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A unified approach to derivation of different fared of differential equations describing the
longitudinal vibration of elastic rods and basedtba Hamilton variational principle is out-
lined. The simplest model of longitudinal vibratiohthe rods does not take into consideration
its lateral motion and is described in terms of weae equation. The more elaborated models
were proposed by Rayleigh, Love, Bishop, Mindlinradgann, and multimode models in which
the lateral effect plays an important role. Dispmrurves, representing the eigenvalues versus
wave numbers, of these models are compared withxhet dispersion curves of isotropic cyl-
inder and conclusions on accuracy of the modeldadeiced. The Green functions are con-
structed for the classical, Rayleigh, Bishop, anddin-Herrmann models in which the gen-
eral solutions of the problem are obtained. Thaqipies of construction of the multimode
theories, corresponding equations and orthogonaditylitions are considered.

1. Introduction

In what follow, the wave displacements in the rod described in accordance with the as-
sumptions made in various vibration theories; aféeds the Hamilton variational principle is used
to derive the equation or system of equation ofiemotorresponding to each approach. The method
of finding the analytical solution is based on Heparation of variables, the investigation of the
eigenfunctions from the Sturm-Liouville problemppf of two kinds of the eigenfunction orthogo-
nality conditions by using the equations of ther@tlLiouville problem. At the next stage the solu-
tion is assumed in the form of the Fourier serigd substituted into the Lagrangian which hold the
Euler-Lagrange differential equation. The solutairthe resulting differential equation is used to-
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gether with the norms corresponding to the aboteogonalities to construct the Green function.
The general solutions of the problems are formdlatgerms of the Green functions.

2. Classical theory: wave equation

In this case the longitudinal displacement is assliieonstant in all points along the cross
section of the rod and expressedjasu(x,t). The general or compact form of equation of motion

Is:
2(%)-2(2)- -
ot 0&) ox\au' ) au
with the natural boundary conditiogé\T =0 or u(x,t) 0 =0 where
u x=0, =
A= At =M p0 - Eou ]+ A F (x 2)

is the Lagrangian density in whiclhA(x) is the cross-sectional area of the rgr{x) is the mass
density of the rode(x) is the Young modulus of elasticity am{x,t) is the applied external force.
Substituting (2) into (1) we obtain the explicito of the equation (1):

ou 0 ou B
A(x)p(x)?—&(A(x)ax)&j—A(x)F(x,t) -0 @3)

The eigenfunction follow from the correspondingrsitLiouville problem fulfilled two or-
thogonality conditions:

[[X, 0%, (0dx=0 and [ X ()X (x)dx=0 for  m#n (4)

where x|/ :j' x2dx and x|} :j' X'2dx, X,(X), n=1,2,.. are the eigenfunctions corresponding

to the eigenvalueg), = \f'hi ||||2

The solution of the problem is given by the follng/expression
()= 0@ g+ o (xé )ae+ L HF (£.1)G(x.£ -1)dédr
(5)

is the Green function.

where, (x, £.1) = Z X,(0)X, (istlnt

3. Rayleigh-Love theory

The effects of the lateral displacement of the aioel taken into consideration in the kinetic
energy by introducing the Poisson raticand the components of the displacement vectdr are

u=u(x,t), V=Vv(X,y)=-nyu,, W=wW(X,z)=-nzu, (6)
and the equation of the motion in the compact farigiven as follow:
2
(20), 2902 fan] oA @
0&/) o0x\odu, ) oxot\ o ou
with the associated boundary condltlo?.@ gt(a@j =0 or u(xt) _ =0, where
ou, =

=A(u,&u, &) :%,o(x)[A(x)&2 +n7(x)1 p(x)&l;2 - A(x) E(x)u;z] +J; A(X)F(x,t)udx  (8)




16" International Congress on Sound and Vibrationk#wa Poland, 5-9 July 2009

4
is the Lagrangian density in which is the polar moment of inertia (= | —I r’ds=mr—

s 2
for the circular cross-section). By substituting if@o (7) we obtain the Rayleigh-Love equation for
the vibrating rod:

o’u QU0 ( 2y Xa_3u+xx,:
£ s B D 20

t 9)
444424489
second order wave equation Rayleigh-Love correction
The orthogonality conditions fulfilled by the eidanctionsX, (x), n=1,2,.., solution of the
Strum-Liouville problem corresponding to (9) are:
jop[Axn(x)xm(x)mzlpx;(x)x;n(x)]dx:o and I;EAX,'W(X)Xr'n(x)dxzo for mzn  (10)
The solution of the problem is:

u(xt) =j;A{g(E)w+h(g)(32(x,f,t)}dg+j;,72| {gl(g)mm(g)m%&

oéot ¢
v H G,(x £ t-1)drdé (12)
where, (x,£,1)= 3" Xn(X)an(i):'?QMt is the Green function ang, = [AE H HZ is the eigen-
n=1 2n

values associated with the above eigenfunctions

4. Rayleigh-Bishop theory

Certain assumptions (longitudinal and transverspldcements inside the excited rod) in the
previous theory are kept and the vector displaceénsethe same. But in 1952, in order to improve

the Rayleigh-Love theory, Bishop showed the contiim of shear stiffness accompanying the
transverse deformation while calculating the steairrgy’ 2

The general form of the equation of motion is:

a(a/\J 0 (on)_0* (N 9% (aA)_ oA _
ot\ o) ox\ou, | oxat\ o0& ) ox? | ou’

12
=" (12)
with the natural associated boundary condltlon@ 9 a oA =0, and
ou, ot a@ au" o,
U, (%,t)],,, =0, Or u(xt),_,, =0, al’ldu'x’x(x,t)| , =0, where
A=A (UB, 8 1) = [A )82 +17(x)! (x)&f]
(13)
—[A JuZ + (X u’ 2] I (%, t)udx
is the Lagrangian density of the V|brat|ng rod.ng,bsUtutmg (13) into (12), we obtain the explicit
form of the equation'
0°u ou) 0 0%u 9’ du
() A0 52~ 2 E( AL - Lp(x)rf(x)Ip(x)WAl?(f(x)nZ(xw (4 j
1444 2% 452( 4444%3 Paa4442a489 X\ aaa2244 8%
second order wave equation Rayleigh correction Bishop correction
-A(X)F(xt)=0

(14)

The investigation of the Sturm-Liouville problemrasponding to equation (14), show that
the resulting eigenfunctionX _(x), n=1, 2,... fulfil two orthogonality conditions:
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[ [ AX, ()X (3) +7%1, X ()X (x) Jx =0 and [ [ EAX; (x) X1,() + 7?1 X2 () X2, (x) ek =0

n

(15)
The solution of equation (14) is as follows:
ol 0G;, (x,&,t) U | 0°G (X E) L, 0G,(X,€ 1)
u(xt) —jo A[g(f)T+h(f)Gs(x,{,t)}d£+jof7 Ip{g (f)a—gat+h (f)T dé+
+%£ng (£ 7)G, (x & t-7)drdé (16
where Gg(x,f,t):i X, ()X, (4)sinQ, t is the Green Function, in whicdjn :m is the natu-

n=1 QSnHXnle \/;HXnHl
ral eigenvalues corresponding ¥q,(x), n=1,2,...

5. Mindlin-Herrmann theory

Despite the fact that has improved the previousrtgs. It is necessary to emphasize the lack
of physical clarity in interpretation of certainghiorder modes, mainly independent shear and ra-
dial motion. In order to address this insufficieddindlin and Herrmann take into account the in-
dependent shearing deformation, radial displaceraadt distributed stress along the transversal
directior?. According to these new ideas the displacemergsrepresented by two independent
functions:

u=u(xt)=®,(x,t), v=v(xr,t)=rb (xt) (17)
wherer is the distance between the points along thedbtirection of the rod.

The compact form of the system of equations of amois given as follow:

d{ oA d( oA oA
| = | = |- =0, k:O, 18
dt(a&k]+dx[a¢'k] 0P, ( ) (18)
With the corresponding set of natural boundary @@m o (xt) _, =0, ®,(xt)_, =0, O
NI _g O _y, where
aq); x=0/ acbz) x=0|
A=A, &, 0,00
=§(Ac&§ )+ 1,82(x t ))——;((/1 + L) DA+ N DA+ LA+ 1) DA+ 40 (1¢
is the Lagrange density of the rod, in whigh= E and A = 57 are Lame's con-
2(1+n) 1-2)1*n)

stants. Substituting expression (19) into the sygtE8) leads to the explicit form of the system of
equations in the operator form:

PAIZD — (A +2p) A2 - 2A A9, D, = AF (x,t)
2AP0, @ + pl 97D, — 1l 02D + AS(A+ )P, =0
The couple of eigenfunctions found by investigating Sturm-Liouville problem associated
to the system (14), hold the following orthogonalit properties form#n

I;(A¢o,n¢o,m + P, 0 1m) dx =0and

(20)

I I I I I I T
[ {48+ ) @, @, +1 10 O+ AN +20) D', @' + 2AA(D D + D' D )} dx = 0.
The solution of the system of equation (20) cafobad:
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(x0)= ], pg() 2D ge s [ g XD g

[ AN EG, K ETUEH[ 1,0 EG K ELIEFT HF&z(ﬁu(Et r grd¢

@,00)= [, Ag(@) T ae 1 [ gy 2ot (X‘”)df+

(21)

[ ANEB, K E LR+ 1,0 mwtw;joj;F €7 B k£t-7 Yrdé

whereu(x,r,t)_ =@(x) and&kr t )_ =¢ & are initial transverse displacement and velocity,

G, (x &)=Y, (D"”(X)(D (¢)sina,, t}e(xft)=i[q’°n(x)q’ o(€)sin0 , t}

n=1

On’ 1n “ on? 1n H

6 (x£0)=3 “’“(X)“’("“(E)Si”?”t]’%(x,at):i[%(xm({) Sm%t}

n=1 Q4,n (q)O,n’q)ln)”l n=1 Q4,n ((Do,n’¢1,n):

H((D(),n’cbl,n) '(cDOn 'cbln)

are the Green functions, whege -

e \/;“(q)o,ncbl,n) 1

2 are the eigenvalues.

6. Multimode theories

A more accurate description of the rod deformatian be obtained by increasing the number
of possible deformation modes. The Mindlin-McNiw&eory is one of possible multimode models
of the rod. Here we consider another multimode gdization of the Mindlin-Herrmann model of
longitudinal vibrations of the rod with circularass-section. Assume the axisymmetric case where
the displacements are approximated as follows:

U=Uu(xr,t)=®, (Xt +r’d, (xt)+..+r?d, xt), i=012,..
VEV(X L) =1®, () + 30 () + AP, xt), j=0,1,2,.
According to the choice afand] we can obtain a higher or lower mode of vibratibmod.
In this casei =1, j=0: u=u(x,r,t)=®,(x,t)+r’®,(x,t) and v=v(xr,t)=rd,(x,t) and
the system of equation of motion in the generahfes

(22)

0 oA 0 oA N
—| = |+—| — |——— =0, k=0,1, 23
ar[a&kj ax£aq>kj 0P, ( 3 (23)
with a set of natural boundary conditioms(x,t)| . =0 and ek = (, where
*=0, 0P, (x,t) ve0l

A=N($,,8,8%,0,0,0,0,0)
[(A&2+2| $&,+1 B5+197Y-(1+ ) AP+l PI+(A+ )1 P+ AADP |-
—EI:AWIZCD;CDZ+ 2(/1"' 21)|2¢'o¢'2+ 4 2CDI2CD 1t 4/]+/'I)ACD21+ #l 9922] (2

6

is the Lagrangian density of the rod and:j r‘ds= n%.

Substituting expression (24) into system (23) w&aim the explicit form of the system of
equation of motion in the operator form:
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AL P37 =(A+2u)0% |, ~[2449,] D, +1,[ 007 ~(A + 2u)07 |®,= 0
[2450, ], +[ 1, (007 - 107) + 4A(A + ) | &, +[ 2(A - )19, ] @, = 0 (25)
1,[ 007 (A +244)02 |0, —[ 2(A - )| Zax]qnl{l W07 - (A1 +21)92) + 4,u|2]cp2 =C
The orthogonality conditions are:

.[;[A¢Oyn¢0m+ 1y (Pop® o+ B @ +® 0 ) +1 P L0, [dx=0,

[{A[(A+20) @, @, + 4(A+ ) @D+ 2A (@@, + 0 )]

+, [(/1 +24) (@, @, + @, 0 )+ 20 (0,00, + D, ')
(D, P, +2( DD, + DD )+ 4D B ) [+ A+ 20) D 0 } dx=0

for m#n.

7.Comparison of Different Models

We analyze different models of longitudinal viboats of rods by drawing their spectral
curves and compare them with the curves of thetékachammer-Chree solutdfi * of the axi-
symmetric problem of cylindrical rod with free ousrface. To make this comparison we assume

u(xt)=U&“™, o (xrt)=o,(r)E“™ and substitute these values in (3), (9),(14),(20),
and (25). It is supposed in this case that all mpatars of equations are constant (say,
A(x) = A=const, etc.). In the classical case we obtain a singéesal linew(k) = /%Dk The

spectral curve{w[R /%jversus of(k [IR) of the Rayleigh-Love model is shown in Figure & fo

kRO(0,2(, wR }%D(O,Sq , whereR — radius of outer cylindrical surface of the rodl (a

other figures are drawn in the same ranges). FiQuaemonstrates the spectral curve of the
Rayleigh-Bishop model.
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Figure 1. Rayleigh-Love model. Figure 2. Rayleigh-Bishop model.

The spectral curves of the Mindlin-Herrmann model shown in Figure 3. Figure 4 illus-
trates the multimode model wiih=1, j = 0.
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Figure 3. Mindlin-Herrmann model  Figure 4. Multimode model { =1, j = 0)

Figure 5 illustrates the multimode model wit 2, j =1 and Figure 6 shows the exact
Pochhammer—Chree model of the axisymmetric caséraactylindrical surface.
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Figure5. Multimode model { =2, j =1) Figure6. Pochhammer —Chree model
(straight line demonstrates the shear ihode

8.Discussion and conclusions

In the present paper we compared the classicalleRayLove, Rayleigh-Bishop, Mindlin-
Herrmann, and multimode models of longitudinal &iiyns of rods with the exact Pochhammer-
Chree solutions of axisymmetric vibration of is@im cylinder with free surface. The classical,
Rayleigh-Love, and Rayleigh-Bishop models approxatyadescribe the first mode of the exact
solution in the restricted “k «”- domain. The Rayleigh-Bishop approximation is m@rccurate,
but the spectral curve asymptotically tends tosttear wave solution while the exact solution tends
to the surface waves mode. It is explained by gpothesis on plane cross-section used in the clas-
sical, Rayleigh-Love, and Rayleigh-Bishop modelse Mindlin-Herrmann model also satisfies the
plane cross-section hypothesis. Due to the fadttthe model is described in terms of two inde-
pendent functions the set of spectral curves cortad branches. In the multimode model we reject
the hypothesis on plane cross-section and obtane sywectral curves. The higher the order of the
multimode approximation the broader is the “kv”- domain in which the effects of longitudinal
vibrations of the rods could be analyzed.
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