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ABSTRACT

This paper uses simulated annealing and focus on the spectral
angle mapper (SAM), to demonstrate how the separability of
two mean spectra from different species can be increased by
choosing the bands that maximize the metric. It is known that
classification performance is enhanced when the differences
in mean spectra for each endmember species are maximized.
Comparison was made using the selected bands derived from
the proposed method, to all bands in the electromagnetic spec-
trum (EMS), only the bands in the visible, near infrared and
short wave infrared regions of the EMS and selected bands us-
ing stepwise discriminant analysis. The bands from the pro-
posed method often indicates a better choice of band selection
as viewed by the summary statistics for (a) the SAM measure-
ments, (b) the correlations between bands and (c) the spectral
information divergence (SID), for each pair of species; and
the classification accuracy of SAM and SID.

Index Terms— Band selection, simulated annealing
(SA), stepwise discriminant analysis (SDA), hyperspectral,
spectral angle mapper (SAM), spectral information diver-
gence (SID)

1. INTRODUCTION

One of the most common issues in hyperspectral classifica-
tion is to improve class separability by selecting appropriate
spectral bands [1]. These bands are usually highly correlated,
and using all bands in classification algorithms could reduce
the classification performance. Improvement to the classifica-
tion accuracy is important because remote sensing images can
cover large areas and thereby reduce labor intensive, sample
based in situ classification of a targeted area.

The most widely used approach for (1) unsupervised clas-
sification is the principal components analysis (PCA) [2], also
known as a feature extraction algorithm and (2) supervised
classification is the Fisher discriminant analysis, in particu-
lar, stepwise discriminate analysis (SDA) [3], also known as
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a feature selection algorithm. SDA uses the between-class
and within-class variances to select bands that maximize the
separability of the classes. PCA is rather difficult to interpret
because of the linear combination of all bands into the eigen-
vectors.

The success to correctly classify spectrally similar vegeta-
tion species is limited and dependant on the set of bands used
for the classification algorithm. Hence. the objective of the
study is to maximize the similarity measures, namely SAM,
by choosing the proper set of bands. This enhances classifi-
cation performance when the angle between the mean spectra
for two species is maximized.

2. DATA DESCRIPTION

The Analytical Spectral Device (ASD) spectrometer (Field-
Spec3 Pro FR) was used to recorded hyperspectral measure-
ments of leaf samples taken from several different savannah
trees in the Kruger National Park, in an attempt to assess tree
species diversity in the park. The hyperspectral data consist
of 2151 spectral bands and seven plant tree species. The seven
tree species include Lonchocarpus capassa, Combretum apic-
ulatum, Combretum heroense, Combretum zeyherrea, Gym-
nospora buxifolia, Gymnospora senegalensis, and Termina-
lia sericia. Each tree species has 10 measurements recorded
(see Figure 1 for Combretum apriculatum) with the exception
of Gymnospora Buxifolia, which has only seven. The total
data set therefore had 67 observations for the species mea-
surements.

Initially, the number of bands were reduced to 1552 due to
typical regions that are affected by atmospheric distortion and
water absorbtion region: bands in the region 1.350–1.599 µm
and 1.800–2.099 µm.

3. MAXIMIZING SEPARABILITY

3.1. Spectral Angel Mapper (SAM)

SAM measures the similarity as the angle formed between
two spectra [4]. In this paper, we used the mean spectra for
each species (Figure 2), so that the angle between the mean
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Fig. 1. Reflectance spectra of the 10 samples for Combretum
apriculatum.

spectra is then used as a measure of discrimination [5] be-
tween species. SAM is thus defined as:

SAM(si, sj) = cos−1
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where si and sj are the mean spectral signatures for species
i and j and L is the total number of bands considered. The
smaller the angle between the mean spectra, the more similar
are the two mean spectra. SAM is a useful deterministic simi-
larity measure in species identification [5] and discrimination.
One approach to finding the best bands is to determine which
subset of bands maximizes Equation 1 for each combination
of two mean spectra.

3.2. Spectral Information Divergence (SID)

SID computes the discrepancy between the probability distri-
butions produced by spectral signatures of pixels [6] and use-
ful in capturing subtle spectral variability [5]. SID is defined
as:

SID(ri, rj) = D (ri||rj) + D (rj ||ri) , (2)
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Fig. 2. Mean spectral reflectance for all seven species. Also,
band selection using stepwise discriminant analysis and the
proposed simulated annealing method. For SDA the results
for the best 10, 20, 30 and 65 selected bands are shown,
whereas for SA the results for the best 10, 20 and 30 selected
bands are shown.

where D (ri||rj) =
L∑

l=1

piDl (ri||rj) =
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pl log (pl/ql)

and D (rj ||rk) =
L∑

l=1

qlDl (rj ||ri) =
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ql log (ql/pl) as de-

rived from the probability vectors p = (p1, p2, . . . , pL)T and
q = (q1, q2, . . . , qL)T for the spectral mean signatures s̄i and
s̄j , where pk = s̄ik/

∑L
i=1 s̄il and qk = s̄jk/

∑L
l=1 s̄jl. The

smaller the value of SID, the more similar are the two mean
spectra. In this paper, we used SID as a stochastic similarity
measure to evaluate the performance of the bands selected.

3.3. Fitness function

The fitness function is defined as

TSAM =
L∑

i=1

L∑
j=i+1

SAM(si, sj), (3)

that is, the total accumulation of the spectral angles between
pairwise mean spectra for all species. The larger the value of
TSAM, the more likely the bands selected discriminate be-
tween the species.



3.4. Simulated annealing (SA)

Simulated annealing is a general optimization method used
in finding the global optimum of an objective function called
the fitness function φ(ω). In our case, the fitness function
TSAM depends on the selected bands ω that is to be maxi-
mized to increase separability between species. As such, sim-
ulated annealing [7] is a computer intensive search technique
to find the bands optimizing the value of TSAM as a function
of the bands, by continually updating this function at succes-
sive steps. Band selection by means of minimizing the total
accumulated correlation was previously addressed by apply-
ing simulated annealing in [1].

Starting with a random selection of bands ω0, φ(ω0) is
calculated for TSAM. Let ωi and ωi+1 represent two solu-
tions with fitness φ(ωi) and φ(ωi+1), respectively. Band se-
lection ωi+1 is derived from ωi by randomly replacing one
band bj of ωi by a new band bk in ω. Further to this, we
also used a local procedure, where we considered all bands
within a search radius of 10 bands to bk. The band with the
highest value of TSAM is then considered in the next step. A
probabilistic acceptance criterion decides whether ωi+1 is ac-
cepted or not. This probability Pc(ωi → ωi+1) of ωi+1 being
accepted equals

Pc(ωi → ωi+1) =
1, if φ(ωi) ≤ φ(ωi+1)

exp
(

φ(ωi+1)− φ(ωi)
c

)
, if φ(ωi) > φ(ωi+1)

(4)

where c denotes a parameter. This parameter is reduced by
a factor of 0.9 after several transitions are made, thereby de-
creasing the probability of accepting inferior moves. A tran-
sition takes place if ωi+1 is accepted. Next, a solution ωi+2 is
derived from ωi+1, and the probability Pc(ωi+1 → ωi+2) is
calculated with a similar acceptance criterion as equation 4.
The process terminates when it stabilizes.

4. RESULTS AND DISCUSSION

Tables 1, 2 and 3, respectively, contain the summary statistics
(minimum, first quartile, medium, mean, third quartile and
maximum) for the values of SAM, the correlation between
bands and the values of SID, for each pair of species, using
all spectral bands, using only the bands in the VIS, NIR and
SWIR parts of the EMS, the 10, 20, 30 and 65 best bands
selected by stepwise discriminant analysis and the 10, 20 and
30 best bands selected by the proposed optimization method.

The proposed method generally have higher SAM val-
ues (Table 1, especially when 10 bands were optimally se-
lected. The values of SAM when using 20 and 30 bands
from SDA were similar to that of the proposed method. Us-
ing all the bands, only the bands in the VIS, NIR and SWIR
performed much worse than using the optimally selected 10,
20 and 30 bands.

Table 1. Summary statistics of SAM
Min Q1 Med Mean Q3 Max

ALL 0.04 0.06 0.10 0.10 0.13 0.24
VIS 0.04 0.07 0.10 0.12 0.16 0.24
NIR 0.01 0.02 0.02 0.02 0.03 0.05
SWIR 0.04 0.06 0.09 0.12 0.16 0.29
BANDS1 10 0.03 0.07 0.10 0.10 0.11 0.17
BANDS1 20 0.05 0.13 0.18 0.19 0.23 0.44
BANDS1 30 0.06 0.15 0.18 0.21 0.24 0.44
BANDS1 65 0.06 0.13 0.18 0.20 0.24 0.47
BANDS2 10 0.07 0.16 0.23 0.25 0.34 0.52
BANDS2 20 0.06 0.13 0.18 0.19 0.24 0.42
BANDS2 30 0.07 0.13 0.18 0.19 0.24 0.42
1 using the selected bands from stepwise discriminant analysis.
2 using the selected bands from the proposed simulated annealing method.

Table 2. Summary statistics of the correlation r2 between
bands

Min Q1 Med Mean Q3 Max
ALL 0.88 0.96 0.98 0.97 0.99 1.00
VIS 0.86 0.94 0.98 0.96 0.99 1.00
NIR 0.75 0.90 0.96 0.94 0.98 1.00
SWIR 0.97 0.99 0.99 0.99 1.00 1.00
BANDS1 10 0.79 0.92 0.96 0.94 0.99 1.00
BANDS1 20 0.59 0.86 0.93 0.89 0.98 0.99
BANDS1 30 0.54 0.81 0.90 0.85 0.95 0.99
BANDS1 65 0.65 0.86 0.93 0.90 0.98 0.99
BANDS2 10 0.00 0.24 0.66 0.49 0.85 0.99
BANDS2 20 0.74 0.92 0.96 0.93 0.99 1.00
BANDS2 30 0.80 0.93 0.96 0.94 0.98 0.99
1 using the selected bands from stepwise discriminant analysis.
2 using the selected bands from the proposed simulated annealing method.

The lowest pairwise correlations r2 (Table 2) were for the
10 bands that were optimally selected. The pairwise correla-
tions for the 20 and 30 bands that were selected using SDA
were generally lower than that using the proposed method.

To demonstrate that although the proposed method selects
bands that optimized SAM, these bands can also be used for
other classification methods. We used SID to determine the
separability between the different species and found that the
bands selected from the proposed method result in greatest
separability compared to SDA, using all bands, using only
the VIS, NIR and SWIR bands.

The actual bands that were selected for SDA and the
proposed method can be seen in Figure 2. Generally SDA
selects more band in the SWIR region. The proposed method
tends to select more bands in the VIS and NIR regions com-
pare to the SDA method. A number of these bands are also
ideally positioned in absorbtion areas of the EMS. The pro-
posed method selects 30 bands distributed throughout the



Table 3. Summary statistics for SID
Min Q1 Med Mean Q3 Max

ALL 0.003 0.011 0.022 0.027 0.033 0.115
VIS 0.002 0.006 0.010 0.024 0.035 0.078
NIR 0.000 0.000 0.001 0.001 0.001 0.002
SWIR 0.003 0.005 0.014 0.025 0.038 0.114
B1 10 0.003 0.008 0.016 0.023 0.027 0.069
B1 20 0.004 0.023 0.037 0.047 0.061 0.160
B1 30 0.005 0.023 0.043 0.055 0.071 0.165
B1 65 0.004 0.025 0.045 0.051 0.059 0.186
B2 10 0.005 0.029 0.066 0.093 0.139 0.308
B2 20 0.006 0.027 0.046 0.070 0.089 0.249
B2 30 0.006 0.023 0.047 0.060 0.081 0.220
1 using the selected bands from stepwise discriminant analysis.
2 using the selected bands from the proposed simulated annealing method.

EMS while SDA method selects the 30 bands in the 0.4 µm–
1.0 µm and 2.1 µm–2.5 µm.

We further accessed the proposed method by classifying
the 67 observations according to SAM and SID using all the
bands, bands in the VIS, NIR, SWIR, best 10, 20 and 30 bands
identified by SDA and best 10, 20 and 30 bands identified
using SA. The classification accuracy of these sets of bands
was examined using the kappa coefficient as defined in [8].

Table 4 contains the kappa coefficient for each of the band
regions using SAM and SID. The proposed method performs
better for both classification methods when compared to us-
ing the bands in the entire EMS, bands in the VIS, NIR and
SWIR regions. SAM performed best using SDA method with
30 bands (kappa coefficient of 72%) and the proposed method
was closely followed when 10 bands were optimally selected
(kappa coefficient of 70%). SID performed best using SDA
method with 30 bands (kappa coefficient of 74%) and the pro-
posed method was closely followed when 20 and 30 bands
were optimally selected (kappa coefficient of 69%).

Table 4. Kappa coefficient
ALL VIS NIR SWIR

SAM 0.56 0.63 0.44 0.44
SID 0.60 0.58 0.44 0.41

Using SDA Using SA
B1 10 B1 20 B1 30 B2 10 B2 20 B2 30

SAM 0.60 0.62 0.72 0.70 0.62 0.56
SID 0.63 0.70 0.74 0.67 0.69 0.69
1 using the selected bands from stepwise discriminant analysis.
2 using the selected bands from the proposed simulated annealing method.

5. CONCLUSIONS

In this paper, we have demonstrated that selecting bands by
optimizing SAM through simulated annealing has some de-

sired properties for improving classification accuracy. For
pairwise comparison of bands, the proposed method of se-
lecting bands (a) tend to have higher average SAM values
thus implying greater species separability, (b) tend to have
lower average correlations between the bands, and (c) results
in higher average SID values thus demonstrating that the se-
lected bands are not simply specific to SAM but can be used
by other classification methods. The proposed method of-
ten resulted in better classification accuracy as viewed by the
kappa coefficient for both SAM and SID.

Further investigation should address incorporating the
within species variability since the proposed method uses the
mean of the species and ignores the variability of the sam-
ples for each species. We are currently investigating other
separability measures, that specifically takes into account the
within- and between-class variability, with simulated anneal-
ing to improve on the classification accuracies.
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