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ABSTRACT

In vegetation spectroscopy, compositional information of leaves
contained at band level or across the electromagnetic spectrum
(EMS) and parts thereof, plays a huge rule in the analysis of spectra
and their relations to the reflectance patterns across the spectrum.
Spectral matching is often achieved by means of matching algo-
rithms such as the Spectral Angle Mapper (SAM), Spectral informa-
tion divergence (SID) and mixed measures of SAM and SID using
either the tangent or the sine trigonometric functions, SID(TAN)
or SID(SIN). The performance of these measures in distinguishing
between objects of interest, such as species, is often compared using
the relative spectral discriminatory probability (RSDPB). In this
study, these measures are used to assess whether various sets of
bands including the full spectrum, the visible (VIS), the near infra-
red (NIR), the shortwave infra-red (SWIR) region, as well as sets of
bands identified by the stepwise discriminant analysis (SDA), can
be used to discriminate the different species. This is done to identify
the important regions of the EMS to distinguish seven common
savannah tree species observed in the Kruger National Park, South
Africa’s largest game reserve. The magnitude of variation of the
species in any part of the spectrum can be linked to the importance
of that spectral region in distinguishing the species. In addition,
classification accuracy of these sets of bands was assessed and the
SDA bands often gave better classification accuracy compared to
using all bands, bands in the NIR, and SWIR parts of the EMS.

Index Terms— hyperspectral data, species, discrimination,
SAM, SID, mixed measures, classification.

1. INTRODUCTION

The compositional information of leaves in savannah trees and veg-
etation spectroscopy in general, obtained by means of hyperspec-
tral remote sensing technologies, can provide good basis for spec-
tral analysis of leaves as well as information about leaves contained
across the electromagnetic spectrum (EMS) and parts thereof. The
advancement in high spectral resolution data obtained through hy-
perspectral remote sensing makes it possible to distinguish spectrally
similar species, but with many additional problems, for example,
large number of bands and greater within species variability than be-
tween species variability.

A number of studies (those conducted by [1], [2], [3], and [4])
were able to show that specific parts of the hyperspectral EMS can
be used to discriminate species, whereas studies such as the one
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conducted by [5] contradicted their findings as the different parts of
EMS did not show any significant difference in species discrimina-
tion. This study assesses the ability of certain parts of the spectrum,
as well as the important bands identified by the stepwise discrim-
inant analysis (SDA), to contribute to the identification of each of
the seven major savannah tree species found in the Kruger National
Park, the largest game reserve in South Africa.

Common spectral similarity measures are used to compare the
manner in which the band configurations such as the visible (VIS),
near infra-red (NIR), shortwave infra-red (SWIR), full spectrum, as
well as the best sets of bands selected from SDA (65, 30, 20, and
10 band sets respectively). The performance of these measures in
distinguishing between the various sets of bands are compared by
means of the relative spectral discriminatory probability (RSDPB),
using each of the species in order to establish the association be-
tween the sets of bands and the species. We essentially assess the
significance of information provided by hyperspectral sets of bands,
in discriminating each of the species. We further studied the mean
and variances of the seven species and related them to the most dis-
criminatory parts of the EMS.

This study was concluded by looking at several common clas-
sification techniques, such as, the Spectral Angle Mapper (SAM),
Spectral information divergence (SID) and mixed measures of SAM
and SID which incorporate the sine and tangent trigonometric func-
tions, SID(TAN) and SID(SIN).

2. DATA DESCRIPTION AND METHODS

2.1. Data

Hyperspectral measurements of leaves of the seven savannah trees
were acquired from the Kruger National Park, in an attempt to assess
tree species diversity in the park. The hyperspectral data consisted
of 2151 spectral bands and seven plant tree species, which were
measured using the Analytical Spectral Device (ASD) spectrometer.
Prior to the analysis, these spectral bands were reduced to 1552 as
the water absorption spectral bands on the leaf area were removed.
The seven tree species included the Lonchocarpus capassa (LC),
Combretum apiculatum (CA), Combretum heroense (CH), Com-
bretum zeyherrea (ZC), Gymnospora buxifolia (GB), Gymnospora
senegalensis (GS), and Terminalia sericia (TS). Each tree species
had 10 measurements recorded with the exception of the GB, which
had only seven.

2.2. Methods
2.2.1. Stepwise discriminant analysis (SDA)

SDA was performed initially to eliminate redundant information
recorded by the ASD spectrometer and to find bands that discrimi-



nate between the seven plant tree species across the spectrum. SDA
builds a model of how we can best predict the groups to which each
case belongs. At each step, each band is evaluated to establish its
contribution to the discrimination between groups and the band with
the most discriminatory power is then included in the model. This
process is channeled by the F’ statistic, which evaluates the variables
that are entered into or removed from the discriminant model, while
the discriminatory power of the model is measured by Wilks’ lamba.
The F' value for a variable indicates its statistical significance to
the prediction of group membership while the Wilks’ lambda tests
for differences between the group means. The Wilks’ lamba ranges
from zero to one with values around zero indicating differences
in group means, whereas values close to one indicate similarities
between group means.

This procedure was performed in order to select the spectral
bands with more discriminatory power between the seven plant tree
species while finding the discriminant function that best predicts the
classification of observations to relative species. A total of 65 spec-
tral bands were selected by SDA. All the 65 SDA bands were used
in the analysis. In addition, we considered selecting, through SDA,
the top 30, 20 and 10 spectral bands respectively. This was done
because as the number of bands selected grew larger, the model be-
came unstable due to singularities resulting from high correlation
between bands. Table 1 shows the spectral bands that were selected
by SDA as well as the regions of the EMS considered for species
discrimination.

Table 1. Spectral band configurations used in the analysis
Wavelength (nm) Number of bands

All bands 401-1350, 1600-1800, 2100-2500 1552
VIS bands 401-701 301
NIR bands 702-1300 601
SWIR bands | 1301-1350, 1600 -1800, 2100-2500 650

SDA.65 bands | 402, 404, 407, 422, 436, 442, 451, 618,644, | 65
646, 657, 659, 665, 679, 700, 742, 955, 968,
2100,2109, 2110, 2114, 2131, 2144, 2147,
2170, 2178, 2205, 2207, 2210, 2214, 2231,
2235, 2236, 2239, 2256,2263, 2272, 2273,
2296, 2297, 2301, 2321, 2325, 2341, 2345,
2348, 2349, 2350, 2351, 2365, 2367, 2378,
2383, 2393, 2409, 2416, 2421, 2426, 2427,
2431, 2463,2465, 2468, 2495

SDA.30 bands | 402, 407, 436, 442, 451, 618, 657, 659, |30
665, 679, 700, 729, 2114, 2131, 2147, 2178,
2186, 2235, 2236, 2263, 2296, 2321, 2325
2348, 2351, 2365, 2378, 2383, 2431, 249
SDA.20 bands | 402, 436, 442, 451, 659, 679, 729, 2114, |20
2131, 2147, 2186, 2235, 2236, 2263, 2296,
2321, 2325, 2351, 2365, 2431

SDA.10 bands | 402, 436, 2147, 2186, 2235, 2263, 2296, | 10
2321, 2351 2431

2.2.2. Spectral Angle Mapper (SAM)

SAM measures the similarity by computing an angle between two
spectra. These spectra are vectors in space with dimensionality equal
to the number of bands [6]. The angle between spectra is then used
as a measure of discrimination [7] between species or any objects of
interest. SAM is defined as:
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where s; and s; are the two spectral signatures, and L is the total
number of bands that were considered. The smaller the angle be-
tween spectra, the more similar the two spectra are. SAM is a useful
similarity measure in species identification [7].

2.2.3. Spectral information divergence (SID)

SID measures the discrepancy probability between spectral vectors
by computing the distances between probability distributions pro-
duced by spectral signatures [8]. The information divergence is
measured between the probability distributions generated by spec-
tra. The SID approach models the spectrum of hyperspectral data as
a probability distribution, and is useful in capturing variations among
spectral bands [7]. SID is defined as:

SID(si, s5) = D(sills;) + D(sjllsi), (2)

where s; and s; are the two spectral signatures, D(si||s;) is the av-
erage discrepancy in self-information of s; relative to that of s; also
known as the Kullback-Leibler information measure, and D(s;||s:)
is the average discrepancy in self-information of s; with respect to
the self-information of s;. Smaller values of SID indicate greater
similarity between the two spectra.

2.2.4. SID-SAM mixed measure

SID-SAM mixed measure is said to increase discriminability be-
tween two similar spectra by making them even more similar and by
making the two dissimilar spectra even more distinct. Du et. al. [7]
proposed two versions of SID-SAM mixed measures, one based on
the tangent of the function between SAM and SID, while the other
based on the sine function. These two are defined as:

SID(TAN)
SID(SIN)

SID(s;, s5) x tan(SAM(si, s5))  (3)
SID(ss,8;5) X sin(SAM(s;, s5)) 4)

where s; and s; are the two spectral signatures. The smaller values
of SID(TAN) and SID(SIN) indicate greater similarity between the
two spectra.

2.2.5. Relative Spectral discriminatory probability (RSDPB)

RSDPB computes the likelihood that a spectral signature ¢ will be
identified by a selective set of spectral signatures, /. In this ap-
plication, RSDPB is used to determine the likelihood that certain
spectral signatures (from the entire spectrum, VIS, NIR, SWIR, and
also SDA bands) can be used in discriminating between the seven
predominant plant tree species found in the Kruger National Park.
Therefore, the discriminatory ability of the bands in the above men-
tioned regions is determined through the relative spectral discrimi-
natory probability. The relative spectral discriminatory probability
is defined as:
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where Z m(t, s;) is the normalization constant determined by sim-
Jj=1

ilarity measures in the endmember matrix. Further, m(¢, s) is any
of the predefined spectral similarity measures for the target spectral
signature relative to other spectra si, and K is the total number of



species. The higher the RSDPB value, the more likely the spectra
discriminate from others in that part of the EMS.

3. RESULTS AND DISCUSSION

Due to the similar patterns shown by certain species, only the results
for a few species are shown in this section. Figure 1(a) shows the
plot of the RSDPB values for CA, using each of the discrimination
methods at various parts of the EMS. For CA, using all the bands, the
SWIR, and 10 SDA bands showed greater discriminatory probability
compared to the other regions of the EMS. It can also be observed
that the mixed measures, namely, SID(SIN) and SID(TAN) showed
more discriminatory ability over the SID and SAM measures. GS
showed a discrimination pattern similar to that of CA, expect that
the 20 SDA bands had greater discriminatory ability (particulary for
the mixed measures) compared to the other SDA bands.
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Fig. 1. RSDPB plots for species

Figure 1(b) shows the plot of the RSDPB values for CH using
each of the classification methods at various parts of the EMS. The
SAM method showed relatively greater discrimination than the other
methods, where the largest discrimination was observed at the NIR
region. All the measures, however, failed to discriminate most band
sets, particulary the SDA bands. CZ showed the discrimination pat-
tern similar to that of CH.

The GB discrimination plot shown in Figure 1 (c), indicates that
using VIS, NIR, and SWIR parts of EMS showed lower discrimina-
tion compared to using the SDA bands. The 30 SDA bands showed
greater discrimination than other bands.

Figure 1(d) shows the plot of the RSDPB values for TS using
each of the classification methods at various parts of the EMS. The
discriminatory pattern for TS appeared to be different from others,
but similar to that of LC. It is also quite noticeable from this figure

that the VIS region appeared to be largely discriminated by all the
measures, particularly by the mixed measures.

We also linked the magnitude of spectral variation in species
with the spectral regions mentioned above to examine whether the
level of variation across the EMS or at specific regions thereof, gives
useful information for the identification of species. We assume that
the mean and variance reflectance patterns of species, at different
parts of the EMS, contribute to the identification of species at such
parts (if not at the entire spectrum).

Figures 2 and 3 are the spectral plots for the mean and the vari-
ances for each of the seven species. For CA, the mean and vari-
ance at SWIR region are much higher compared to the other species.
According to the average wavelength for all species shown in Fig-
ure 2, the GS, just like the CA, seemed to be more different than
other species at the SWIR region. GS, however, showed lower aver-
ages and smaller variations across the EMS (especially at the SWIR
part), hence the other regions, except for the VIS region, also showed
larger contributions to the identification of GS.
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Fig. 2. Mean of species across the EMS

Figure 3 indicates that the variability within the TS species were
relatively different from other species in the VIS region, hence the
importance of this region in the discrimination of TS. GB did not
show a very different pattern of variation at any specific part of EMS,
as aresult, no clear identification of GB appeared at any part of EMS.
Hence it was observed that at any part of the EMS where the mean
or variance patterns of species were different from other species
(whether extremely large or small), that part had greater impact on
species separability. Therefore, the ability of any EMS region to dis-
criminate between all species lies in the magnitude of variation of
species in that region. This could be the reason that the EMS regions
in this study, as well as those used in the study by [5], failed to give
any clear distinction between all the species.

Each of the 67 observations were then classified according to
SAM, SID, SID(SIN), and SID(TAN). The accuracy of these sets
of bands in classifying the species was examined using the kappa
coefficient as defined by [9].

Figure 4 shows the classification results for each of the band re-
gions using the different classification methods. As can be observed,
SID(SIN) and SID(TAN) often performed better than SAM and SID
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Fig. 3. Variance of species across the EMS

especially in VIS, NIR, SWIR, 20 SDA, and 10 SDA bands config-
urations. The bands selected from SDA often gave higher classifi-
cation accuracy compared to other regions, especially for 30 SDA
bands where SID classification accuracy was the highest (approxi-
mately 74% accuracy). This figure also shows that the mixed mea-
sures identified the VIS region as the region that achieved the largest
degree of classification of observations to respective species, with a
kappa coefficient of about 0.77.
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Fig. 4. Classification accuracy for each set of bands

4. SUMMARY AND CONCLUSIONS

This study used various sets of bands that could potentially discrim-
inate between species. These sets of bands included all the bands
in the EMS, VIS, NIR, and SWIR regions as well as the sets of 65,

30, 20, and 10 bands selected from SDA. Using the spectral com-
position of each of the seven species observed from hyperspectral
remote sensing, these of bands were identified for potential discrim-
ination by means of spectral similarity measures. This was done to
establish which of the band sets or regions could be associated with
the species based on discriminatory probabilities of each band set.
The results indicated that certain parts of the EMS can be associated
with certain species depending on the reflectance contribution exhib-
ited by the species at those parts. The bands selected from the step-
wise discriminant analysis were seen to be important for identifica-
tion of species such as GB. The classification accuracy of each of the
band sets was also assessed based on the classification methods such
as SAM, SID, and mixed measures thereof. The mixed measures,
SID(SIN) and SID(TAN) often gave better classification results for
the majority of the band sets. According to these mixed measures,
the VIS bands classified the species better than other sets of bands.
The SDA bands, however, generally gave better classification accu-
racy compared to other parts of EMS. This gives is an indication
that the stepwise discriminant analysis selects the bands that are sta-
tistically important and are able to provided better classification of
observations to relative species even though these bands might not
(in reality) be important in discrimination of various species because
of the high within variability of the species compared to the between
variability of the species.
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