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A unified approach to derivation of different families of differential equations describing the 
longitudinal vibration of elastic rods and based on the Hamilton variational principle is out-
lined. The simplest model of longitudinal vibration of the rods does not take into consideration 
its lateral motion and is described in terms of the wave equation. The more elaborated models 
were proposed by Rayleigh, Love, Bishop, Mindlin-Herrmann, and multimode models in which 
the lateral effect plays an important role. Dispersion curves, representing the eigenvalues versus 
wave numbers, of these models are compared with the exact dispersion curves of isotropic cyl-
inder and conclusions on accuracy of the models are deduced. The Green functions are con-
structed for the classical, Rayleigh, Bishop, and Mindlin-Herrmann models in which the gen-
eral solutions of the problem are obtained. The principles of construction of the multimode 
theories, corresponding equations and orthogonality conditions are considered. 

 
 

1. Introduction 

In what follow, the wave displacements in the rod are described in accordance with the as-
sumptions made in various vibration theories; afterwards the Hamilton variational principle is used 
to derive the equation or system of equation of motion corresponding to each approach. The method 
of finding the analytical solution is based on the separation of variables, the investigation of the 
eigenfunctions from the Sturm-Liouville problem, proof of two kinds of the eigenfunction orthogo-
nality conditions by using the equations of the Sturm-Liouville problem. At the next stage the solu-
tion is assumed in the form of the Fourier series and substituted into the Lagrangian which hold the 
Euler-Lagrange differential equation. The solution of the resulting differential equation is used to-
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gether with the norms corresponding to the above orthogonalities to construct the Green function. 
The general solutions of the problems are formulated in terms of the Green functions. 

2. Classical theory: wave equation 

In this case the longitudinal displacement is assumed constant in all points along the cross 
section of the rod and expressed as ( ),u u x t= . The general or compact form of equation of motion 

is: 

0
t u x u u

∂ ∂Λ ∂ ∂Λ ∂Λ   + − =   ′∂ ∂ ∂ ∂ ∂   &
      (1) 

with the natural boundary conditions 
0,

0
x lu =

∂Λ =
′∂

 or ( )
0,

, 0
x l

u x t
=

= , where 

( )( )[ ] utxFxAuxEuxxAuuu ),()()()(
2

1
),,( 22 +′−=′Λ=Λ && ρ     (2) 

is the Lagrangian density in which: )(xA  is the cross-sectional area of the rod, )(xρ  is the mass 
density of the rod )(xE  is the Young modulus of elasticity and ),( txF  is the applied external force. 

Substituting (2) into (1) we obtain the explicit form of the equation (1): 

( ) ( ) 0),()()()( 2

2

=−








∂
∂

∂
∂−

∂
∂

txFxA
x

u
xExA

xt

u
xxA ρ     (3) 

The eigenfunction follow from the corresponding sturm-Liouville problem fulfilled two or-
thogonality conditions:  

0
( ) ( ) 0

l

n mX x X x dx =∫  and    ' '

0
( ) ( ) 0

n m

l
X x X x dx =∫   for   m n≠  (4) 

where 2 2

1 0

l

n xX X dx= ∫  and 2 2

2 0

l

n nX X dx′= ∫ , ( ),  1,2,...nX x n =  are the eigenfunctions corresponding 

to the eigenvalues 2
1,

1

n
n

n

XE

Xρ
Ω = . 

 The solution of the problem is given by the following expression: 

  ( ) ( ) ( ) ( ) ( )
0 0

0 0

, , 1
, ( ) ( ) , , , , ,

t l
l lG x t

u x t g d h G x t d F G x t d d
t

ξ
ξ ξ ξ ξ ξ ξ τ ξ τ ξ τ

ρ
∂

= + + −
∂∫ ∫ ∫ ∫     

(5) 

where 1,
1 2

1 1, 1

( ) ( )sin
( , , ) n n n

n n n

X x X t
G x t

X

ξ
ξ

∞

=

Ω
=

Ω
∑  is the Green function. 

3. Rayleigh-Love theory 

 The effects of the lateral displacement of the rod are taken into consideration in the kinetic 
energy by introducing the Poisson ratio η  and the components of the displacement vector are1: 

( , ), ( , ) , ( , )x xu u x t v v x y yu w w x z zuη η′ ′= = = − = = −        (6) 

and the equation of the motion in the compact form is given as follow: 
2

0
x xu x u x t u u

   ∂Λ ∂ ∂Λ ∂ ∂Λ ∂Λ  + − − =     ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂     & &
     (7) 

with the associated boundary conditions 
0,

0
x x x l

u t u
=

 ∂Λ ∂ ∂Λ− = ′ ′∂ ∂ ∂ &
 or  ( )

0,
, 0

x l
u x t

=
= , where 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2

0

1
, , , ,

2

l

x x p x xu u u u x A x u x I x u A x E x u A x F x t udxρ η′ ′ ′ ′ Λ = Λ = + − +  ∫& & & &
     

(8)  
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is the Lagrangian density in which: pI is the polar moment of inertia (
4

2
2 2p s

R
I I r ds π= = =∫  

for the circular cross-section). By substituting (8) into (7) we obtain the Rayleigh-Love equation for 
the vibrating rod: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 3

2
2 2

second order wave equation Rayleigh-Love correction

,  =0p

u u u
x A x E x A x x x I x A x F x t

t x x x x t
ρ ρ η ∂ ∂ ∂ ∂ ∂ − − +  ∂ ∂ ∂ ∂ ∂ ∂   1 4 4 4 4 4 4 2 4 4 4 4 4 4 3 1 4 4 4 4 4 2 4 4 4 4 43

      (9) 

The orthogonality conditions fulfilled by the eigenfunctions ( ),  1,2,...nX x n = , solution of the 

Strum-Liouville problem corresponding to (9) are: 
2

0
( ) ( ) ( ) ( ) 0

l

n m p n mAX x X x I X x X x dxρ η ′ ′ + = ∫   and  
0

( ) ( ) 0
l

n mEAX x X x dx′ ′ =∫   for   m n≠       (10) 

The solution of the problem is: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2
2 2 22

20 0

20 0

, , , , , ,
, , ,

             , , , 11

l l

p

l t

G x t G x t G x t
u x t A g h G x t d I g h d

t t

A
F G x t d d

ξ ξ ξ
ξ ξ ξ ξ η ξ ξ ξ

ξ ξ

ξ τ ξ τ τ ξ
ρ

 ∂ ∂ ∂  ′ ′= + + + +  ∂ ∂ ∂ ∂   

+ −

∫ ∫

∫ ∫

where 2,
2 2

1 2, 1

( ) ( )sin
( , , ) n n n

n n n

X x X t
G x t

X

ξ
ξ

∞

=

Ω
=

Ω
∑  is the Green function and 2

2,

1

n

n
n

XAE

Xρ
Ω =  is the eigen-

values associated with the above eigenfunctions. 

4. Rayleigh-Bishop theory 

Certain assumptions (longitudinal and transverse displacements inside the excited rod) in the 
previous theory are kept and the vector displacement is the same. But in 1952, in order to improve 
the Rayleigh-Love theory, Bishop showed the contribution of shear stiffness accompanying the 
transverse deformation while calculating the strain energy1, 2.  

The general form of the equation of motion is: 
2 2

2
0

x x xxt u x u x t u x u u

     ∂ ∂Λ ∂ ∂Λ ∂ ∂Λ ∂ ∂Λ ∂Λ + − − − =       ′ ′ ′′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂       & &
     (12) 

with the natural associated boundary conditions 
0,

0
x x xx x l

u t u x u
=

   ∂Λ ∂ ∂Λ ∂ ∂Λ− − =   ′ ′ ′′∂ ∂ ∂ ∂ ∂   &
, and 

0,
( , ) 0x x l

u x t
=

′ = , or 
0,

( , ) 0
x l

u x t
=

= , and 
0,

( , ) 0xx x l
u x t

=
′′ = , where 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2

2 2

0

1
, , , ,

2
1

     ,
2

x x xx p x

l

x p xx

u u u u u x A x u x I x u

A x E x u x I x u A x F x t udx

ρ η

µ

′ ′ ′′ ′ Λ = Λ = + 

′ ′′ − + +  ∫

& & & &
   (13) 

is the Lagrangian density of the vibrating rod. By substituting (13) into (12), we obtain the explicit 
form of the equation: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2 3 2 2
2 2

2 2 2 2

second order wave equation Rayleigh correction Bishop correction

, 0       

p p

u u u u
x A x E x A x x x I x x x I x

t x x x x t x x

A x F x t

ρ ρ η µ η   ∂ ∂ ∂ ∂ ∂ ∂ ∂ − − + −    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     

− =

1 4 4 4 4 4 4 2 4 4 4 4 4 4 3 1 4 4 4 4 4 2 4 4 4 4 43 1 4 4 4 44 2 4 4 4 4 43

                                                                                                                            (14)

 
The investigation of the Sturm-Liouville problem corresponding to equation (14), show that 

the resulting eigenfunctions ( ),  1,2,...nX x n =  fulfil two orthogonality conditions: 
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2

0
( ) ( ) ( ) ( ) 0

l

n m p n mAX x X x I X x X x dxρ η ′ ′ + = ∫   and  2

0
( ) ( ) ( ) ( ) 0

l

n m p n mEAX x X x I X x X x dxµη′ ′ ′′ ′′ + = ∫     

(15) 
 The solution of equation (14) is as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2
3 3 32

30 0

30 0

, , , , , ,
, , ,

             , , ,                                                                            

l l

p

l t

G x t G x t G x t
u x t A g h G x t d I g h d

t t

A
F G x t d d

ξ ξ ξ
ξ ξ ξ ξ η ξ ξ ξ

ξ ξ

ξ τ ξ τ τ ξ
ρ

 ∂ ∂ ∂ 
′ ′= + + + +  ∂ ∂ ∂ ∂   

+ −

∫ ∫

∫ ∫                   (16)

 

where 3,
3 2

1 3, 1

( ) ( )sin
( , , ) n n n

n n n

X x X t
G x t

X

ξ
ξ

∞

=

Ω
=

Ω
∑  is the Green Function, in which 2

1

n
n

n

X

Xρ
Ω =  is the natu-

ral eigenvalues corresponding to ( ),  1,2,...nX x n = . 

5. Mindlin-Herrmann theory 

Despite the fact that has improved the previous theories. It is necessary to emphasize the lack 
of physical clarity in interpretation of certain high-order modes, mainly independent shear and ra-
dial motion. In order to address this insufficiency Mindlin and Herrmann take into account the in-
dependent shearing deformation, radial displacement and distributed stress along the transversal 
direction3. According to these new ideas the displacements are represented by two independent 
functions: 

0 1( , ) ( , ), ( , , ) ( , )u u x t x t v v x r t r x t= = Φ = = ⋅Φ     (17) 

where r  is the distance between the points along the lateral direction of the rod. 
The compact form of the system of equations of motion is given as follow: 

( )0, 0,1
k k k

d d
k

dt dx

   ∂Λ ∂Λ ∂Λ+ − = =   ′∂Φ ∂Φ ∂Φ   &
              (18) 

With the corresponding set of natural boundary conditions 
0 0,
( , ) 0,

x l
x t

=
Φ = 1 0,

( , ) 0
x l

x t
=

Φ = , or 

1 0,

0,
x l=

∂Λ =
′∂Φ 0 0,

 0,
x l=

∂Λ =
′∂Φ

, where  

( )
( ) ( ) ( )( )

' '
0 1 0 1 1

2 2 '2 ' 2 '2
0 2 1 0 0 1 1 2 1

, , , ,

1
   ( , ) ( , ) 2 4 4             (19)

2 2
A x t I x t A A A I

ρ λ µ λ λ µ µ

Λ = Λ Φ Φ Φ Φ Φ

= Φ + Φ − + Φ + Φ Φ + + Φ + Φ

& &

& &
 

is the Lagrange density of the rod, in which   and  ,
2(1 ) (1 2 )(1 )

E Eηµ λ
η η η

= =
+ − +

 are Lame’s con-

stants. Substituting expression (19) into the system (18) leads to the explicit form of the system of 
equations in the operator form: 

( )
( )

2 2
0 0 1

2 2
0 1 1 1

2 2 ( , )

2 0

t x x

x p t p x

A A A AF x t

A I I AS

ρ λ µ λ

λ ρ µ λ µ

 ∂ Φ − + ∂ Φ − ∂ Φ =


∂ Φ + ∂ Φ − ∂ Φ + + Φ =

    (20) 

The couple of eigenfunctions found by investigating the Sturm-Liouville problem associated 
to the system (14), hold the following orthogonality properties for m n≠  

( )0, 0, 1, 1,0
0

l

n m p n mA I dxΦ Φ + Φ Φ =∫ and 

( ) ( ) ( ){ }1, 1, 1, 1, 0, 0, 0, 1, 0, 1,0
4 2 2 0

l

n m p n m n m n m m nA I A A dxλ µ µ λ µ λ′ ′ ′ ′ ′ ′+ Φ Φ + Φ Φ + + Φ Φ + Φ Φ + Φ Φ =∫ . 

The solution of the system of equation (20) can be found: 
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( ) 54
0 0 0

4 5 40 0 0 0

6 7
1 0 0

( , , )( , , )
, ( ) ( )

1
               ( ) ( , , ) ( ) ( , , ) ( , ) ( , , )

( , , ) ( , , )
( , ) ( ) ( )

      

l l

p

l l t l

p

l l

p

G x tG x t
x t Ag d I d

t t

Ah G x t d I G x t d F G x t d d

G x t G x t
x t Ag d I d

t t

ξξξ ξ φ ξ ξ

ξ ξ ξ ϕ ξ ξ ξ ξ τ ξ τ τ ξ
ρ

ξ ξξ ξ φ ξ ξ

∂∂Φ = + +
∂ ∂

+ + + −

∂ ∂Φ = + +
∂ ∂

∫ ∫

∫ ∫ ∫ ∫

∫ ∫

6 7 60 0 0 0

1
         ( ) ( , , ) ( ) ( , , ) ( , ) ( , , )

l l t l

pAh G x t d I G x t d F G x t d dξ ξ ξ ϕ ξ ξ ξ ξ τ ε τ τ ξ
ρ

+ + + −∫ ∫ ∫ ∫

 (21) 

where 
0 0

( , , ) ( ) and ( , , ) ( )
t t

u x r t x u x r t xφ ϕ
= =

= =&  are initial transverse displacement and velocity, 

( ) ( ) ( )
( )

( ) ( ) ( )
( )

( ) ( ) ( )
( )

( ) ( ) ( )

0, 0, 4, 0, 1, 4,
4 52 2

1 1
4, 0, 1, 4, 0, 1,1 1

1, 0, 1, 1, 4,
6 72

1
4, 0, 1, 4,1

sin sin
, , , , , ,

, ,

sin sin
, , , , ,

,

n n n n n n

n n
n n n n n n

n n n n n n

n
n n n n

x t x t
G x t G x t

x t x t
G x t G x t

ξ ξ
ξ ξ

ξ ξ
ξ ξ

∞ ∞

= =

∞

=

   Φ Φ Ω Φ Φ Ω   = =
      Ω Φ Φ Ω Φ Φ
   

 Φ Φ Ω Φ Φ Ω = =
  Ω Φ Φ Ω Φ
 

∑ ∑

∑ ( ) 2
1

0, 1, 1

,
,n

n n

∞

=

 
 
  Φ
 

∑

 

are the Green functions, where 
( ) ( )

( )
0, 1, 0, 1,

2
4,

0, 1, 1

, , ,n n n n

n

n nρ

′Φ Φ Φ Φ
Ω =

Φ Φ
 are the eigenvalues. 

6. Multimode theories 

A more accurate description of the rod deformation can be obtained by increasing the number 
of possible deformation modes. The Mindlin-McNiven theory4 is one of possible multimode models 
of the rod. Here we consider another multimode generalization of the Mindlin-Herrmann model of 
longitudinal vibrations of the rod with circular cross-section. Assume the axisymmetric case where 
the displacements are approximated as follows: 

2 2
0 2 2

3 2 1
1 3 2 1

( , , ) ( , ) ( , ) ... ( , );  0,1,2,...

( , , ) ( , ) ( , ) ... ( , ),  0,1,2,...

i
i

j
j

u u x r t x t r x t r x t i

v v x r t r x t r x t r x t j+
+

= = Φ + Φ + + Φ =

= = Φ + Φ + + Φ =
   (22) 

According to the choice of  and i j  we can obtain a higher or lower mode of vibration of rod. 

 In this case 1i = , 0j = : 2
0 2( , , ) ( , ) ( , )u u x r t x t r x t= = Φ + Φ  and 1( , , ) ( , )v v x r t r x t= = Φ  and 

the system of equation of motion in the general form is  

( )'
0, 0,1,2

k k k

k
t x

   ∂ ∂Λ ∂ ∂Λ ∂Λ+ − = =   ∂ ∂Φ ∂ ∂Φ ∂Φ   &
    (23) 

with a set of natural boundary conditions 
0,

0,

( , ) =0 and  0
( , )k x l

k x l

x t
x t=

=

∂ΛΦ =
∂Φ

, where 

( )
( ) ( ) ( )

( ) ( )

' ' '
0 1 2 0 1 2 1 2

2 2 2 '2 '2 '2 '
0 2 0 2 2 1 4 2 0 2 1 4 2 0 1

' ' ' ' 2 2
2 1 2 2 0 2 2 2 1 1 2 2

, , , , , , ,

1
   2 2 2 4

2
1

       4 2 2 4 4 4                     (24)
2

A I I I A I I A

I I I A I

λ µ µ λ µ λ

µ λ µ λ λ µ µ

Λ = Λ Φ Φ Φ Φ Φ Φ Φ Φ

 = Φ + Φ Φ + Φ + Φ − + Φ + Φ + + Φ + Φ Φ − 

 − Φ Φ + + Φ Φ + Φ Φ + + Φ + Φ 

& & &

& & & & &

 

is the Lagrangian density of the rod and 
6

4
4 .

3s

R
I r ds π= =∫  

 Substituting expression (24) into system (23) we obtain the explicit form of the system of 
equation of motion in the operator form: 
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( ) [ ] ( )
[ ] ( ) ( ) ( )

( ) ( ) ( )( )

2 2 2 2
0 1 2 2

2 2
0 2 1 2 2

2 2 2 2
2 0 2 1 4 2 2

2 2 2 0

2 4 2 0

2 2 2 4 0

t x x t x

x t x x

t x x t x

A A I

A I A I

I I I I

ρ λ µ λ ρ λ µ

λ ρ µ λ µ λ µ

ρ λ µ λ µ ρ λ µ µ

   ∂ − + ∂ Φ − ∂ Φ + ∂ − + ∂ Φ =   

 ∂ Φ + ∂ − ∂ + + Φ + − ∂ Φ =   

  ∂ − + ∂ Φ − − ∂ Φ + ∂ − + ∂ + Φ =     

 (25) 

 The orthogonality conditions are:  

( )0, 0, 0, 2, 2, 0, 1, 1, 4 2, 2,0
0,

l

n m p n m n m n m n mA I I dx Φ Φ + Φ Φ + Φ Φ + Φ Φ + Φ Φ = ∫  

( ) ( ) ( ){ 0, 0, 1, 1, 0, 1, 1, 0,0
2 4 2

l

n m n m n m n mA λ µ λ µ λ ′ ′ ′ ′+ Φ Φ + + Φ Φ + Φ Φ + Φ Φ ∫  

( )( ) ( )0, 2, 2, 0, 1, 2, 1, 2,2 2p n m n m n m m nI λ µ λ ′ ′ ′ ′ ′ ′+ + Φ Φ + Φ Φ + Φ Φ + Φ Φ  

( )( ) ( ) }1, 1, 1, 2, 1, 2, 2, 2, 4 2, 2,2 4 2 0n m n m m n m n m nI dxµ λ µ′ ′ ′ ′ ′ ′+ Φ Φ + Φ Φ + Φ Φ + Φ Φ + + Φ Φ =


 

for  m n≠ . 

7. Comparison of Different Models 

We analyze different models of longitudinal vibrations of rods by drawing their spectral 
curves and compare them with the curves of the exact Pochammer-Chree solution5, 6, 7 of the axi-
symmetric problem of cylindrical rod with free outer surface. To make this comparison we assume 

( ) ( ), i t kxu x t U e ω −= ⋅ , ( ) ( ) ( ), , i t kx
k kx r t r e ω −Φ = Φ ⋅  and substitute these values in (3), (9),(14),(20), 

and (25). It is supposed in this case that all parameters of equations are constant (say, 

( )A x A const= = , etc.). In the classical case we obtain a single spectral line ( ) Ek kω ρ= ⋅ . The 

spectral curve R ρω µ
 ⋅ ⋅ 
 

versus of ( )k R⋅  of the Rayleigh-Love model is shown in Figure 1 for 

( ]0,20k R⋅ ∈ , ( ]0,32R ρω µ⋅ ⋅ ∈ , where R – radius of outer cylindrical surface of the rod (all 

other figures are drawn in the same ranges). Figure 2 demonstrates the spectral curve of the 
Rayleigh-Bishop model. 

 

     
      Figure 1. Rayleigh-Love model.     Figure 2. Rayleigh-Bishop model.  
 
 The spectral curves of the Mindlin-Herrmann model are shown in Figure 3. Figure 4 illus-

trates the multimode model with 1, 0i j= = . 
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  Figure 3. Mindlin-Herrmann model    Figure 4. Multimode model ( 1, 0i j= = ) 
 
 Figure 5 illustrates the multimode model with 2, 1i j= =  and Figure 6 shows the exact 

Pochhammer–Chree model of the axisymmetric case and free cylindrical surface. 
  

    
          Figure 5. Multimode model ( 2, 1i j= = )      Figure 6. Pochhammer –Chree model  
         (straight line demonstrates the shear mode) 

8. Discussion and conclusions 

In the present paper we compared the classical, Rayleigh-Love, Rayleigh-Bishop, Mindlin-
Herrmann, and multimode models of longitudinal vibrations of rods with the exact Pochhammer-
Chree solutions of axisymmetric vibration of isotropic cylinder with free surface. The classical, 
Rayleigh-Love, and Rayleigh-Bishop models approximately describe the first mode of the exact 
solution in the restricted “k - ω ”- domain. The Rayleigh-Bishop approximation is more accurate, 
but the spectral curve asymptotically tends to the shear wave solution while the exact solution tends 
to the surface waves mode. It is explained by the hypothesis on plane cross-section used in the clas-
sical, Rayleigh-Love, and Rayleigh-Bishop models. The Mindlin-Herrmann model also satisfies the 
plane cross-section hypothesis. Due to the fact that this model is described in terms of two inde-
pendent functions the set of spectral curves contain two branches. In the multimode model we reject 
the hypothesis on plane cross-section and obtain more spectral curves. The higher the order of the 
multimode approximation the broader is the “k - ω ”- domain in which the effects of longitudinal 
vibrations of the rods could be analyzed. 
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