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ABSTRACT:  Modelling and simulation can be applied to support Joint Command and Control which involves the  
interoperability of network-centric systems as well as legacy command and control systems.  It is assumed that software  
will always be the glue between these systems and that a capability is required to demonstrate, support and evaluate  
interoperability.  This paper discusses the layered software architecture of a C++ software application framework for  
developing  applications  that  support  the  Command  and  Control  Enterprise.   The  framework  provides  for  both  
interoperability and modelling and simulation – the modelling and simulation features of the framework can provide  
for key interoperability support capabilities that would otherwise not exist.  Applications that have been built using the  
framework are also described.

1 Introduction

This  article  deals  with  a  Joint  Command  and  Control 
(JC2) context that relies on the interoperation of various 
military systems as well as civilian systems.  There are 
potential  advantages  in  leveraging  the  power  of 
Modelling and Simulation (M&S) in such J2C contexts 
that  involve  Joint  Operations  across  the  whole  of  the 
defence force as well as other services.

It  is  assumed  that  the  different  command  and  control 
systems  (legacy  and  net-centric)  involved  in  joint 
operations will act  as loosely coupled services  within a 
bigger enterprise.   This  C2 Enterprise consists of many 
systems that were not designed to work as services and 
that  do  not  all  support  the  common  communications 
protocols.  A layered, distributed architecture framework 
is  presented  that  provides  M&S  and  interoperability 
capabilities within the C2 Enterprise.  

The proposed simulation application framework makes it 
possible  to  support  the  C2  Enterprise  in  the  following 
ways:

• The inherent M&S capability within the framework 
makes it possible to create applications and tools that 
can  deploy  virtual  systems  and  equipment.  The 
virtual  systems  and  equipment  are  deployed  to 
interact  with the C2 Enterprise  systems  as  the real 
systems would. This fools the enterprise into thinking 
all  systems  are  available,  even  though  specific 
systems could not be deployed.

• Applications  and  tools  created  with  the  framework 
are  ideally  equipped  with  the  right  components  to 
interoperate with external systems and simulators.

• The  framework  can  be  used  to  create  software 
bridges,  adapters  or  gateways  for  existing systems 
that  have  to  be  part  of  the  enterprise,  but  do  not 
necessarily  support  the  correct  protocols  or 
interfaces.

The  framework  design  builds  on  past  experience  with 
using  modelling  and  simulation  for  decision  support 
within  the  military  environment.   The  framework 
represents the next step in the modelling and simulation 
capability  that  has  become  heavily  focused  on  the 
ongoing  JC2  work for  Joint  Operations.   This 
environment also requires rapid application development 
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to  quickly  evaluate  possible  software  solutions  for 
interoperability problems with ad-hoc user requirements.

The  paper  briefly  discusses  the  background  to  the 
framework and how it evolved, followed by two sections 
that  detail  the  requirements  for  the  framework 
architecture and discuss the framework design. The paper 
then  gives  a  brief  overview  of  the  framework 
implementation  and  the  applications  built  with  the 
framework up to now. The paper ends with a conclusion 
and a discussion on possible future work. The future work 
includes  applying the framework  in other  environments 
where  virtualisation  and  interoperability  can  be  useful. 
The  focus  in  this  paper  is  on  the  software  framework 
architecture  and  not  on  the  principles,  practises  or 
formalisms of M&S.

2 Background

The  Council  for  Scientific  and  Industrial  Research 
(CSIR),  South  Africa,  has  been  providing  an  M&S 
service to the local defence force and industry for more 
than a decade. The M&S capability (developed in-house) 
was initially referred to as the Virtual Ground Based Air  
Defence  Demonstrator (VGD) and was primarily applied 
in  the  air  defence  environment.   The  capability  has 
however been steadily upgraded during the past few years 
in support  of joint operations.   The increasing focus on 
joint operations and interoperability is also clear from the 
literature on VGD:

• The  design  and  application  of  an  early  version  of 
VGD  is  discussed  in  Implementing  a  Low  Cost  
Distributed Architecture for Real-Time Behavioural  
Modelling and Simulation (Euro SIW 2006) .

• Using  VGD  for  decision  support  is  discussed  in 
Modelling  and  Simulation  of  a  Ground  Based  Air  
Defence System and Associated Tactical Doctrine as  
Part of Acquisition Support (Fall SIW 2006) .

• The design of VGD is again discussed in A Peer-to-
Peer Simulation Architecture (HPC&S 2007) .

• Migrating  to  Real-Time  Distributed  Parallel  
Simulator  Architecture (SCSC  2007)   proposes  an 
update to the VGD architecture to transform it from a 
discrete  time  based  to  a  Quantised  Discrete  Event 
(QDEV) based simulation.

• A  State  Estimation  Approach  for  Live  Aircraft  
Engagement  in  a  C2 Simulation Environment (Fall 
SIW 2007)  review a method used to inject real-time 
sensor data into VGD.

• The  Contribution  of  Static  and  Dynamic  Load  
Balancing  in  a  Real-Time Distributed  Air  Defence  
Simulation (SimTecT 2008)   proposes an update to 
VGD that will automatically balance the load when 
distributing complex scenarios.

• An Alternative to Dead Reckoning for Model  State  
Quantisation  when  Migrating  to  a  Quantised  
Discrete  Event  Architecture (ECMS  2008)   
investigates  the  use  of  alternative  algorithms  for 
converting  model  interaction  from  discrete  time 
based to QDEV architecture.

• The Evolution of a C2 Protocol Gateway (Euro SIW 
2008)   discusses  the  interoperability  capability 
developed in parallel with VGD.

The current software framework is the result of a need for 
rapid application development and is a culmination of the 
original M&S capability and the more recent C2 protocol 
gateway and interoperability work.  The framework has a 
layered  architecture  consisting  of  three  main  layers  as 
well as additional application specific layers:  a publish-
subscribe-type  Inter  Process  Communications  (IPC) 
backbone  layer;  a  Quantised  Discrete  Event  (QDEV) 
infrastructure  layer,  and;  an interoperability  layer.   The 
framework  architecture  is  described  in  more  detail  in 
Section  4 of  this  paper.  The next  section  discusses  the 
requirements for the framework.

3 Framework Requirements

The framework  requirements  can  be  divided  into  three 
main  points:  interoperability  with  C2  systems; 
virtualisation  of  C2  equipment  using  M&S,  and;  good 
code quality (i.e.  scalability,  usability,  extendibility and 
other such metrics)

The  framework  requirements  listed  in  this  section  are 
based  on  experience  gained  with  the  ongoing  M&S 
research as well  as an extensive literature review.   The 
requirements were also checked against a UML Use Case 
diagram for the framework.

3.1 Interoperability with C2 Systems

To  function  within  the  C2  enterprise  the  framework 
should enable the following:

• interoperability  with  legacy  and  net-centric  C2 
systems and simulators,

• protocol  translation  when  communicating  with  real 
systems and other simulations,

• object  attribute  translation  when  translating  to  and 
from external data representations,

• generic and extendable internal object data model,
• protocol  bridging  (acting  as  an adaptor  or  gateway 

for systems that do not support the correct protocol or 
interface), and

• dynamic  addition  and  removal  of  nodes  when 
running distributed.



3.2 Virtualisation of C2 equipment using M&S

Applications  and  tools  created  with  the  framework  can 
support  the  C2  enterprise  by deploying  virtual  systems 
when  the  real  systems  cannot  be  deployed.   This 
introduces the following requirements:

• dynamic addition and removal of simulation objects 
like services and models,

• operator  in  the  loop  (OIL)  support  (with  seamless 
switching between constructive and virtual modes),

• running in real-time and the ability to catch up if the 
simulation was slowed down temporarily (soft real-
time),

• running in  reverse,  running  as  fast  as  possible  and 
pausing execution,

• the ability to jump in time, and
• a configurable frame rate.

It  should  be  possible  to  distribute  the  execution  over 
multiple  nodes  for  increased  performance.   Parallel 
execution (distribution over multiple CPU/Cores on one 
node) should also be considered – to utilise the power of 
multi-core nodes.

3.3 Good Code Quality

The  framework  is  intended  for  rapid  development  of 
technology  demonstrators  and  prototyping  of  software. 
More often than not the applications are also subject to 
ad-hoc changes in user requirements.  The quality of the 
framework code base will ultimately determine how the 
framework  is  used.  The  framework  code  base  should 
adhere to the following:

• use of Standard Template Library (STL),
• use of 3rd party components,
• object-oriented design,
• memory usage tracking,
• built-in profiling,
• real-time execution,
• fault-tolerance,
• long up times,
• usability,
• maintainability,
• extensibility,
• reliability, and
• portability.

The framework should additionally support  XML based 
scenario  loading  and  saving.  It  should  also  support 

logging  and  off-line  review  (debriefing)  of  scenario 
execution. 

Ultimately  the  framework  should  make  it  easy  for 
application developers to create good quality applications 
and tools that support the C2 Enterprise.

4 Framework Design

A  layered  architecture  was  proposed  in  order  to  meet 
various  aspects  of  the  requirements  outlined  in  the 
previous section.  The framework architecture is divided 
into five layers shown in  Figure 1.  The five layers are: 
the  backbone layer;  the  infrastructure layer;  the 
interoperability layer;  the  simulation layer,  and;  the 
application layer.  The shaded layers are not part of the 
framework yet, but will be required for future applications 
of the framework and will be discussed briefly in Section 
7 of this paper. 

Using  a  layered  architecture  has  the  following 
advantages:

• The  framework  is  more  usable  in  the  sense  that 
changes  in  one  layer  don't  affect  other  layers  as 
much.  Each layer is a different C++ project that can 
be compiled and modified without affecting the other 
layers.

• Applications have a reduced development time since 
application  development  involves  extending  and 
using  existing  components  rather  than  creating 
everything from scratch.

• Applications  have  a  reduced  build  time  since  you 
only have to compile the layers that have changed.

• It supports multiple teams working on the same code 
base since different teams would normally focus on 
different  layers  of  the  framework.   This  allows 
different  teams  of  developers  to  develop  multiple 
independent simulations concurrently using the same 
framework code base.

The layers of the framework can be mapped onto specific 
layers  of  the  OSI  model  (Figure  1)  to  get  some 
perspective on the functionality of each layer – from the 
application developer’s point of view.

4.1 The Backbone Layer

The  backbone  layer  contains  the  inter  process 
communication  (IPC),  memory  management  and 
networking components.  This layer supports distributed 
and parallel execution of processes.   The backbone layer 
components are grouped according to their function: core 
components, common components, network interfaces and 
backbone components.



Core Components
The backbone layer  contains  an object  factory that  can 
uniquely  identify  and  inherently  construct  any  object 
within the object hierarchy.  Abstract and concrete class 
types  can  be  added  into  the  object  hierarchy  and  any 
object  in  the  hierarchy  is  automatically  added  to  the 
factory.   The  factory enables  automatic  construction of 
objects based on type.

An  object  can  be  added  to  the  object  hierarchy  by 
inheriting  from  a  specific  interface  and  including  the 

relevant class members.  Objects can be identified within 
the  hierarchy  in  two  ways:  based  on  the  object's  class 
name (string value), and based on the hash value of the 
class name for faster lookups.

Operations to check the type of object pointers as well as 
perform safe casting  are available in the backbone. The 
object type information also indicates parent type which 
allows an object to be identified based on the object's type 
as  well  as  the  type  of  any  one  of  the  object's  parents 
within the object hierarchy.

Figure 1: VGD Layers

The core components include a custom memory manager 
that helps track down memory leaks.  All objects in the 
backbone object hierarchy inherit from a base class that 

have the memory operators  overloaded  to store the file 
and  line  number  of  the  allocation  and  to  register  the 
allocation.  It is then possible to at any point examine the 



registered  memory  allocations.   Doing  this  when  the 
applications exits provides the location in the source code 
of  memory  allocations  that  were  never  de-allocated 
(memory leaks).  It is possible to add additional features 
like memory buffer overwrite and underwrite protection 
to the overloaded memory operators.

The core components also include:

• error and exception handling classes,
• a custom pseudo random number generator,
• a high performance timer,
• a customizable output class (console output, logging, 

etc), and
• operating system abstractions that support portability.

Common Components
The  backbone  layer  contains  the  following  common 
components:

• advanced containers like bidirectional maps and 
indexed maps,

• utilities for performing string hashing, etc.,
• multi-threading base class and process control,
• utilities for retrieving raw and formatted time of day, 

date, etc.,
• a time manager capable of translating  between 

simulation time and the time external systems and 
simulations are running at,

• generic IPC components that enable state 
quantisation and integration (makes QDEV 
simulation possible).

Network
The  networking  components  are split  into  two  main 
component types:

• Network  interfaces:  The  network  interface 
components do the low-level reading and writing of 
binary data from various interfaces like files, network 
transport interfaces and even hardware interfaces like 
RS232.  The network interface classes all present the 
exact  same  interface,  providing  a  unified  way  of 
accessing binary streams.

• Network coders: A coder object is a wrapper for an 
interface object and is responsible for translating or 
formatting  higher-lever  application  data.   Unlike 
network interface classes,  network coder classes do 
not present the same interfaces,  since the interfaces 
are application specific.  Any network interface can 
however be used by any network coder.  

The interoperability layer  uses extended network coders 
referred  to  as  protocol  coders  that  translate  the  various 
data formats and protocols used by the different external 
systems  and  simulations.  The  interface-coder-concept 
allows  any  available  interface  to  be  used  with  any 
protocol  coder.   This  adds  to  the  flexibility  of  the 
interoperability capability of the framework.

Backbone Node
The  IPC  is  based  on  a  publish-subscribe-type  message 
passing scheme among backbone objects.  The backbone 
node components  represent  the  bulk  of  the  IPC 
functionality within the backbone.  Data flows from one 
backbone object to another in the form of issues, where an 
issue encapsulates an event or list of events.  What issues 
a backbone object can publish and where the issues go are 
determined by the  titles a backbone object registers and 
the subscriptions  other  backbone objects  make to  these 
titles.

Issues are also inherently generated by the backbone layer 
for each object in the following cases:

• The  backbone generates  a  title  issue whenever  an 
object registers or deletes a title.  The issue is then 
broadcast to all objects on all nodes.

• The  backbone generates  a  subscription  issue 
whenever an object registers or deletes a subscription 
to a title. The issue is then broadcast to all objects on 
all  nodes.  Any  object  that  has  the  relevant  title 
registered will  then process  the subscription to that 
title.

• The  backbone generates  a  subscription  issue in 
response to the delivery of a title issue if the recipient 
of  the  title  issue has  a  subscription to  the relevant 
title.  The subscription issue is then sent to the object 
that originated the title issue.

This passing of issues allows backbone objects to register 
and delete titles and to add and remove subscriptions to 
other  titles  in  an  ad-hoc  fashion  during  runtime: 
registering a title will trigger a subscription issue from all 
objects  that  have  a  interest  in  the  title;  making  a 
subscription  will  create  a  subscription  issue that  is 
processed  by all  the objects  that  have  the relevant  title 
registered.

An object can publish any type of information in the form 
of  issues.   Issues  contain objects  which are also called 
titles.  Titles  are  also  part  of  the  core  object  hierarchy. 
The basic title interface contains methods for streaming 
and de-streaming the title attributes to and from a binary 
stream.  This means that title objects can be automatically 
created by the core object factory as well as be converted 
to and from binary when transmitted from one node to 
another.  This makes it very easy to support any number 



of  title  types  without  having  to  modify  the  backbone 
layer.

Title  subscriptions deliver  all  the data published on the 
title (i.e. a subscribing object will receive everything the 
relevant publishing object publishes).  This is the default 
subscription type: objects can also subscribe to only have 
access  to  the  last  issue  from  each  publisher.  More 
subscription  types  can  also  be  implemented.   The 
common components  in  the  backbone  that  enable  state 
quantization and integration (mentioned earlier) can then 
be  used  by  an  object  to  decrease  the  amount  of 
information that is required to flow over the backbone.

The backbone runs at a fixed frame rate which determines 
the simulation time step size.  Each backbone object has a 
very simple interface that is called by the backbone at a 
pre-configured  trigger-frame  (i.e.  at  every  n'th  frame 
where  n is  the  trigger-frame).   The  backbone  calls  an 
object to give it time to update itself and read and publish 
issues.

The backbone layer uses a separate component, called a 
hub, to transfer issues from one node to another.  The hub 
manages the inter process communication (IPC) without 
affecting  the  rest  of  the  backbone  layer.   The  hub 
interface  is  part  of  the  backbone  layer,  but  the  hub 
implementations are part  of  the infrastructure  layer  and 
will be discussed in more detail in the next section.

The  backbone  executes  each  simulation  frame  in  five 
steps using conservative (or lock-step) time management:

1. The backbone reads all  the issues  published in the 
previous frame.

2. The backbone then delivers the issues to the correct 
backbone objects.   The backbone keeps on reading 
and delivering issues until all nodes are finished with 
the previous frame.

3. The backbone then calls all the backbone objects that 
have a trigger frame matching the current frame.  The 
backbone objects update themselves and get a chance 
to publish any new issues.  New published issues are 
temporarily stored in the backbone.

4. The backbone then sends out all the new published 
issues to the other nodes.

5. The backbone then indicates to other nodes that it is 
finished with its current  frame and continues to the 
next frame.

The reading of issues and sending out of issues as well as 
the distribution of the issues among different  nodes are 
handled by the backbone hub.  The node also uses the hub 
interface to signal the end of its current frame.  The hub 
interface  will  be  discussed  in  more  detail  in  the  next 
section.

Backbone  objects  always  publish  issues  for  the  next 
frame and the backbone only sends out those issues once 
all the objects have been called.  This can be seen as a 
form of double buffering since objects only have access to 
new issues  in  the next  frame.   This  situation is  ideally 
suited to parallelisation and the backbone can safely call 
objects concurrently within a frame.  Concurrently calling 
backbone objects makes sense when objects become very 
resource  intensive.   This  will  allow  the  framework  to 
better utilise the potential of multi-processor systems or 
multi-core CPUs.

4.2 The Infrastructure Layer

The  infrastructure  layer  extends  the  generic  IPC 
capability  of  the  backbone  layer  for  modelling  and 
simulation of spatial, time-based objects.  This layer also 
includes  components  to  help  debug  and  measure  the 
performance  of  simulation  objects.   The  infrastructure 
layer components are grouped according to their function: 
hub components,  datamodel components,  common 
components,  terrain components,  Simulation  Object 
Model  (SOM),  Simulation  Reference  Model  (SRM), 
bootloader components, the node control service, Object 
Performance  Measures  (OPM)  and  some  basic  title 
objects.

Backbone Hub Components
The backbone uses a separate component, called a hub, to 
transfer  issues  from  one  node  to  another.   The  hub 
implementations are found in the infrastructure layer and 
not in the backbone layer since it was desirable to be able 
to configure the hub with the boatloader using the XML 
scenario.

The hub specifies the type of inter process communication 
(IPC)  used.   This  makes  it  possible  to  change  the 
backbone  infrastructure  from  a  distributed  peer-to-peer 
TCP scheme  to  a  parallel  memory-mapped  scheme  (or 
any other scheme), by only replacing the hub.  The hub is 
in  charge  of  doing  any  relevant  optimisation  or 
configuration of the transport medium.

The  hub  controls  the  inter-node  communication, 
synchronisation,  node  addressing  and  inter-node 
connection brokering.  It also controls which objects can 
be  loaded  onto  which  nodes.   This  gives  the  hub  full 
control over how a scenario is distributed among multiple 
nodes (for load balancing, etc).  The hub interface allows 
the backbone node to read and deliver issues published in 
the  previous  frame,  synchronise  with  other  nodes  and 
send out new published issues.



Data Model, Common Components and Terrain
The infrastructure layer contains components for defining 
the  internal  data  model  of  the  software  as  well  as 
components for defining multiple external data models to 
represent data from external systems.  The infrastructure 
also contains components that can then translate between 
the external and internal data models.  Improving the data 
model  representation  and  translation  is  actively  being 
pursued.

The infrastructure layer  contains the following common 
components:

• a set of constants used for coordinate conversions, 
unit conversions, geodetic systems, etc., and

• an xml parser that parses xml files as a set of objects.

The infrastructure layer contains the following terrain
components:

• terrain loading components,
• terrain-based line of sight (LOS) calculation 

components.

The terrain components are designed to be easily 
extendable to support different terrain formats.  The 
terrain is loaded as a set of terrain tiles.  The terrain and 
the relevant tiles can be specified in the scenario file.

Simulation Object Model
Simulation Object Model (SOM) components extend the 
backbone  components:  the  backbone  object  and  basic 
object titles are extended for modelling and simulation of 
spatial, time-based phenomena; the backbone objects are 
extended to allow loading and saving object attributes to 
and from XML.

Simulation Reference Model
The  Simulation  Reference  Model  (SRM)  contains  the 
coordinate  representation  classes  for  Meridian  and 
Cartesian coordinates and vectors as well as orientation. 
The SRM also contains coordinate conversion classes for 
converting from one coordinate system to another.  The 
SRM  currently  supports  the  Earth-Centred-Earth-Fixed 
(ECEF)  and  the  North  East  Down  (NED)  coordinate 
systems.

Bootloader Components
The bootloader  components  perform the  XML scenario 
loading and saving.  The boatloader introduces an object 
interface that enables object attribute loading and saving 
in a XML format.  

Any object that is in the backbone’s object hierarchy and 
inherits  from the  XML interface  can  be  loaded  by the 
boatloader.  The boatloader identifies and creates objects 
from the object hierarchy based on the object type name. 
This means that the XML scenario element names should 
correspond  to  the  relevant  object  class  and  namespace 
names as defined in the backbone object hierarchy.  The 
boatloader  XML  object  interface  adds  methods  to  the 
object that enable it to read and write XML.  Each object 
is  in  charge  of  loading  and  saving  its  own  attributes. 
This, along with the use of the backbone object factory, 
allows the boatloader to support an arbitrary number of 
objects.

Node Control Service
The Node Control service is a backbone object extended 
to handle the backbone execution and time management. 
It tries to keep the backbone executing in real-time when 
appropriate and will try to catch up if the execution was 
temporarily  delayed  or  slowed.   It  also  does  the 
synchronisation  of  events  like  pausing  and  stopping 
between different nodes.

The node control service provides an interface that can be 
used  by  the  application  layer  to  control  the  simulation 
execution and has to be present on each node.

Object Performance Measures
The  performance  of  the  backbone  and  speedup  during 
distribution  needs  to  be  measured  and  analysed.   This 
helps to optimise the application.  The infrastructure layer 
has some profiling built in to help measure the following:

• the  overall  application  load,  which  provides  an 
indication of how well the application in running in 
general,

• the object  execution times, which allows per object 
optimisation if required,

• the  backbone  overhead  (as  a  percentage  of  frame 
time), which shows how much of the time is spent on 
modelling and how much on overheads like reading 
and writing issues (the overhead is an indication of 
the amount of issues transported over the backbone 
and  gives  an  indication  of  how  successfully  the 
application could be distributed),

• the hub bandwidth usage (throughput and overhead), 
which  gives  an  indication  of  the  utilisation  of  the 
underlying  transport  medium  when  running 
distributed, and

• the ratio of titles sent to local objects vs. titles sent to 
objects on other nodes, which indicates how well the 
objects  are  distributed  among  the  different  nodes 
(objects  that  interact  closely,  exchanging  a  lot  of 
data, should typically be located on the same node to 
minimize intra-node bandwidth usage).



4.3 The Interoperability Layer

The interoperability layer adds the protocol coders, links 
and  services  required  to  inter-operate  with  external 
command  and  control  systems  and  simulators.   The 
interoperability layer consists of the following:

• the protocol coder components,
• common interoperability services,
• the link objects for the protocol coders, and
• the titles specific to the interoperability services and 

links.

The  protocol  coder components  are  extended  network 
coder  components  (discussed  earlier).   Communicating 
with external  systems and simulations involves creating 
one  or  more  network  coders  which  are  responsible  for 
translating  between  the  external  system  and  the 
application.  These protocol coders operate on the syntax 
or structure  of the foreign data and only map one data 
format onto another without understanding the data (i.e. 
on a syntax level and not on a semantic level).

The protocol coders are not backbone objects and need to 
be wrapped inside extended backbone objects, called Link 
objects  that  can  be  loaded  from  the  scenario  file  and 
called by the backbone.  The link objects also have the 
ability  to  synchronise  with  the  external  systems  and 
buffer incoming data when real-time execution cannot be 
maintained.

There  is  also  a  gateway  service,  which  is  a  backbone 
object, extended to act as a router for the  titles from the 
different links.  The gateway service can route data to and 
from  other  backbone  objects  and  can  even  filter  and 
modify the titles if required.

4.4 The Simulation and Application Layers

The simulation layer allows developers to create unique 
simulations  or  tools  by  adding  the  required  models, 
services,  etc.   This  includes  2D/3D  displays,  operator 
interaction, logging, etc.

The application layer  can be anything from a Graphical 
User Interface to a console box.  This layer is responsible 
for the user interaction with the relevant application.  The 
user  interaction  normally  involves  objects  from  the 
simulation layer as well as from the application layer.

A typical rapid application development code base would 
consist of many different simulation and application layer 
implantations that could be reused, extended or modified 
to  quickly  create  new  technology  prototypes  or 
demonstrator applications.

5 Framework Implementation and 
Applications

The entire framework design, as discussed in the previous 
section,  is  currently  implemented  using  C++  for  the 
Microsoft  Windows  platform.   Porting  to  Linux  is  not 
actively  pursued  at  this  stage,  but  the  design  and 
implementation do support it.  

Real-time performance is desired, but in most cases this is 
actually  soft  real-time since  the  operating  system itself 
does not support hard real-time applications.  There are 
however some cases where interoperability with existing 
systems  that  have  very  strict  timing  requirements  is 
required.   In  these  cases  satisfactory  results  have  been 
obtained by putting the time critical  components of the 
relevant protocol coders in separate high priority threads 
and  managing  the  inter-thread  communication  (locking, 
etc.) very carefully.

The  bulk  of  the  backbone,  infrastructure and 
interoperability  layer  implementation were done by one 
of the authors of this paper (Arno Duvenhage) as part of 
his  Masters  studies  in  Software  Engineering.   The 
following should give an indication of the complexity of 
each layer:

• Backbone:  80 classes, 8100 lines of code
• Infrastructure: 70 classes, 7970 lines of code
• Interoperability: 40 classes, 7050 lines of code

Some  interoperability  links  as  well  as  the  framework 
applications,  discussed  next,  involved  other  software 
developers  from the  CSIR.   Multiple  applications  have 
already been built  with the framework.   Three of these 
applications are discussed in the next section.

5.1 Testing the Gap-filling Capability of Short Range 
Radars

During a specific  training exercise,  aircraft  transponder 
data  as  well  as  real  track  data  from a  Local  Warning 
Radar (LWR) were available.  Because of the positioning 
of an LWR or the terrain profile, there might be gaps in 
its  coverage.   The  gaps  can  normally  be  filled  by 
deploying  short  range  radars  at  specific  points  on  the 
terrain.

To test this, a model of a short range radar was deployed 
using  an  application  created  with the  framework.   The 
model was run on the live transponder data.  The tracks 
generated by the model as well as tracks generated by the 
real LWR were then used to generate an air picture for a 
virtual air defence battery simulated in VGD.  By doing 
this it was possible to determine the usefulness of short 



range  gap-filling radars  as  well  as  optimal  positioning. 
This is an example of deploying virtual equipment within 
the C2 Enterprise.  

5.2 C2 Protocol Gateway and Router

The framework was used to build a gateway application 
that can act as a message router for various systems and 
simulators.   The  C2  Enterprise  can  consist  of  many 
systems and simulators that cannot on their own connect 
to  other  systems  in  the  enterprise.   The  gateway 
implements  all  the  links  required  to  connect  to  the 
relevant  systems  and  exchange  information  with  these 
systems.  The gateway also translates the information to 
and  from  an  internal  representation.   This  allows  the 
gateway to root information between systems, acting as a 
C2 hub.

An  example  would  be  the  LWR  (mentioned  in  the 
previous example) that cannot interface with a specific air 
picture display system.  Using the gateway application it 
was possible to transfer LWR tracks as plots onto the air 
picture  display system in  real  time.   This  gateway has 
been  used  successfully  at  several  defence  force  field 
exercises.

5.3 C2 Protocol Gateway for an Existing Simulator

The  gateway  application  (discussed  in  the  previous 
section) was wrapped in a Dynamically Linked Library 
(DLL) and loaded by VGD.  VGD is a virtual simulator 
and  can  simulate  and  entire  air  defence  battery  with 
specific air defence operator terminals implemented.  The 
DLL  allowed  VGD access  to  live  air  picture  data  and 
operators could then use VGD to exercise and evaluate 
tactical doctrine on live targets.  This is an example of the 
framework  being  used  to  create  a  bridge  between  an 
existing  system  (in  this  case  VGD)  and  live  systems 
(representing the C2 Enterprise).

6 Conclusion

It is assumed that software will be the glue between C2 
Enterprise  systems.   The  complexity  of  interoperability 
and  deployment  of  C2  systems  is  however  easily 
underestimated.   This  makes  specifying  the  software 
requirements difficult and implementing and maintaining 
the  software  becomes  very  cumbersome.   The 
requirements  are  sometimes  unclear  and  frequently 
change as new systems are introduced.  The complexity 
of the enterprise also makes it  impractical  to deploy all 
the systems during field exercises.

The key to enhancing the quality of C2 software solutions 
is  using  a  software  application  framework  specifically 

designed  with  quality  and  rapid  development  in  mind. 
The  framework  should  also  support  multiple  teams 
working on different  applications.  This paper discusses 
such a framework  and gives  its  design  and the current 
applications of it as proof of its success.

The code-base has not undergone the rigorous testing and 
validation  required  to  qualify  it  for  use  in  operational 
systems.  For now it remains part of the support capability 
provided by the CSIR.  The performance and scalability 
of the framework also still need to be formally analysed 
and documented.

It is worthwhile mentioning that the use of the framework 
in no way negates the use of HLA.  The framework can 
be  applied  to  enhance  the  capability  and  quality  of 
federates and could very well be extended to be a federate 
development  framework.   This  is  discussed in the next 
section.

7 Future Work

The  M&S  and  interoperability  capabilities  of  the 
framework  will  need  to  be  extended  as  the  research 
continues and the C2 Enterprise grows.  The framework 
development  efforts  are  currently  focused  on extending 
the  interoperability  layer  as  well  as  packaging  the 
framework for use in existing systems and simulators.  To 
this  end,  it  might  be  usefull  looking  into  a  plugin 
architecture  for  links  and  coders  that  allow  dynamic 
addition  of  coders  and  links  during  runtime,  without 
having to recompile the code.

Figure 1 shows two layers of the framework that are not 
currently  implemented,  but  will  be  required  for  future 
applications of the framework:

• A model optimisation layer that assists in determining 
optimal model configurations.

• A communications effects layer that enables accurate 
simulation of communications equipment and links.

The framework  can possibly be extended to be a HLA 
federate development framework.  It is possible to create 
an interoperability link component for the framework that 
supports  HLA  and  the  framework  already  supports 
modelling and simulation.  The framework also has the 
potential to parallelize the federate’s internal elements by 
calling backbone objects concurrently.

Essentially all the components of the framework except 
the application specific models and services that contain 
sensitive information can be made an open source project. 
Making  the  framework  open  could  advance  the 



framework’s development as well as increase the number 
of applications created with it.

Acknowledgements

The  authors  would  like  to  thank  both  the  Armaments 
Corporation (Armscor) of South-Africa and the Council 
for Scientific and Industrial  Research  (CSIR) of South-
Africa for supporting this research.

References

[1] W.H. le Roux: “Implementing a Low Cost 
Distributed Architecture for Real-Time 
Behavioural Modelling and Simulation” 2006 
European Simulation Interoperability Workshop, 
Stockholm, Sweden, June 2006.

[2] S. Naidoo and J.J. Nel: “Modelling and Simulation 
of a Ground Based Air Defence System and 
Associated Tactical Doctrine as Part of Acquisition 
Support” 2006 Fall Simulation Interoperability 
Workshop, Orlando, Florida, September 2006.

[3] B. Duvenhage and W.H. le Roux: “A Peer-to-Peer 
Simulation Architecture” 2007 High Performance 
Computing and Simulation Conference, Prague, 
June 2007.

[4] B. Duvenhage and D.G. Kourie: “Migrating to 
Real-time Distributed Parallel Simulator 
Architecture” 2007 Summer Computer Simulation 
Conference, San Diego, California, July 2007.

[5] A. Duvenhage and W.H. le Roux: “A State 
Estimation Approach for Live Aircraft 
Engagement in a C2 Simulation Environment” 
2007 Fall Simulation Interoperability Workshop, 
Orlando, Florida, September 2007.

[6] B. Duvenhage and J.J. Nel: “The Contribution of 
Static and Dynamic Load Balancing in A Real-
Time Distributed Air Defence Simulation” 
SimTecT  2008 Conference, Melbourne, Australia, 
May 2008.

[7] A. Duvenhage and B. Duvenhage: “An Alternative 
to Dead Reckoning for Model State Quantisation 
when Migrating to a Quantised Discrete Event 
Architecture” 2008 European Conference on 
Modelling and Simulation, Nicosia, Cyprus, July 
2008.

[8] B. Duvenhage and Derrick G. Kourie: “Migrating 
to Real-time Distributed Parallel Simulator 
Architecture” Masters Thesis in Computer Science, 
University of Pretoria, South Africa, 2008.

[9] A. Duvenhage and L.Terblance: “The Evolution of 
a C2 Protocol Gateway” 2008 European 
Simulation Interoperability Workshop, Edinburgh, 
Scotland, July 2008.

ARNO DUVENHAGE is a Researcher for the Council 
for  Scientific  and  Industrial  Research  (CSIR),  South 
Africa.   He  joined  the  CSIR’s  Mathematical  and 
Computational  Modelling  Research  Group  in  January 
2005  as  a  Software  Engineer.   Arno’s  current  work 
involves modelling and simulation for decision support, 
focusing  on  joint  operations,  specializing  in  distributed 
and  networked  systems.   Arno  has  a  BEng  Degree  in 
Computer  Engineering  from the  University  of  Pretoria, 
South  Africa,  and  is  currently  busy  with  a  Masters  in 
Software Engineering.

DERRICK  KOURIE joined  the  Computer  Science 
Department at Pretoria University as a senior lecturer in 
1978.  As  co-director  of  the  Fastar/Espresso  Research 
Group, he supervises various MSc and PhD projects. As 
staff member, he has various teaching responsibilities and 
co-ordinates graduate admissions. His experience includes 
a 20 year spell as editor of the South African Computer 
Journal,  service  on  various  academic  and  professional 
committees, engagement in peer-reviewing activities, and 
industry consultation.

GERHARD HANCKE joined the University of Pretoria 
in 1976, where he is a Professor and Coordinator of the 
Computer  Engineering  Program  in  the  Department  of 
Electrical, Electronic and Computer Engineering, as well 
as  Head  of  the  Research  Group  on  Distributed  Sensor 
Networks.  He is a member of the Editorial Board of the 
Elsevier "Ad Hoc Networks" journal and has wide-ranging 
experience in organizing major international  conferences. 
He is a Professional Engineer and held offices in various 
national  and  international  scientific  and  professional 
bodies.


	1 Introduction
	2 Background
	3 Framework Requirements
	3.1 Interoperability with C2 Systems
	3.2 Virtualisation of C2 equipment using M&S
	3.3 Good Code Quality

	4 Framework Design
	4.1 The Backbone Layer

	
	4.2 The Infrastructure Layer
	4.3 The Interoperability Layer
	4.4 The Simulation and Application Layers

	5 Framework Implementation and Applications
	5.1 Testing the Gap-filling Capability of Short Range Radars
	5.2 C2 Protocol Gateway and Router
	5.3 C2 Protocol Gateway for an Existing Simulator

	6 Conclusion
	7 Future Work
	Acknowledgements
	References

