Networks" journal and has wide-ranging
experience in organizing major international conferences.
He is a Professional Engineer and held offices in various
national and international scientific and professional
bodies.

	1 Introduction
	2 Background
	3 Framework Requirements
	3.1 Interoperability with C2 Systems
	3.2 Virtualisation of C2 equipment using M&S
	3.3 Good Code Quality

	4 Framework Design
	4.1 The Backbone Layer

	
	4.2 The Infrastructure Layer
	4.3 The Interoperability Layer
	4.4 The Simulation and Application Layers

	5 Framework Implementation and Applications
	5.1 Testing the Gap-filling Capability of Short Range Radars
	5.2 C2 Protocol Gateway and Router
	5.3 C2 Protocol Gateway for an Existing Simulator

	6 Conclusion
	7 Future Work
	Acknowledgements
	References

