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Abstract11
12

The objective of this study was to assess the utility of hyperspectral data in 13
estimating and mapping forest structural parameters including mean diameter-at-14
breast-height (DBH), mean tree height and tree density of a closed canopy beech 15
forest (Fagus sylvatica L). Airborne HyMap images and data on forest structural 16
attributes were collected from the Majella National Park, Italy in July 2004. The 17
predictive performances of normalised difference vegetation indices (NDVI) derived 18
from all possible two-band combinations were evaluated using calibration (n = 33) 19
and test (n = 20) data sets. The potential of partial least squares (PLS) regression was 20
also assessed. New NDVIs based on the contrast between reflectance in the red-edge 21
shoulder (756-820 nm) and the water absorption feature centred at 1200 nm (1172-22
1320 nm) were found to show higher correlations with the forest structural parameters 23
than standard NDVIs derived from NIR and visible reflectance. PLS regression 24
showed a slight improvement in estimating the beech forest structural attributes25
compared to NDVI using linear regression models. Mean DBH was the best predicted 26
variable among the stand parameters (calibration R2 = 0.62 for an exponential model 27
fit and standard error of prediction = 5.12 cm, i.e. 25% of the mean). The predicted 28
map of mean DBH revealed high heterogeneity in the beech forest structure in the 29
study area. The DBH map could be useful to forest management in many ways e.g. 30
thinning of coppice to promote diameter growth, to assess the effects of management 31
on forest structure or to detect changes in the forest structure caused by anthropogenic 32
and natural factors.  33
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1. Introduction 1
2

Information about the distribution of forest structural attributes such as tree diameter, 3
basal area, height and density is essential for forest management. For example, 4
thinning of high-density areas could promote diameter growth (Messina, 1992; 5
Baldwin, et al., 2000; Fuhr et al., 2001). Conventional forest inventory data have been 6
collected by means of field surveys. Such surveys are time consuming, labour 7
intensive and expensive when carried out over broad areas (Gower et al., 1999). 8
Remote sensing, using current or anticipated air-spaceborne sensors is widely viewed 9
as a time- and cost-efficient way to proceed with large-scale estimation of forest 10
structural attributes. 11

A variety of remote sensors have been used in forest inventory studies including 12
passive optical and active (radar and light detection and ranging (LIDAR)) sensors 13
(Nilsson, 1996; Kasischke et al., 1997; Lefsky et al., 1999). The majority of sensors 14
are broadband optical sensors such as Landsat TM/ETM+ and SPOT HVR with three 15
to six broad spectral bands covering the visible, near infrared (NIR) and shortwave 16
infrared (SWIR) regions (Woodcock et al., 1997; Franco-Lopez et al., 2001; Ingram et 17
al., 2005). The most commonly used broadband remote sensing predictors of forest 18
parameters are ratio indices (vegetation indices) computed NIR and visible 19
reflectance. The most known vegetation index is the normalised difference vegetation 20
index (NDVI) developed by Rouse et al. (1974). NDVI is based on the contrast 21
between the maximum absorption in the red due to chlorophyll pigments and the 22
maximum reflectance in the NIR caused by scattering in the leaf mesophyll.  For 23
example, with increasing leaf area index (LAI) or canopy thickness, red reflectance 24
decreases as leaf pigments absorb light, while NIR reflectance increases as more leaf 25
layers are present to scatter the radiation (Gates et al., 1965). Thus, passive remote 26
sensing of forest structural attributes such as tree diameter, height, density and 27
biomass indirectly depends on the relationship between these parameters and 28
parameters that have a direct control on the spectral reflectance such as LAI, canopy 29
thickness and canopy biochemistry (Lefsky et al., 1999; Ingram et al., 2005). 30
Broadband NDVI is a poor predictor of tree structural attributes for probably two 31
reasons; firstly, broadband NDVI has been shown to saturate for a certain range of 32
canopy cover or LAI (LAI > 3) (Sellers, 1985; Gao et al., 2000; De Jong et al. 2003) 33
and secondly, broadband indices use average spectral information over broad 34
bandwidths, resulting in loss of critical information, (e.g. for canopy biochemistry) 35
available in specific narrowbands (Gong et al., 2003; Thenkabail et al., 2004).36

The advent of narrowband or hyperspectral (imaging spectroscopy) and LIDAR 37
sensors has raised new expectations about the possibilities of improving the 38
estimation of forest structural parameters. One hand, imaging spectroscopy can 39
provide information on the cover, abundance and concentration of biochemicals and 40
on the other hand, LIDAR can provide information on the cover, height, shape and 41
architecture of vegetation (Asner et al. 2007).  The use of imaging spectroscopy for 42
forest stand structural estimation is based on the assumption that increased 43
identification of particular spectral features associated with narrowbands could 44
improve estimation of forest attributes compared to broadband sensors (Lefsky et al., 45
2001; Lee et al., 2004). However, it is difficult to infer from existing literature 46
whether hyperspectral sensors provide an improvement over multispectral sensors for 47
remote sensing of forest structural attributes. For example, Lefsky et al. (2001) 48
observed a slight increase in the ability of Airborne Visible-Infrared Imaging 49
Spectrometer (AVIRIS) to predict forest stand attributes relative to single date 50
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Landsat TM data, but a better performance of multitemporal Landsat TM data. Gong 1
et al (2003) showed that indices involving NIR and SWIR Hyperion bands were better 2
than NIR-red indices for LAI estimation. Lee et al. (2004) found no improvement of 3
AVIRIS NDVI over ETM+ NDVI for LAI estimation. The potential of hyperspectral 4
data for estimating forest stand attributes for different ecosystems and seasons is not 5
fully understood. 6

The objective of this study was therefore, to assess the utility of hyperspectral data 7
in estimating and mapping forest structural parameters including mean diameter-at-8
breast-height (DBH), mean tree height and tree density of a closed canopy beech 9
forest (Fagus sylvatica L). 10

11
Insert Fig. 112

13
2. Material and methods14

15
2.1. Study site16

17
The study site was located in Majella National Park, Italy (latitude 41o52' to 42o14'N, 18
longitude 13o50' to 13o14'E) covering an area of 74095 ha (Fig. 1). The Park extends 19
into the southern part of Abruzzo, at a distance of 40 km from the Adriatic Sea. This 20
region is situated in the massifs of the Apennines. The park is characterised by several 21
mountain peaks, the highest being mount Amaro (2794 m). The region is 22
characterised by Mediterranean climate: hot and dry summers and cool and wet 23
winters. The specific study site (latitude 41o49' to 42o14'N, longitude 13o57' to 14o3'E) 24
is situated between mounts Majella and Morrone to the east and west, respectively. It 25
covers an area of 40 by 5.5 km. 26

The Majella beech forest is located at an altitude range of about 1200-1800 m. Over 27
the last 60 years, depopulation, changes in the socio-economic conditions and the 28
creation of the National Park in 1995 have led to a pronounced drop in the local 29
demand for small size timber, firewood and charcoal (Ciancio et al., 2006). As a 30
consequence, many coppices are returning to high forest. However, a combination of 31
thinning and the occurrence of avalanches in Majella have given rise to a compound 32
coppice, which is a mixture of coppice and high forest. 33

34
2. 2. Image acquisition and processing35

36
Airborne HyMap data of the study site were obtained on 15 July 2004. The flight 37

was carried out by DLR, Germany's Aerospace Research Centre and Space Agency. 38
The HyMap sensor comprised 126 wavebands, operating over the wavelength range 39
442 nm to 2485 nm, with average spectral resolutions of 15 nm (442 nm to 1313 nm), 40
13 nm (1409 nm to 1800 nm) and 17 nm (1953 nm to 2485 nm). The spatial resolution 41
of the data was 4 m. The data were collected at solar noon. The specific study site was 42
covered by four image strips, each covering an area of about 40 km by 2.3 km. The 43
solar zenith and azimuth angles for the image strips range between 30-33.7o and 44
111.5-121o, respectively. The image strips were atmospherically and geometrically 45
corrected by DLR. The on-board navigation system used for geometric correction was 46
a C-MIGITS II (Miniature Integrated GPS/INS Tactical System) which has a 2.5 m 47
accuracy in the x-y plane and an accuracy of 3m in the z-plane. The atmospheric 48
correction was carried out using ATCOR4-r (Atmospheric/Topographic Correction-49
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rugged terrain). ATCOR4 is based on MODTRAN-4 radiative transfer code (Richter 1
and Schlapfer, 2002).2

3
2.3. Field measurements of forest stand attributes (mean DBH, mean tree height and 4
tree density) 5

6
Field data for DBH, height and number of trees were collected from 56 plots within 7
the flight strips between 28 June and 16 July 2004. Random sampling with clustering 8
was adopted in the study because of the difficult nature of the terrain. That is, 20 9
coordinate points were randomly generated using ArcGIS software. Measurements 10
were made from each randomly selected plot (30 m by 30 m) and from two to three 11
other plots at about 150 and 300 m away in a randomly chosen direction. Plots were 12
located in the field using a Garmin (etrex vista Cx) GPS (5 to 8 m accuracy in the 13
forest). Data was only collected from closed canopy forest in homogeneous areas (i.e. 14
homogeneous in DBH and tree density). This ensured that inconsistencies in the 15
spectral data potentially caused by differences between the field GPS accuracy and in-16
flight GPS reading could be minimised. The DBH of all trees above 7 cm was 17
measured while the tree heights of five to ten trees were measured using a Haga meter. 18
The mean DBH and height were subsequently calculated per plot.  Tree density was 19
calculated as the number of trees per hectare. 20

21
2.4. Data analysis22

23
The forest parameters were predicted as continuous variables rather than as a set of 24
discrete classes. Lefsky (2001) argues that the continuous variable approach offers 25
flexibility because the predictions can be used directly or arranged into multiple sets of 26
classes that match varying purposes. 27

A 7-by-7 pixels window (28 m-by-28 m) was used to collect image spectra from 28
each sample plot in order to avoid including pixels located outside the plot (30 m by 30 29
m). An average spectrum was subsequently calculated for each plot. Three plots out of 30
the 56 sampled plots were present in areas of shadow and were therefore not 31
considered in the analysis. The data were randomly split into the training or calibration 32
(n = 33) and test (n = 20) sets. The predictive capabilities of linear regression models 33
based on spectral indices and partial least squares (PLS) regression were investigated. 34
Regression analyses were performed on the calibration set. Empirical validations of the 35
calibration models were carried out using the test set. The predictive performances of 36
the various models were estimated and compared using the coefficient of 37
determination (R2) for calibration and validation, the standard error of calibration 38
(SEC, Eq. 1) and standard error of prediction (SEP) based on the independent test data. 39

40

 
n

yy
SEC

n

i 


 1

2'
(1)41

42
where y = measured DBH or height or density, y′ = predicted DBH or height or 43
density and n = number of observations. 44

45
(i) Vegetation indices 46

47
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Narrowband NDVIs (Eq. 2) were derived from all possible two-band combinations 1
involving 126 bands of HyMap spectrum using the calibration data. This resulted into 2
15876 (i.e. 126*126) NDVIs for each spectrum. 3

4
NDVI (i,j,n) = (R(i,n)-R(j,n))/(R(i,n)+R(j,n)) (2)5

6
where R(i,n) and R(j,n) are the reflectance of any two band, and n = number of samples. 7

8
Linear regression analyses were performed between each NDVI with each tree 9

structural parameter (mean DBH, mean height and tree density). The NDVIs that 10
yielded the highest calibration coefficient of determination (R2) were subsequently 11
selected for assessing their predictive capability on the independent data set. Although 12
the data for mean DBH, mean height and density were not normally distributed as will 13
be demonstrated later in this paper; the use of parametric regression techniques was 14
justified assuming normality under the central limit theorem (n ≥ 30). Furthermore, as 15
a means of dealing with the problem of non-normal distribution of the data, a 16
bootstrap procedure was adopted in computing the correlation coefficients for the 17
linear regression analysis. That is, the intercept and slope for each regression equation 18
consisted of mean values derived from using 1000 resamples (replicates) created by 19
repeated sampling with replacement from the calibration data sets. Each resample was 20
of the same size as the original calibration data. 21

To compare the prediction accuracies for a broadband sensor like Landsat TM, the 22
HyMap data was resampled to the spectral coverage of Landsat TM, with band 23
centres at 481 nm, 568 nm, 665 nm, 831 nm, 1653 nm and 2220 nm. The resampling 24
was conducted using a Gaussian built-in function in ENVI (Environment for 25
Visualising Images, Research System, Inc.) software. All possible Landsat TM two-26
band NDVIs were subsequently assess for predicting mean DBH, mean height and 27
tree density.  28

29
(ii) Partial least squares regression (PLS)30
PLS regression was applied in this study to test whether the use of several 31
hyperspectral bands improves the prediction of stand attributes when compared to 32
two-band vegetation indices. PLS regression is a multivariate statistical technique that 33
is widely used in chemometrics to deal with the problem of collinearity among several 34
spectral bands. PLS regression reduces the large number of measured collinear 35
spectral variables to a few non-correlated latent variables (Geladi et al., 1999; Geladi 36
and Kowalski, 1986; Hansen and Schjoerring, 2003). In this sense, PLS regression is 37
closely related to principal component regression (Geladi and Kowalski, 1986; Geladi 38
et al., 1999). But instead of first decomposing the spectra into a set of eigenvectors 39
and scores and regressing them against the response variables as a separate step, PLS 40
regression actually uses the response variable information during the decomposition 41
process. Further information on the PLS regression can be obtained in Geladi and 42
Kowalski (1986).43

It has been shown that variable selection enhances the predictive performance of 44
PLS regression (Kubinyi, 1996; Cho et al. 2007, Darvishzadeh et al. 2008). A sub-45
objective therefore, was to test PLS models based on all the HyMap bands and on a 46
small number of selected bands. The selection was based on bands related to leaf 47
chlorophyll, LAI and leaf mass (Table 1). The utility of the bands represented in 48
Table 1 has been demonstrated in two other studies, i.e. Cho (2007) and Darvishzadeh 49
et al. (2008) for estimating grass biomass and LAI, respectively.  50
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1
Insert Table 12

3
Before the PLS regression models were developed, the spectra and forest parameters 4

were mean-centred, i.e. the average value for each variable was calculated from the 5
calibration set and then subtracted from each corresponding variable. The root mean 6
square error of leave-one-out cross validation (RMSECV) was used as a selection 7
criterion to choose the optimum number of latent variables (PLS factors) for 8
predicting the forest structural parameters (Geladi and Kowalski, 1986; Viscarra 9
Rossel, 2005). The RMSECV was determined for each cross-validation phase. The 10
number of factors which yielded the lowest RMSECV was used to develop the 11
calibration equations. The analyses were carried out using STATISTICA software 12
(StatSoft, Inc.) and ParLes software developed by Viscarra Rossel (2008). 13

14
Insert table 2 15

16
3. Results17

18
3.1. Descriptive statistics of the beech forest structural parameters19

20
The descriptive statistics of the forest structural parameters are presented in Table 2.21
Each parameter showed a positive skewness indicating a bias of the distribution 22
towards higher values. The Shapiro-Wilk test was used to test the data for normality, 23
the hypotheses were, the null hypothesis (Ho): data follow a normal distribution versus 24
the alternate hypothesis (H1): the data do not follow a normal distribution. The null 25
hypothesis was rejected in all cases (p<0.05).  Consequently, the intercorrelations 26
between parameters were analysed using a non-parametric test (Spearman’s rank 27
correlation test). Mean DBH was positively related to height (r = 0.70, p<0.05) but 28
negatively related to tree density (r = -0.91, p<0.05). Mean height was less highly 29
related to density (r = -0.60) than the mean DBH. 30

31
Insert Fig. 232

33
3.2. Relationships between the beech forest structural parameters and individual band 34
reflectance35

36
The relationships between forest parameters and individual band reflectance were 37
analysed using Spearman’s rank correlation test. Statistically significant (p<0.05) 38
correlations were predominantly observed in the NIR (Fig. 2). The relationships were 39
significant in the following regions:40

41
- Mean DBH and tree density: 711-1342 nm42
- Mean height: 528-589 nm, 725-1405 nm, 1530-1806 nm and 2257 nm.  43

44
Mean DBH and mean height were negatively correlated with the NIR bands, while 45

density was positively correlated with the NIR bands. This means that higher tree 46
density results in higher NIR reflectance.  47

48
Insert Fig. 3. 49

50
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3.3. Predicting beech forest structural parameters 1
2

3.3.1. Using vegetation indices3
4

The contour plots in Fig. 3 show the correlation (R2) patterns between NDVIs 5
computed from all possible two-band combinations and the three tree structural 6
parameters under study. The contour plots allowed for the identification of the most 7
sensitive NDVIs to mean DBH, mean height and tree density.  Similar correlation 8
patterns were observed for mean DBH and tree density. The highest correlations 9
(R2>0.4) for mean DBH and tree density were observed when these parameters were 10
correlated with NDVIs computed from bands in the red-edge shoulder (756-820 nm) 11
in combination with bands in the water absorption feature centred at 1200 nm (1172-12
1320 nm). Mean tree height showed the lowest correlations (R2<0.35) with the 13
various NDVIs among the three structural parameters. The highest correlations for 14
tree height were observed for NDVIs involving bands located in 1172-1301 nm range. 15

16
Insert Table 3.17
Insert Table 418

19
The predictive capabilities of the best NDVI combinations for each tree parameter 20

are shown in Table 3. Among all three stand attributes studied, mean DBH was the 21
best predicted parameter using linear regression analysis. Average prediction errors of 22
27.7%, 35.5% and 48.2% were, respectively obtained for mean DBH, mean height 23
and tree density when the best NDVIs were considered. The standard NDVI involving 24
NIR (831 nm) and red (665 nm) bands showed higher prediction errors when 25
compared to the best NDVIs for all tree structural attribute; 33%, 36% and 54% for 26
mean DBH, mean tree height and tree density, respectively (Table 3). Similar 27
prediction accuracies were observed for the standard NDVI computed from the 28
spectrally resampled (simulated Landsat TM) data (see Table 4). 29

The scatter plots in Fig.4 illustrate the nature of the relationship between mean DBH 30
and the best NDVI involving bands at 771 nm and 1287 nm and the standard NDVI 31
computed from the simulated Landsat TM data. The graphs showed a ‘local bias’ 32
along the 1:1 line between the predicted versus the actual DBH values. The low 33
values are predicted high and high values are predicted low, indicating non-linearity 34
in the relationship between DBH and NDVI. NDVI appeared to saturate for mean 35
DBH above 30 cm. For example, when an exponential model fit was used in the 36
regression analysis (Fig.5), the calibration R2 for the best NDVI increased from 0.51 37
to 0.62 (22% increase), while the SEP decreased from 5.50 cm to 5.12 cm (7% 38
decrease). 39

40
Insert Fig. 541
Insert Table 542

43
3.3.2. Using partial least squares regression44

45
The predictive performances of PLS regression based on all the HyMap bands and 46
selected bands were basically similar (Table 5). Like in the case of spectral indices, 47
mean DBH was the best-predicted parameter, followed by mean height and lastly 48
density. However, there was a slight improvement in the prediction accuracy of the 49
various parameters when compared with results for the best NDVIs. Percentage 50
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prediction errors of 26.8%, 33.2% and 46.4% were observed for mean DBH, mean 1
height and tree density, respectively. As was the case with the regression model 2
involving NDVIs, the results of the PLS modelling showed a strong ‘local bias’ in the 3
calibration and test data (Fig. 6). The higher values were predicted low and the low 4
values were predicted high. 5

6
Insert Fig. 67

8
3.4. Mapping forest structure 9

10
The Majella beech forest structure was mapped using the best-predicted parameter, 11
i.e., mean DBH. Mean DBH map was produced using the exponential model (see 12
Fig.5) derived from the calibration between mean DBH and the best NDVI 13
combinations i.e. 771 and 1287 nm. Prior to the mapping of mean DBH, a mask of 14
beech forest areas was created from the HyMap image strips using NDVI threshold 15
values, thus eliminating areas occupied by other land-cover types (mainly grasslands 16
and housing areas). The predicted map of mean DBH is presented in Fig. 7.  The map 17
of DBH shows high heterogeneity of DBH within the various forest patches. There is 18
no clear effect of altitude on the forest structure. 19

20
Insert Fig. 7. 21

22
4. Discussion and conclusions23

24
4.1. Predicting beech forest structural parameters25

26
New NDVIs based on the contrast between reflectance in the red-edge shoulder 27

(756-820 nm) and the water absorption feature centred at 1200 nm (1172-1320 nm)28
were found to show higher correlations with forest structural parameters than standard 29
NDVIs derived from NIR and visible reflectance. Leaf water content thus, appears to 30
be the limiting factor determining differences between forest stands of varying DBH 31
or density rather than leaf chlorophyll content. We hypothesize that the nature of the 32
relationship between the various NDVIs and forest structural attributes could depend 33
on the beech forest phenology. Based on the results of this study, remote sensing of 34
beech forest structure is recommended during periods of the year when water 35
availability is a limiting factor. A drawback of models that are seasonal dependent is 36
that they are not transferable between sites or season (Foody et al. 2003).37

Related studies on estimating grass biophysical properties (LAI, biomass) generally 38
show that NDVIs computed from red-edge reflectance (700-800 nm) provide higher 39
accuracies of estimation compared to the standard NDVIs (Mutanga and Skidmore, 40
2004, Cho et al. 2007, Cho and Skidmore, in press). The red-edge indices have shown 41
high sensitivity sensitive to leaf chlorophyll, nitrogen and grass biomass (Vogelmann 42
et al., 1993; Carter, 1994; Cho et al., 2006, Cho et al. 2008). In this study however, 43
the red-edge indices, showed poor predictive capabilities for forest structural 44
parameters. Their predictive capability for the tree structural parameters could have 45
been hampered by the fact that the beech forest structural attributes were weakly 46
correlated with the chlorophyll (visible) spectrum (see Fig. 1).  47

PLS regression, the multivariate statistical method adopted in this study, showed a 48
slight improvement in estimating the beech forest structural attributes compared with 49
univariate regression models based on vegetation indices. PLS regression has rarely 50
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been applied for estimating forest attributes from remotely sensed data. However, 1
several other studies have shown that PLS regression improves grass biomass or LAI 2
estimation (Hansen and Schjoerring, 2003; Cho et al. 2007; Darvishzadeh et al. 2008) 3
compared to univariate techniques involving vegetation indices. PLS regression 4
models based on a few selected bands and on all HyMap bands produced similar 5
calibration and validation accuracies. The spectral information content required for 6
estimating forest structural parameters might be contained in a few narrowbands. An 7
optimum band selection procedure could therefore, enhance model parsimony. 8

The prediction of the forest structural attributes in this study reveals the 9
phenomenon of ‘local bias’. Local bias occurs when high values of the response 10
variable are predicted low and the low values predicted high (Geladi et al, 1999). 11
Geladi et al. (1999) argue that some of the deviations from the diagonal representing 12
the 1:1 relationship between the predicted and actual values may be attributed to 13
random noise. However, when the bias becomes systematic, as was the case in our 14
study, it may be attributed to non-linearity in the true physical relationship (Geladi et 15
al. 1998). The saturation of the spectral signal in dense and multi-layered canopy 16
cover is a well-known phenomenon (Sellers, 1985; Gao et al., 2000). 17

Overall, mean DBH was the best predicted using the various statistical methods 18
compared to mean height and tree density. It should be stated again that imaging 19
spectroscopy of forest structural attributes such as tree diameter, height, density and 20
biomass indirectly depends on the relationship between these parameters and 21
parameters that have a direct control on the spectral reflectance such as LAI, canopy 22
thickness and canopy biochemistry (Lefsky et al., 1999; Ingram et al., 2005). 23
Multispectral (broadband) features are poor predictor of canopy biochemistry. This 24
probably explains why spectral degradation from HyMap to Landsat band setting 25
lowered the ability to accurately predict the forest stand attributes. Finally, LIDAR 26
remote sensing has proven useful in providing accurate information on tree height 27
than imaging spectroscopy (Asner et al. 2007). Thus, the combination of LIDAR and 28
imaging spectroscopy could provide more accurate information on beech DBH and 29
height, two parameters important for estimating forest biomass (De Jong et al. 2003).   30

31
4.2. Predictive maps of mean DBH and implications for beech forest management in 32
the Majella National Park33

34
The predicted map of mean DBH revealed high heterogeneity in the beech forest 35
structure in the study area. This pattern could be attributed to the forest management 36
practice in the park. A combination of thinning and the occurrence of avalanches in 37
the Majella National Park, have given rise to a compound coppice, which is a mixture 38
of coppice and high beech forest. The DBH map could be useful to forest 39
management in many ways e.g. thinning of coppice to promote diameter growth (tree 40
density was negatively related to DBH), to assess the effects of management on forest 41
structure or to detect changes in the forest structure caused by anthropogenic and 42
natural factors.  43
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Table 1
Wavebands selected for estimating beech forest structural parameters using partial 
least squares regression (Cho et. al. 2007)
Waveband centre 
(nm)

Description References

466 chlorophyll b Curran (1989)
695 total chlorophyll Carter (1994),  Gitelson 

and Merzylak (1997)
725 total chlorophyll, leaf mass Horler et al. (1983)
740 leaf mass and LAI Horler et al. (1983)
786 leaf mass Guyot and Baret (1988)
846 leaf mass, LAI, chlorophyll Thenkabail et al. (2004)
895 leaf mass, LAI Thenkabail et al. (2004)
1113 leaf mass, LAI Thenkabail et al. (2004)
1215 plant moisture, cellulose, starch Thenkabail et al. (2004), 

Curran (1989)
1661 lignin, leaf mass, starch Thenkabail et al. (2004)
2173 protein, nitrogen Curran (1989)
2359 cellulose, protein, nitrogen Curran (1989)
LAI = leaf area index
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Table 2 
Descriptive statistics of beech forest structural parameters. DBH = diameter-at-breast 
height

Parameter 
Mean Minimum Maximum Standard 

deviation 
Skewness Coefficient 

of variance 
(%)

Mean DBH (cm) 19.94 8.00 43.07 8.02 1.01 40
Mean height (m) 18.70 7.00 45.00 7.23 1.35 39
Tree density (No. 
ha-1)

1208 222 3089 739 0.77 61
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Table 3 
Best NDVI combinations for predicting beech forest structural parameters (mean 
diameter-at-breast height (DBH), tree height and density) using linear regression. R2 = 
coefficient of determination. The best NDVIs results are compared with those of the 
standard NDVI involving bands at 831 nm and 665 nm. 

Band combinations Calibration (n = 33) Validation (n = 20)
Band1 (nm) band 2 (nm) R2 SEC SEP % mean 

error
DBH (cm)

1287 771 0.51 5.76 5.70 27.8
1301 771 0.51 5.77 5.69 27.8
1244 771 0.50 5.78 5.64 27.5
1258 771 0.50 5.79 5.59 27.3
1314 771 0.50 5.79 5.72 27.9
Standard NDVI 0.39 6.42 6.68 32.6

Height (m)
1314 1172 0.32 5.75 7.36 39.3
1301 1172 0.28 5.90 6.70 35.8
Standard NDVI 0.21 6.19 6.79 36.2

*Density (no. trees/ha) 
1301 771 0.59 381 520 48.3
1287 771 0.58 385 518 48.1
1314 771 0.58 382 522 48.5
1230 771 0.57 388 518 48.1
1244 771 0.57 390 515 47.8
Standard NDVI 0.37 471 586 54.4

* validation sample size = 17 for tree density. Three outliers eliminated.  
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Table 4 
Best NDVI combinations derived from simulated Landsat TM data for predicting 
beech forest structural attributes (diameter-at-breast height (DBH), tree height and 
density) using linear regression. R2 = coefficient of determination. 

Best band combinations Calibration (n = 33) Validation (n = 20)
Band1 band 2 R2 SEC SEP % mean 

error
DBH (cm)

1653 831 0.39 7.31 7.27 35.5
831 665 0.38 6.48 6.63 32.4

Height (m)
1653 831 0.21 6.58 7.22 38.5
831 665 0.20 6.20 6.81 36.4

*Density (no. trees/ha)
1653 831 0.40 533 581 53.9
831 665 0.36 475 539 50.1

* validation sample size = 17 for tree density. Three outliers eliminated.  
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Table  5 
Predicting beech forest structural parameters; mean diameter-at-breast-height (DBH), 
mean height and tree density using partial least squares (PLS) regression. R2 = 
coefficient of determination, RMSECV = root mean square error of cross validation, 
SEC = standard error of calibration and SEP = standard error of prediction

Calibration (n = 33) Independent 
validation (n = 

20)
No. of 
PLS 
factors

RMSECV 
(g m-2)

R2 SEC
(g m-2)

SEP
(g m-2)

% of 
mean

All bands 
DBH (cm) 3 6.56 53 5.63 5.66 27.6
Height  (m) 2 6.15 36 5.54 6.12 32.6
Density (no. 
of trees ha-1)

2 461 50 420 508 47.1

Selected bands
DBH (cm) 3 6.54 51 5.74 5.50 26.8
Height  (m) 2 6.16 37 5.52 6.21 33.2
Density (no. 
of trees ha-1)

3 451 50 421 499 46.4


